CONFIG_LBD and CONFIG_LSF are spread into asm/types.h for no particularly
good reason.
Centralising the definition in linux/types.h means that arch maintainers
don't need to bother adding it, as well as fixing the problem with
x86-64 users being asked to make a decision that has absolutely no
effect.
The H8/300 porters seem particularly confused since I'm not aware of any
microcontrollers that need to support 2TB filesystems.
Signed-off-by: Matthew Wilcox <matthew@wil.cx>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add arch specific dev_archdata to struct device
Adds an arch specific struct dev_arch to struct device. This enables
architecture to add specific fields to every device in the system, like
DMA operation pointers, NUMA node ID, firmware specific data, etc...
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Andi Kleen <ak@suse.de>
Acked-By: David Howells <dhowells@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch updates the drivers (and other files) which include the
hardware headers. This fixes the breakage introduced in patches 3950/1
and 3951/1 (those patches were getting big).
The AVR32 architecture uses the same serial driver and had its own copy
of at91rm9200_pdc.h. Renamed it to at91_pdc.h
Signed-off-by: Andrew Victor <andrew@sanpeople.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
A number of new drivers require io{read,write}{8,16,32}{be,} family of io
operations. These are provided for the AVR32 by this patch in the form of
a series of macros.
Access to the (memory mapped) io space through these macros is defined to
be little endian only as little endian devices (such as PCI) are the main
consumer of IO access. If high speed access is required,
io{read,write}{16,32}be macros are supplied to perform native big endian
access to this io space.
Signed-off-by: Ben Nizette <ben@mallochdigital.com>
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When calling e.g. atomic_sub_return with a large constant, the
compiler may output an immediate that is too large for the sub
instruction in the middle of the loop.
Fix this by explicitly specifying the number of bits allowed in the
constraint. Also stop atomic_add_return() and friends from falling
back to their respective "sub" variants if the constant is too large
to fit in an immediate.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make the necessary changes to AVR32 required by the irq regs stuff.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Allow the board to remap actual USART peripheral devices to serial
devices by calling at32_map_usart(hw_id, serial_line). This ensures
that even though ATSTK1002 uses USART1 as the first serial port, it
will still have a ttyS0 device.
This also adds a board-specific early setup hook and moves the
at32_setup_serial_console() call there from the platform code.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
In order to initialize the serial console early, the atmel_serial
driver had to do a hack where it compared the physical address of the
port with an address known to be permanently mapped, and used it as a
virtual address. This got around the limitation that ioremap() isn't
always available when the console is being initalized.
This patch removes that hack and replaces it with a new "regs" field
in struct atmel_uart_data that the board-specific code can initialize
to a fixed virtual mapping for platform devices where this is possible.
It also initializes the DBGU's regs field with the address the driver
used to check against.
On AVR32, the "regs" field is initialized from the physical base
address when this it can be accessed through a permanently 1:1 mapped
segment, i.e. the P4 segment.
If regs is NULL, the console initialization is delayed until the "real"
driver is up and running and ioremap() can be used.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Acked-by: Andrew Victor <andrew@sanpeople.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Rename at91_register_uart_fns and associated structs and variables
to make it consistent with the atmel_ prefix used by the rest of
the driver.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Acked-by: Andrew Victor <andrew@sanpeople.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Move include/asm/arch/at91rm9200_usart.h into drivers/serial and rename
it atmel_usart.h. Also delete AVR32's version of this file.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Acked-by: Andrew Victor <andrew@sanpeople.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Move execve() into arch/avr32/kernel/sys_avr32.c, rename it to
kernel_execve() and return the syscall return value directly without
setting errno.
This also gets rid of the __KERNEL_SYSCALLS__ stuff from unistd.h and
expands #ifdef __KERNEL__ to cover everything in unistd.h except the
__NR_foo definitions.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patchset adds the necessary drivers and infrastructure to access the
external flash on the ATSTK1000 board through the MTD subsystem. With this
stuff in place, it will be possible to use a jffs2 filesystem stored in the
external flash as a root filesystem. It might also be possible to update the
boot loader if you drop the write protection of partition 0.
As suggested by David Woodhouse, I reworked the patches to use the physmap
driver instead of introducing a separate mapping driver for the ATSTK1000.
I've also cleaned up the hsmc header by removing useless comments and
converting spaces to tabs (my headerfile generator needs some work.)
Unfortunately, I couldn't unlock the flash in fixup_use_atmel_lock because the
erase regions hadn't been set up yet, so I had to do it from cfi_amdstd_setup
instead.
This patch:
This adds a simple API for configuring the static memory controller along with
an implementation for the Atmel HSMC.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>