The filesystem turns readonly instead of returning the error to the
caller when detected error in btrfs_drop_snapshot().
and, because the caller doesn't check the error, the function type is
changed to 'void'.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When checking if there is enough space for balancing a block group,
since we do not take raid types into consideration, we do not account
corrent amounts of space that we needed. This makes us do some extra
work before we get ENOSPC.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When balancing, we'll first try to shrink devices for some space,
but if it is working on a full multi-disk partition with raid protection,
we may encounter a bug, that is, while shrinking, total_bytes may be less
than bytes_used, and btrfs may allocate a dev extent that accesses out of
device's bounds.
Then we will not be able to write or read the data which stores at the end
of the device, and get the followings:
device fsid 0939f071-7ea3-46c8-95df-f176d773bfb6 devid 1 transid 10 /dev/sdb5
Btrfs detected SSD devices, enabling SSD mode
btrfs: relocating block group 476315648 flags 9
btrfs: found 4 extents
attempt to access beyond end of device
sdb5: rw=145, want=546176, limit=546147
attempt to access beyond end of device
sdb5: rw=145, want=546304, limit=546147
attempt to access beyond end of device
sdb5: rw=145, want=546432, limit=546147
attempt to access beyond end of device
sdb5: rw=145, want=546560, limit=546147
attempt to access beyond end of device
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When btrfs recovers from a crash, it may hit the oops below:
------------[ cut here ]------------
kernel BUG at fs/btrfs/inode.c:4580!
[...]
RIP: 0010:[<ffffffffa03df251>] [<ffffffffa03df251>] btrfs_add_link+0x161/0x1c0 [btrfs]
[...]
Call Trace:
[<ffffffffa03e7b31>] ? btrfs_inode_ref_index+0x31/0x80 [btrfs]
[<ffffffffa04054e9>] add_inode_ref+0x319/0x3f0 [btrfs]
[<ffffffffa0407087>] replay_one_buffer+0x2c7/0x390 [btrfs]
[<ffffffffa040444a>] walk_down_log_tree+0x32a/0x480 [btrfs]
[<ffffffffa0404695>] walk_log_tree+0xf5/0x240 [btrfs]
[<ffffffffa0406cc0>] btrfs_recover_log_trees+0x250/0x350 [btrfs]
[<ffffffffa0406dc0>] ? btrfs_recover_log_trees+0x350/0x350 [btrfs]
[<ffffffffa03d18b2>] open_ctree+0x1442/0x17d0 [btrfs]
[...]
This comes from that while replaying an inode ref item, we forget to
check those old conflicting DIR_ITEM and DIR_INDEX items in fs/file tree,
then we will come to conflict corners which lead to BUG_ON().
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Tested-by: Andy Lutomirski <luto@mit.edu>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We have a problem where if a user specifies discard but doesn't actually support
it we will return EOPNOTSUPP from btrfs_discard_extent. This is a problem
because this gets called (in a fashion) from the tree log recovery code, which
has a nice little BUG_ON(ret) after it, which causes us to fail the tree log
replay. So instead detect wether our devices support discard when we're adding
them and then don't issue discards if we know that the device doesn't support
it. And just for good measure set ret = 0 in btrfs_issue_discard just in case
we still get EOPNOTSUPP so we don't screw anybody up like this again. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs does bio submissions from a worker thread, and each device
has a list of high priority bios and regular priority bios.
Synchronous writes go to the high priority thread while async writes
go to regular list. This commit brings back an explicit unplug
any time we switch from high to regular priority, which makes it
easier for the block layer to give us low latencies.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable: (31 commits)
Btrfs: don't call writepages from within write_full_page
Btrfs: Remove unused variable 'last_index' in file.c
Btrfs: clean up for find_first_extent_bit()
Btrfs: clean up for wait_extent_bit()
Btrfs: clean up for insert_state()
Btrfs: remove unused members from struct extent_state
Btrfs: clean up code for merging extent maps
Btrfs: clean up code for extent_map lookup
Btrfs: clean up search_extent_mapping()
Btrfs: remove redundant code for dir item lookup
Btrfs: make acl functions really no-op if acl is not enabled
Btrfs: remove remaining ref-cache code
Btrfs: remove a BUG_ON() in btrfs_commit_transaction()
Btrfs: use wait_event()
Btrfs: check the nodatasum flag when writing compressed files
Btrfs: copy string correctly in INO_LOOKUP ioctl
Btrfs: don't print the leaf if we had an error
btrfs: make btrfs_set_root_node void
Btrfs: fix oops while writing data to SSD partitions
Btrfs: Protect the readonly flag of block group
...
