1
Commit Graph

10 Commits

Author SHA1 Message Date
bibo, mao
a9ad965ea9 [PATCH] IA64: kprobe invalidate icache of jump buffer
Kprobe inserts breakpoint instruction in probepoint and then jumps to
instruction slot when breakpoint is hit, the instruction slot icache must
be consistent with dcache.  Here is the patch which invalidates instruction
slot icache area.

Without this patch, in some machines there will be fault when executing
instruction slot where icache content is inconsistent with dcache.

Signed-off-by: bibo,mao <bibo.mao@intel.com>
Acked-by: "Luck, Tony" <tony.luck@intel.com>
Acked-by: Keshavamurthy Anil S <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-31 13:28:38 -07:00
Anil S Keshavamurthy
e6f47f978b [PATCH] Notify page fault call chain
With this patch Kprobes now registers for page fault notifications only when
their is an active probe registered.  Once all the active probes are
unregistered their is no need to be notified of page faults and kprobes
unregisters itself from the page fault notifications.  Hence we will have ZERO
side effects when no probes are active.

Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-26 09:58:22 -07:00
Masami Hiramatsu
311ac88fd2 [PATCH] x86: kprobes-booster
Current kprobe copies the original instruction at the probe point and replaces
it with a breakpoint instruction (int3).  When the kernel hits the probe
point, kprobe handler is invoked.  And the copied instruction is single-step
executed on the copied buffer (not on the original address) by kprobe.  After
that, the kprobe checks registers and modify it (if need) as if the
instructions was executed on the original address.

My proposal is based on the fact there are many instructions which do NOT
require the register modification after the single-step execution.  When the
copied instruction is a kind of them, kprobe just jumps back to the next
instruction after single-step execution.  If so, why don't we execute those
instructions directly?

With kprobe-booster patch, kprobes will execute a copied instruction directly
and (if need) jump back to original code.  This direct execution is executed
when the kprobe don't have both post_handler and break_handler, and the copied
instruction can be executed directly.

I sorted instructions which can be executed directly or not;

- Call instructions are NG(can not be executed directly).
  We should correct the return address pushed into top of stack.
- Indirect instructions except for absolute indirect-jumps
  are NG. Those instructions changes EIP randomly. We should
  check EIP and correct it.
- Instructions that change EIP beyond the range of the
  instruction buffer are NG.
- Instructions that change EIP to tail 5 bytes of the
  instruction buffer (it is the size of a jump instruction).
  We must write a jump instruction which backs to original
  kernel code in the instruction buffer.
- Break point instruction is NG. We should not touch EIP and
  pass to other handlers.
- Absolute direct/indirect jumps are OK.- Conditional Jumps are NG.
- Halt and software-interruptions are NG. Because it will stay on
  the instruction buffer of kprobes.
- Prefixes are NG.
- Unknown/reserved opcode is NG.
- Other 1 byte instructions are OK. But those instructions need a
  jump back code.
- 2 bytes instructions are mapped sparsely. So, in this release,
  this patch don't boost those instructions.

>From Intel's IA-32 opcode map described in IA-32 Intel Architecture Software
Developer's Manual Vol.2 B, I determined that following opcodes are not
boostable.

- 0FH (2byte escape)
- 70H - 7FH (Jump on condition)
- 9AH (Call) and 9CH (Pushf)
- C0H-C1H (Grp 2: includes reserved opcode)
- C6H-C7H (Grp11: includes reserved opcode)
- CCH-CEH (Software-interrupt)
- D0H-D3H (Grp2: includes reserved opcode)
- D6H (Reserved)
- D8H-DFH (Coprocessor)
- E0H-E3H (loop/conditional jump)
- E8H (Call)
- F0H-F3H (Prefixes and reserved)
- F4H (Halt)
- F6H-F7H (Grp3: includes reserved opcode)
- FEH-FFH(Grp4,5: includes reserved opcode)

Kprobe-booster checks whether target instruction can be boosted (can be
executed directly) at arch_copy_kprobe() function.  If the target instruction
can be boosted, it clears "boostable" flag.  If not, it sets "boostable" flag
-1.  This is disabled status.  In resume_execution() function, If "boostable"
flag is cleared, kprobe-booster measures the size of the target instruction
and sets "boostable" flag 1.

In kprobe_handler(), kprobe checks the "boostable" flag.  If the flag is 1, it
resets current kprobe and executes instruction buffer directly instead of
single stepping.

