1
Commit Graph

4 Commits

Author SHA1 Message Date
Jarkko Sakkinen
c82c618650 x86/sgx: Add SGX_IOC_ENCLAVE_PROVISION
The whole point of SGX is to create a hardware protected place to do
“stuff”. But, before someone is willing to hand over the keys to
the castle , an enclave must often prove that it is running on an
SGX-protected processor. Provisioning enclaves play a key role in
providing proof.

There are actually three different enclaves in play in order to make this
happen:

1. The application enclave.  The familiar one we know and love that runs
   the actual code that’s doing real work.  There can be many of these on
   a single system, or even in a single application.
2. The quoting enclave  (QE).  The QE is mentioned in lots of silly
   whitepapers, but, for the purposes of kernel enabling, just pretend they
   do not exist.
3. The provisioning enclave.  There is typically only one of these
   enclaves per system.  Provisioning enclaves have access to a special
   hardware key.

   They can use this key to help to generate certificates which serve as
   proof that enclaves are running on trusted SGX hardware.  These
   certificates can be passed around without revealing the special key.

Any user who can create a provisioning enclave can access the
processor-unique Provisioning Certificate Key which has privacy and
fingerprinting implications. Even if a user is permitted to create
normal application enclaves (via /dev/sgx_enclave), they should not be
able to create provisioning enclaves. That means a separate permissions
scheme is needed to control provisioning enclave privileges.

Implement a separate device file (/dev/sgx_provision) which allows
creating provisioning enclaves. This device will typically have more
strict permissions than the plain enclave device.

The actual device “driver” is an empty stub.  Open file descriptors for
this device will represent a token which allows provisioning enclave duty.
This file descriptor can be passed around and ultimately given as an
argument to the /dev/sgx_enclave driver ioctl().

 [ bp: Touchups. ]

Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: linux-security-module@vger.kernel.org
Link: https://lkml.kernel.org/r/20201112220135.165028-16-jarkko@kernel.org
2020-11-18 18:02:50 +01:00
Jarkko Sakkinen
9d0c151b41 x86/sgx: Add SGX_IOC_ENCLAVE_INIT
Enclaves have two basic states. They are either being built and are
malleable and can be modified by doing things like adding pages. Or,
they are locked down and not accepting changes. They can only be run
after they have been locked down. The ENCLS[EINIT] function induces the
transition from being malleable to locked-down.

Add an ioctl() that performs ENCLS[EINIT]. After this, new pages can
no longer be added with ENCLS[EADD]. This is also the time where the
enclave can be measured to verify its integrity.

Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-15-jarkko@kernel.org
2020-11-18 18:02:49 +01:00
Jarkko Sakkinen
888d249117 x86/sgx: Add SGX_IOC_ENCLAVE_CREATE
Add an ioctl() that performs the ECREATE function of the ENCLS
instruction, which creates an SGX Enclave Control Structure (SECS).

Although the SECS is an in-memory data structure, it is present in
enclave memory and is not directly accessible by software.

Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-13-jarkko@kernel.org
2020-11-18 18:02:49 +01:00
Jarkko Sakkinen
3fe0778eda x86/sgx: Add an SGX misc driver interface
Intel(R) SGX is a new hardware functionality that can be used by
applications to set aside private regions of code and data called
enclaves. New hardware protects enclave code and data from outside
access and modification.

Add a driver that presents a device file and ioctl API to build and
manage enclaves.

 [ bp: Small touchups, remove unused encl variable in sgx_encl_find() as
   Reported-by: kernel test robot <lkp@intel.com> ]

Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-12-jarkko@kernel.org
2020-11-18 18:01:16 +01:00