Fix up trivial conflicts (due to acl and writeback cleanups) in
- fs/btrfs/acl.c
- fs/btrfs/ctree.h
- fs/btrfs/extent_io.c
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6:
xfs: Fix build breakage in xfs_iops.c when CONFIG_FS_POSIX_ACL is not set
VFS: Reorganise shrink_dcache_for_umount_subtree() after demise of dcache_lock
VFS: Remove dentry->d_lock locking from shrink_dcache_for_umount_subtree()
VFS: Remove detached-dentry counter from shrink_dcache_for_umount_subtree()
switch posix_acl_chmod() to umode_t
switch posix_acl_from_mode() to umode_t
switch posix_acl_equiv_mode() to umode_t *
switch posix_acl_create() to umode_t *
block: initialise bd_super in bdget()
vfs: avoid call to inode_lru_list_del() if possible
vfs: avoid taking inode_hash_lock on pipes and sockets
vfs: conditionally call inode_wb_list_del()
VFS: Fix automount for negative autofs dentries
Btrfs: load the key from the dir item in readdir into a fake dentry
devtmpfs: missing initialialization in never-hit case
hppfs: missing include
When doing a writepage we call writepages to try and write out any other dirty
pages in the area. This could cause problems where we commit a transaction and
then have somebody else dirtying metadata in the area as we could end up writing
out a lot more than we care about, which could cause latency on anybody who is
waiting for the transaction to completely finish committing. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The variable 'last_index' is calculated in the __btrfs_buffered_write
function and passed as a parameter to the prepare_pages function,
but is not used anywhere in the prepare_pages function.
Remove instances of 'last_index' in these functions.
Signed-off-by: Mitch Harder <mitch.harder@sabayonlinux.org>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
find_first_extent_bit() and find_first_extent_bit_state() share
most of the code, and we can just make the former call the latter.
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We can just use cond_resched_lock().
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
These members are not used at all.
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
unpin_extent_cache() and add_extent_mapping() shares the same code
that merges extent maps.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
lookup_extent_map() and search_extent_map() can share most of code.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
rb_node returned by __tree_search() can be a valid pointer or NULL,
but won't be some errno.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When we search a dir item with a specific hash code, we can
just return NULL without further checking if btrfs_search_slot()
returns 1.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Since commit f2a97a9dbd
("btrfs: remove all unused functions"), there's no extern functions
at all in ref-cache.c, so just remove the remaining dead code.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Use wait_event() when possible to avoid code duplication.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
If mounting with nodatasum option, we won't csum file data for
general write or direct-io write, and this rule should also be
applied when writing compressed files.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Memory areas [ptr, ptr+total_len] and [name, name+total_len]
may overlap, so it's wrong to use memcpy().
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
In __btrfs_free_extent we will print the leaf if we fail to find the extent we
wanted, but the problem is if we get an error we won't have a leaf so often this
leads to a NULL pointer dereference and we lose the error that actually
occurred. So only print the leaf if ret > 0, which means we didn't find the
item we were looking for but we didn't error either. This way the error is
preserved.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This is fairly trivial - btrfs_set_root_node() - always returns zero so we
can just make it void. All callers ignore the return code now anyway. I
also made sure to check that none of the functions that
btrfs_set_root_node() calls returns an error that we might have needed to
catch and pass back.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Here I have a two SSD-partitions btrfs, and they are defaultly set to
"data=raid0, metadata=raid1", then I try to fill my btrfs partition
till "No space left on device", via "dd if=/dev/zero of=/mnt/btrfs/tmp".
I get an oops panic from kernel BUG at fs/btrfs/extent-tree.c:5199!, which
refers to find_free_extent's
BUG_ON(index != get_block_group_index(block_group));
In SSD mode, in order to find enough space to alloc, we may check the
block_group cache which has been checked sometime before, but the index is not
updated, where it hits the BUG_ON.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Acked-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The access for ro in btrfs_block_group_cache should be protected
because of the racy lock in relocation.