When unregistering a boosted kprobe, it calls synchronize_sched()
after "int3" is removed. So we can ensure followings after
the synchronize_sched() called.
- interrupt handlers are finished on all CPUs.
- instruction buffer is not executed on all CPUs.
And we can release the boosted kprobe safely.

And also, on preemptible kernel, the booster is not enabled where the kernel
preemption is enabled.  So, there are no preempted threads on the instruction
buffer.

The description of kretprobe-booster:
====================================

In the normal operation, kretprobe make a target function return to trampoline
code.  And a kprobe (called trampoline_probe) have been inserted at the
trampoline code.  When the kernel hits this kprobe, it calls kretprobe's
handler and it returns to original return address.

Kretprobe-booster patch removes the trampoline_probe.  It allows the
trampoline code to call kretprobe's handler directly instead of invoking
kprobe.  And tranpoline code returns to original return address.

This new trampoline code stores and restores registers, so the kretprobe
handler is still able to access those registers.

Current kprobe has about 1.3 usec/probe(*) overhead, and kprobe-booster patch
reduces it to 0.6 usec/probe(*).  Also current kretprobe has about 2.0
usec/probe(*) overhead.  Kprobe-booster patch reduces it to 1.3 usec/probe(*),
and the combination of both kprobe-booster patch and kretprobe-booster patch
reduces it to 0.9 usec/probe(*).

I expect the combination of both patches can reduce half of a probing
overhead.

Performance numbers strongly depend on the processor model.

Andrew Morton wrote:
> These preempt tricks look rather nasty.  Can you please describe what the
> problem is, precisely?  And how this code avoids it?  Perhaps we can find
> something cleaner.

The problem is how to remove the copied instructions of the
kprobe *safely* on the preemptable kernel (CONFIG_PREEMPT=y).

Kprobes basically executes the following actions;

(1)int3
(2)preempt_disable()
(3)kprobe_prehandler()
(4)copied instructioin(single step)
(5)kprobe_posthandler()
(6)preempt_enable()
(7)return to the original code

During the execution of copied instruction, preemption is
disabled (from step (2) to (6)).
When unregistering the probes, Kprobe waits for RCU
quiescent state by using synchronize_sched() after removing
int3 instruction.
Thus we can ensure the copied instruction is not executed.

On the other hand, kprobe-booster executes the following actions;

(1)int3
(2)preempt_disable()
(3)kprobe_prehandler()
(4)preempt_enable()             <-- this one is added by my patch
(5)copied instruction(direct execution)
(6)jmp back to the original code

The problem is that we have no way to prevent preemption on
step (5) or (6). We cannot call preempt_disable() after step (6),
because there are no rooms to do that. Thus, some other
processes may be preempted at step(5) or (6) on preemptable kernel.
And I couldn't find the easy way to ensure that other processes'
stack do *not* have the address of them. (I thought some way
to do that, but those are very costly.)

So currently, I simply boost the kprobe only when the probe
point is already preemption disabled.

> Also, the patch adds a preempt_enable() but I don't see a corresponding
> preempt_disable().  Am I missing something?

It is corresponding to the preempt_disable() in the top of
kprobe_handler().
I copied the code of kprobe_handler() here:

static int __kprobes kprobe_handler(struct pt_regs *regs)
{
        struct kprobe *p;
        int ret = 0;
        kprobe_opcode_t *addr = NULL;
        unsigned long *lp;
        struct kprobe_ctlblk *kcb;

        /*
         * We don't want to be preempted for the entire
         * duration of kprobe processing
         */
        preempt_disable();             <-- HERE
        kcb = get_kprobe_ctlblk();

Signed-off-by: Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp>
Cc: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-26 08:57:04 -08:00
Prasanna S Panchamukhi
124d90be62 [PATCH] Kprobes causes NX protection fault on i686 SMP
Fix a problem seen on i686 machine with NX support where the instruction
could not be single stepped because of NX bit set on the memory pages
allocated by kprobes module.  This patch provides allocation of instruction
solt so that the processor can execute the instruction from that location
similar to x86_64 architecture.  Thanks to Bibo and Masami for testing this
patch.

Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-24 14:31:37 -08:00
Ananth N Mavinakayanahalli
0498b63504 [PATCH] kprobes: fix build breakage
The following patch (against 2.6.15-rc5-mm3) fixes a kprobes build break
due to changes introduced in the kprobe locking in 2.6.15-rc5-mm3.  In
addition, the patch reverts back the open-coding of kprobe_mutex.