Signed-off-by: Wu Bo <wu.bo@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The set/clear bit and the extent split/merge hooks only ever return 0.
Changing them to return void simplifies the error handling cases later.
This patch changes the hook prototypes, the single implementation of each,
and the functions that call them to return void instead.
Since all four of these hooks execute under a spinlock, they're necessarily
simple.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We passed the wrong value to btrfs_force_ra(). Fix this by changing
the argument of btrfs_force_ra() from last_index to nr_page.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When btrfs_unlink_inode() and btrfs_orphan_add() in btrfs_unlink()
are error, the error code is returned to the caller instead of
BUG_ON().
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Don't need to check the return value of __btrfs_add_inode_defrag(),
since it will always return 0.
Signed-off-by: Wanlong Gao <gaowanlong@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
In btrfs we have 2 indexes for inodes. One is for readdir, it's in this nice
sequential order and works out brilliantly for readdir. However if you use ls,
it usually stat's each file it gets from readdir. This is where the second
index comes in, which is based on a hash of the name of the file. So then the
lookup has to lookup this index, and then lookup the inode. The index lookup is
going to be in random order (since its based on the name hash), which gives us
less than stellar performance. Since we know the inode location from the
readdir index, I create a dummy dentry and copy the location key into
dentry->d_fsdata. Then on lookup if we have d_fsdata we use that location to
lookup the inode, avoiding looking up the other directory index. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: make sure reserve_metadata_bytes doesn't leak out strange errors
Btrfs: use the commit_root for reading free_space_inode crcs
Btrfs: reduce extent_state lock contention for metadata
Btrfs: remove lockdep magic from btrfs_next_leaf
Btrfs: make a lockdep class for each root
Btrfs: switch the btrfs tree locks to reader/writer
Btrfs: fix deadlock when throttling transactions
Btrfs: stop using highmem for extent_buffers
Btrfs: fix BUG_ON() caused by ENOSPC when relocating space
Btrfs: tag pages for writeback in sync
Btrfs: fix enospc problems with delalloc
Btrfs: don't flush delalloc arbitrarily
Btrfs: use find_or_create_page instead of grab_cache_page
Btrfs: use a worker thread to do caching
Btrfs: fix how we merge extent states and deal with cached states
Btrfs: use the normal checksumming infrastructure for free space cache
Btrfs: serialize flushers in reserve_metadata_bytes
Btrfs: do transaction space reservation before joining the transaction
Btrfs: try to only do one btrfs_search_slot in do_setxattr
The btrfs transaction code will return any errors that come from
reserve_metadata_bytes. We need to make sure we don't return funny
things like 1 or EAGAIN.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Now that we are using regular file crcs for the free space cache,
we can deadlock if we try to read the free_space_inode while we are
updating the crc tree.
This commit fixes things by using the commit_root to read the crcs. This is
safe because we the free space cache file would already be loaded if
that block group had been changed in the current transaction.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
For metadata buffers that don't straddle pages (all of them), btrfs
can safely use the page uptodate bits and extent_buffer uptodate bit
instead of needing to use the extent_state tree.
This greatly reduces contention on the state tree lock.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Before the reader/writer locks, btrfs_next_leaf needed to keep
the path blocking to avoid making lockdep upset.
Now that btrfs_next_leaf only takes read locks, this isn't required.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch was originally from Tejun Heo. lockdep complains about the btrfs
locking because we sometimes take btree locks from two different trees at the
same time. The current classes are based only on level in the btree, which
isn't enough information for lockdep to figure out if the lock is safe.
This patch makes a class for each type of tree, and lumps all the FS trees that
actually have files and directories into the same class.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The btrfs metadata btree is the source of significant
lock contention, especially in the root node. This
commit changes our locking to use a reader/writer
lock.
The lock is built on top of rw spinlocks, and it
extends the lock tracking to remember if we have a
read lock or a write lock when we go to blocking. Atomics
count the number of blocking readers or writers at any
given time.
It removes all of the adaptive spinning from the old code
and uses only the spinning/blocking hints inside of btrfs
to decide when it should continue spinning.
In read heavy workloads this is dramatically faster. In write
heavy workloads we're still faster because of less contention
on the root node lock.
We suffer slightly in dbench because we schedule more often
during write locks, but all other benchmarks so far are improved.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Hit this nice little deadlock. What happens is this
__btrfs_end_transaction with throttle set, --use_count so it equals 0
btrfs_commit_transaction
<somebody else actually manages to start the commit>
btrfs_end_transaction --use_count so now its -1 <== BAD
we just return and wait on the transaction
This is bad because we just return after our use_count is -1 and don't let go
of our num_writer count on the transaction, so the guy committing the
transaction just sits there forever. Fix this by inc'ing our use_count if we're
going to call commit_transaction so that if we call btrfs_end_transaction it's
valid. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The extent_buffers have a very complex interface where
we use HIGHMEM for metadata and try to cache a kmap mapping
to access the memory.
The next commit adds reader/writer locks, and concurrent use
of this kmap cache would make it even more complex.
This commit drops the ability to use HIGHMEM with extent buffers,
and rips out all of the related code.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When we balanced the chunks across the devices, BUG_ON() in
__finish_chunk_alloc() was triggered.
------------[ cut here ]------------
kernel BUG at fs/btrfs/volumes.c:2568!
[SNIP]
Call Trace:
[<ffffffffa049525e>] btrfs_alloc_chunk+0x8e/0xa0 [btrfs]
[<ffffffffa04546b0>] do_chunk_alloc+0x330/0x3a0 [btrfs]
[<ffffffffa045c654>] btrfs_reserve_extent+0xb4/0x1f0 [btrfs]
[<ffffffffa045c86b>] btrfs_alloc_free_block+0xdb/0x350 [btrfs]
[<ffffffffa048a8d8>] ? read_extent_buffer+0xd8/0x1d0 [btrfs]
[<ffffffffa04476fd>] __btrfs_cow_block+0x14d/0x5e0 [btrfs]
[<ffffffffa044660d>] ? read_block_for_search+0x14d/0x4d0 [btrfs]
[<ffffffffa0447c9b>] btrfs_cow_block+0x10b/0x240 [btrfs]
[<ffffffffa044dd5e>] btrfs_search_slot+0x49e/0x7a0 [btrfs]
[<ffffffffa044f07d>] btrfs_insert_empty_items+0x8d/0xf0 [btrfs]
[<ffffffffa045e973>] insert_with_overflow+0x43/0x110 [btrfs]
[<ffffffffa045eb0d>] btrfs_insert_dir_item+0xcd/0x1f0 [btrfs]
[<ffffffffa0489bd0>] ? map_extent_buffer+0xb0/0xc0 [btrfs]
[<ffffffff812276ad>] ? rb_insert_color+0x9d/0x160
[<ffffffffa046cc40>] ? inode_tree_add+0xf0/0x150 [btrfs]
[<ffffffffa0474801>] btrfs_add_link+0xc1/0x1c0 [btrfs]
[<ffffffff811dacac>] ? security_inode_init_security+0x1c/0x30
[<ffffffffa04a28aa>] ? btrfs_init_acl+0x4a/0x180 [btrfs]
[<ffffffffa047492f>] btrfs_add_nondir+0x2f/0x70 [btrfs]
[<ffffffffa046af16>] ? btrfs_init_inode_security+0x46/0x60 [btrfs]
[<ffffffffa0474ac0>] btrfs_create+0x150/0x1d0 [btrfs]
[<ffffffff81159c63>] ? generic_permission+0x23/0xb0
[<ffffffff8115b415>] vfs_create+0xa5/0xc0
[<ffffffff8115ce6e>] do_last+0x5fe/0x880
[<ffffffff8115dc0d>] path_openat+0xcd/0x3d0
[<ffffffff8115e029>] do_filp_open+0x49/0xa0
[<ffffffff8116a965>] ? alloc_fd+0x95/0x160
[<ffffffff8114f0c7>] do_sys_open+0x107/0x1e0
[<ffffffff810bcc3f>] ? audit_syscall_entry+0x1bf/0x1f0
[<ffffffff8114f1e0>] sys_open+0x20/0x30
[<ffffffff81484ec2>] system_call_fastpath+0x16/0x1b
[SNIP]
RIP [<ffffffffa049444a>] __finish_chunk_alloc+0x20a/0x220 [btrfs]
The reason is:
Task1 Space balance task
do_chunk_alloc()
__finish_chunk_alloc()
update device info
in the chunk tree
alloc system metadata block
relocate system metadata block group
set system metadata block group
readonly, This block group is the
only one that can allocate space. So
there is no free space that can be
allocated now.
find no space and don't try
to alloc new chunk, and then
return ENOSPC
BUG_ON() in __finish_chunk_alloc()
was triggered.