Signed-off-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Acked-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 08:01:40 -08:00
Anil S Keshavamurthy
e597c2984c [PATCH] kprobes: arch_remove_kprobe
Currently arch_remove_kprobes() is only implemented/required for x86_64 and
powerpc.  All other architecture like IA64, i386 and sparc64 implementes a
dummy function which is being called from arch independent kprobes.c file.

This patch removes the dummy functions and replaces it with
#define arch_remove_kprobe(p, s)	do { } while(0)

Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 08:01:40 -08:00
Anil S Keshavamurthy
41dead49cc [PATCH] kprobes: cleanup include/asm/kprobes.h
The arch specific kprobes.h files never gets included when CONFIG_KPROBES is
turned off.  Hence check for CONFIG_KPROBES is not appropriate here in this
arch specific kprobes.h files.

Also the below defined function kprobes_exception_notify() is not needed when
CONFIG_KPROBES is off.

Compile tested for both CONFIG_KPROBES=y and N.

Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 08:01:40 -08:00
Ananth N Mavinakayanahalli
9a0e3a8683 [PATCH] Kprobes: Track kprobe on a per_cpu basis - i386 changes
I386 changes to track kprobe execution on a per-cpu basis.  We now track the
kprobe state machine independently on each cpu, using an arch specific kprobe
control block.

Signed-off-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-07 07:53:45 -08:00
Hien Nguyen
b94cce926b [PATCH] kprobes: function-return probes
This patch adds function-return probes to kprobes for the i386
architecture.  This enables you to establish a handler to be run when a
function returns.

1. API

Two new functions are added to kprobes:

	int register_kretprobe(struct kretprobe *rp);
	void unregister_kretprobe(struct kretprobe *rp);

2. Registration and unregistration

2.1 Register

  To register a function-return probe, the user populates the following
  fields in a kretprobe object and calls register_kretprobe() with the
  kretprobe address as an argument:

  kp.addr - the function's address

  handler - this function is run after the ret instruction executes, but
  before control returns to the return address in the caller.

  maxactive - The maximum number of instances of the probed function that
  can be active concurrently.  For example, if the function is non-
  recursive and is called with a spinlock or mutex held, maxactive = 1
  should be enough.  If the function is non-recursive and can never
  relinquish the CPU (e.g., via a semaphore or preemption), NR_CPUS should
  be enough.  maxactive is used to determine how many kretprobe_instance
  objects to allocate for this particular probed function.  If maxactive <=
  0, it is set to a default value (if CONFIG_PREEMPT maxactive=max(10, 2 *
  NR_CPUS) else maxactive=NR_CPUS)

  For example:

    struct kretprobe rp;
    rp.kp.addr = /* entrypoint address */
    rp.handler = /*return probe handler */
    rp.maxactive = /* e.g., 1 or NR_CPUS or 0, see the above explanation */
    register_kretprobe(&rp);

  The following field may also be of interest:

  nmissed - Initialized to zero when the function-return probe is
  registered, and incremented every time the probed function is entered but
  there is no kretprobe_instance object available for establishing the
  function-return probe (i.e., because maxactive was set too low).

2.2 Unregister

  To unregiter a function-return probe, the user calls
  unregister_kretprobe() with the same kretprobe object as registered
  previously.  If a probed function is running when the return probe is
  unregistered, the function will return as expected, but the handler won't
  be run.

3. Limitations

3.1 This patch supports only the i386 architecture, but patches for
    x86_64 and ppc64 are anticipated soon.

3.2 Return probes operates by replacing the return address in the stack
    (or in a known register, such as the lr register for ppc).  This may
    cause __builtin_return_address(0), when invoked from the return-probed
    function, to return the address of the return-probes trampoline.

3.3 This implementation uses the "Multiprobes at an address" feature in
    2.6.12-rc3-mm3.

3.4 Due to a limitation in multi-probes, you cannot currently establish
    a return probe and a jprobe on the same function.  A patch to remove
    this limitation is being tested.

This feature is required by SystemTap (http://sourceware.org/systemtap),
and reflects ideas contributed by several SystemTap developers, including
Will Cohen and Ananth Mavinakayanahalli.

Signed-off-by: Hien Nguyen <hien@us.ibm.com>
Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Signed-off-by: Frederik Deweerdt <frederik.deweerdt@laposte.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 09:45:21 -07:00
Linus Torvalds
1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00