Fix this bug by allocating a new system metadata chunk before relocating the
old one if we find there is no free space which can be allocated after setting
the old block group to be read-only.
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Everybody else does this, we need to do it too. If we're syncing, we need to
tag the pages we're going to write for writeback so we don't end up writing the
same stuff over and over again if somebody is constantly redirtying our file.
This will keep us from having latencies with heavy sync workloads. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
So I had this brilliant idea to use atomic counters for outstanding and reserved
extents, but this turned out to be a bad idea. Consider this where we have 1
outstanding extent and 1 reserved extent
Reserver Releaser
atomic_dec(outstanding) now 0
atomic_read(outstanding)+1 get 1
atomic_read(reserved) get 1
don't actually reserve anything because
they are the same
atomic_cmpxchg(reserved, 1, 0)
atomic_inc(outstanding)
atomic_add(0, reserved)
free reserved space for 1 extent
Then the reserver now has no actual space reserved for it, and when it goes to
finish the ordered IO it won't have enough space to do it's allocation and you
get those lovely warnings.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Kill the check to see if we have 512mb of reserved space in delalloc and
shrink_delalloc if we do. This causes unexpected latencies and we have other
logic to see if we need to throttle. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
grab_cache_page will use mapping_gfp_mask(), which for all inodes is set to
GFP_HIGHUSER_MOVABLE. So instead use find_or_create_page in all cases where we
need GFP_NOFS so we don't deadlock. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
A user reported a deadlock when copying a bunch of files. This is because they
were low on memory and kthreadd got hung up trying to migrate pages for an
allocation when starting the caching kthread. The page was locked by the person
starting the caching kthread. To fix this we just need to use the async thread
stuff so that the threads are already created and we don't have to worry about
deadlocks. Thanks,
Reported-by: Roman Mamedov <rm@romanrm.ru>
Signed-off-by: Josef Bacik <josef@redhat.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6:
merge fchmod() and fchmodat() guts, kill ancient broken kludge
xfs: fix misspelled S_IS...()
xfs: get rid of open-coded S_ISREG(), etc.
vfs: document locking requirements for d_move, __d_move and d_materialise_unique
omfs: fix (mode & S_IFDIR) abuse
btrfs: S_ISREG(mode) is not mode & S_IFREG...
ima: fmode_t misspelled as mode_t...
pci-label.c: size_t misspelled as mode_t
jffs2: S_ISLNK(mode & S_IFMT) is pointless
snd_msnd ->mode is fmode_t, not mode_t
v9fs_iop_get_acl: get rid of unused variable
vfs: dont chain pipe/anon/socket on superblock s_inodes list
Documentation: Exporting: update description of d_splice_alias
fs: add missing unlock in default_llseek()
This allows us to move duplicated code in <asm/atomic.h>
(atomic_inc_not_zero() for now) to <linux/atomic.h>
Signed-off-by: Arun Sharma <asharma@fb.com>
Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In addition to properly handling allocation failure from btrfs_alloc_path, I
also fixed up the kzalloc error handling code immediately below it.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
I also removed the BUG_ON from error return of find_next_chunk in
init_first_rw_device(). It turns out that the only caller of
init_first_rw_device() also BUGS on any nonzero return so no actual behavior
change has occurred here.
do_chunk_alloc() also needed an update since it calls btrfs_alloc_chunk()
which can now return -ENOMEM. Instead of setting space_info->full on any
error from btrfs_alloc_chunk() I catch and return every error value _except_
-ENOSPC. Thanks goes to Tsutomu Itoh for pointing that issue out.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Replace the ->check_acl method with a ->get_acl method that simply reads an
ACL from disk after having a cache miss. This means we can replace the ACL
checking boilerplate code with a single implementation in namei.c.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
new helper: posix_acl_create(&acl, gfp, mode_p). Replaces acl with
modified clone, on failure releases acl and replaces with NULL.
Returns 0 or -ve on error. All callers of posix_acl_create_masq()
switched.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
new helper: posix_acl_chmod(&acl, gfp, mode). Replaces acl with modified
clone or with NULL if that has failed; returns 0 or -ve on error. All
callers of posix_acl_chmod_masq() switched to that - they'd been doing
exactly the same thing.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This moves logic for checking the cached ACL values from low-level
filesystems into generic code. The end result is a streamlined ACL
check that doesn't need to load the inode->i_op->check_acl pointer at
all for the common cached case.
The filesystems also don't need to check for a non-blocking RCU walk
case in their acl_check() functions, because that is all handled at a
VFS layer.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
both callers there have dentry->d_parent stabilized by the fact that
their caller had obtained dentry from lookup_one_len() and had not
dropped ->i_mutex on parent since then.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Btrfs needs to be able to control how filemap_write_and_wait_range() is called
in fsync to make it less of a painful operation, so push down taking i_mutex and
the calling of filemap_write_and_wait() down into the ->fsync() handlers. Some
file systems can drop taking the i_mutex altogether it seems, like ext3 and
ocfs2. For correctness sake I just pushed everything down in all cases to make
sure that we keep the current behavior the same for everybody, and then each
individual fs maintainer can make up their mind about what to do from there.
Thanks,
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
In order to handle SEEK_HOLE/SEEK_DATA we need to implement our own llseek.
Basically for the normal SEEK_*'s we will just defer to the generic helper, and
for SEEK_HOLE/SEEK_DATA we will use our fiemap helper to figure out the nearest
hole or data. Currently this helper doesn't check for delalloc bytes for
prealloc space, so for now treat prealloc as data until that is fixed. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
its value depends only on inode and does not change; we might as
well store it in ->i_op->check_acl and be done with that.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Dealing with this seems trivial - the only caller of btrfs_balance() is
btrfs_ioctl() which passes the error code directly back to userspace. There
also isn't much state to unwind (if I'm wrong about this point, we can
always safely move the allocation to the top of btrfs_balance() anyway).
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
btrfs_iget() also needed an update so that errors from btrfs_locked_inode()
are caught and bubbled back up.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
I moved the path allocation up a few lines to the top of the function so
that we couldn't get into the state where we've dropped delayed items and
the extent cache but fail due to -ENOMEM.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
The two ->process_func call sites in tree-log.c which were ignoring a return
code have also been updated to gracefully exit as well.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This patch fixes many callers of btrfs_alloc_path() which BUG_ON allocation
failure. All the sites that are fixed in this patch were checked by me to
be fairly trivial to fix because of at least one of two criteria:
- Callers of the function catch errors from it already so bubbling the
error up will be handled.
- Callers of the function might BUG_ON any nonzero return code in which
case there is no behavior changed (but we still got to remove a BUG_ON)
The following functions were updated:
btrfs_lookup_extent, alloc_reserved_tree_block, btrfs_remove_block_group,
btrfs_lookup_csums_range, btrfs_csum_file_blocks, btrfs_mark_extent_written,
btrfs_inode_by_name, btrfs_new_inode, btrfs_symlink,
insert_reserved_file_extent, and run_delalloc_nocow
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
First, we can sometimes free the state we're merging, which means anybody who
calls merge_state() may have the state it passed in free'ed. This is
problematic because we could end up caching the state, which makes caching
useless as the state will no longer be part of the tree. So instead of free'ing
the state we passed into merge_state(), set it's end to the other->end and free
the other state. This way we are sure to cache the correct state. Also because
we can merge states together, instead of only using the cache'd state if it's
start == the start we are looking for, go ahead and use it if the start we are
looking for is within the range of the cached state. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
We used to store the checksums of the space cache directly in the space cache,
however that doesn't work out too well if we have more space than we can fit the
checksums into the first page. So instead use the normal checksumming
infrastructure. There were problems with doing this originally but those
problems don't exist now so this works out fine. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
We keep having problems with early enospc, and that's because our method of
making space is inherently racy. The problem is we can have one guy trying to
make space for himself, and in the meantime people come in and steal his
reservation. In order to stop this we make a waitqueue and put anybody who
comes into reserve_metadata_bytes on that waitqueue if somebody is trying to
make more space. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
We have to do weird things when handling enospc in the transaction joining code.
Because we've already joined the transaction we cannot commit the transaction
within the reservation code since it will deadlock, so we have to return EAGAIN
and then make sure we don't retry too many times. Instead of doing this, just
do the reservation the normal way before we join the transaction, that way we
can do whatever we want to try and reclaim space, and then if it fails we know
for sure we are out of space and we can return ENOSPC. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
I've been watching how many btrfs_search_slot()'s we do and I noticed that when
we create a file with selinux enabled we were doing 2 each time we initialize
the security context. That's because we lookup the xattr first so we can delete
it if we're setting a new value to an existing xattr. But in the create case we
don't have any xattrs, so it is completely useless to have the extra lookup. So
re-arrange things so that we only lookup first if we specifically have
XATTR_REPLACE. That way in the basic case we only do 1 search, and in the more
complicated case we do the normal 2 lookups. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Pass struct wb_writeback_work all the way down to writeback_sb_inodes(),
and initialize the struct writeback_control there.
struct writeback_control is basically designed to control writeback of a
single file, but we keep abuse it for writing multiple files in
writeback_sb_inodes() and its callers.
It immediately clean things up, e.g. suddenly wbc.nr_to_write vs
work->nr_pages starts to make sense, and instead of saving and restoring
pages_skipped in writeback_sb_inodes it can always start with a clean
zero value.
It also makes a neat IO pattern change: large dirty files are now
written in the full 4MB writeback chunk size, rather than whatever
remained quota in wbc->nr_to_write.
Acked-by: Jan Kara <jack@suse.cz>
Proposed-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
btrfs: fix oops when doing space balance
Btrfs: don't panic if we get an error while balancing V2
btrfs: add missing options displayed in mount output
A user reported an error where if we try to balance an fs after a device has
been removed it will blow up. This is because we get an EIO back and this is
where BUG_ON(ret) bites us in the ass. To fix we just exit. Thanks,
Reported-by: Anand Jain <Anand.Jain@oracle.com>
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
There are three missed mount options settable by user which are not
currently displayed in mount output.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
btrfs: fix inconsonant inode information
Btrfs: make sure to update total_bitmaps when freeing cache V3
Btrfs: fix type mismatch in find_free_extent()
Btrfs: make sure to record the transid in new inodes
When iputting the inode, We may leave the delayed nodes if they have some
delayed items that have not been dealt with. So when the inode is read again,
we must look up the relative delayed node, and use the information in it to
initialize the inode. Or we will get inconsonant inode information, it may
cause that the same directory index number is allocated again, and hit the
following oops:
[ 5447.554187] err add delayed dir index item(name: pglog_0.965_0) into the
insertion tree of the delayed node(root id: 262, inode id: 258, errno: -17)
[ 5447.569766] ------------[ cut here ]------------
[ 5447.575361] kernel BUG at fs/btrfs/delayed-inode.c:1301!
[SNIP]
[ 5447.790721] Call Trace:
[ 5447.793191] [<ffffffffa0641c4e>] btrfs_insert_dir_item+0x189/0x1bb [btrfs]
[ 5447.800156] [<ffffffffa0651a45>] btrfs_add_link+0x12b/0x191 [btrfs]
[ 5447.806517] [<ffffffffa0651adc>] btrfs_add_nondir+0x31/0x58 [btrfs]
[ 5447.812876] [<ffffffffa0651d6a>] btrfs_create+0xf9/0x197 [btrfs]
[ 5447.818961] [<ffffffff8111f840>] vfs_create+0x72/0x92
[ 5447.824090] [<ffffffff8111fa8c>] do_last+0x22c/0x40b
[ 5447.829133] [<ffffffff8112076a>] path_openat+0xc0/0x2ef
[ 5447.834438] [<ffffffff810c58e2>] ? __perf_event_task_sched_out+0x24/0x44
[ 5447.841216] [<ffffffff8103ecdd>] ? perf_event_task_sched_out+0x59/0x67
[ 5447.847846] [<ffffffff81121a79>] do_filp_open+0x3d/0x87
[ 5447.853156] [<ffffffff811e126c>] ? strncpy_from_user+0x43/0x4d
[ 5447.859072] [<ffffffff8111f1f5>] ? getname_flags+0x2e/0x80
[ 5447.864636] [<ffffffff8111f179>] ? do_getname+0x14b/0x173
[ 5447.870112] [<ffffffff8111f1b7>] ? audit_getname+0x16/0x26
[ 5447.875682] [<ffffffff8112b1ab>] ? spin_lock+0xe/0x10
[ 5447.880882] [<ffffffff81112d39>] do_sys_open+0x69/0xae
[ 5447.886153] [<ffffffff81112db1>] sys_open+0x20/0x22
[ 5447.891114] [<ffffffff813b9aab>] system_call_fastpath+0x16/0x1b
Fix it by reusing the old delayed node.
Reported-by: Jim Schutt <jaschut@sandia.gov>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Tested-by: Jim Schutt <jaschut@sandia.gov>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
A user reported this bug again where we have more bitmaps than we are supposed
to. This is because we failed to load the free space cache, but don't update
the ctl->total_bitmaps counter when we remove entries from the tree. This patch
fixes this problem and we should be good to go again. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
data parameter should be u64 because a full-sized chunk flags field is
passed instead of 0/1 for distinguishing data from metadata. All
underlying functions expect u64.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When we create a new inode, we aren't filling in the
field that records the transaction that last changed this
inode.
If we then go to fsync that inode, it will be skipped because the field
isn't filled in.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
It was pointed out by 'make versioncheck' that some includes of
linux/version.h were not needed in fs/ (fs/btrfs/ctree.h and
fs/omfs/file.c).
This patch removes them.
Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Acked-by: Bob Copeland <me@bobcopeland.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: avoid delayed metadata items during commits
btrfs: fix uninitialized return value
btrfs: fix wrong reservation when doing delayed inode operations
btrfs: Remove unused sysfs code
btrfs: fix dereference of ERR_PTR value
Btrfs: fix relocation races
Btrfs: set no_trans_join after trying to expand the transaction
Btrfs: protect the pending_snapshots list with trans_lock
Btrfs: fix path leakage on subvol deletion
Btrfs: drop the delalloc_bytes check in shrink_delalloc
Btrfs: check the return value from set_anon_super
Snapshot creation has two phases. One is the initial snapshot setup,
and the second is done during commit, while nobody is allowed to modify
the root we are snapshotting.
The delayed metadata insertion code can break that rule, it does a
delayed inode update on the inode of the parent of the snapshot,
and delayed directory item insertion.
This makes sure to run the pending delayed operations before we
record the snapshot root, which avoids corruptions.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When allocation fails in btrfs_read_fs_root_no_name, ret is not set
although it is returned, holding a garbage value.
Signed-off-by: David Sterba <dsterba@suse.cz>
Reviewed-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Removes code no longer used. The sysfs file itself is kept, because the
btrfs developers expressed interest in putting new entries to sysfs.
Signed-off-by: Maarten Lankhorst <m.b.lankhorst@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The recent commit to get rid of our trans_mutex introduced
some races with block group relocation. The problem is that relocation
needs to do some record keeping about each root, and it was relying
on the transaction mutex to coordinate things in subtle ways.
This fix adds a mutex just for the relocation code and makes sure
it doesn't have a big impact on normal operations. The race is
really fixed in btrfs_record_root_in_trans, which is where we
step back and wait for the relocation code to finish accounting
setup.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We can lockup if we try to allow new writers join the transaction and we have
flushoncommit set or have a pending snapshot. This is because we set
no_trans_join and then loop around and try to wait for ordered extents again.
The problem is the ordered endio stuff needs to join the transaction, which it
can't do because no_trans_join is set. So instead wait until after this loop to
set no_trans_join and then make sure to wait for num_writers == 1 in case
anybody got started in between us exiting the loop and setting no_trans_join.
This could easily be reproduced by mounting -o flushoncommit and running xfstest
13. It cannot be reproduced with this patch. Thanks,
Reported-by: Jim Schutt <jaschut@sandia.gov>
Signed-off-by: Josef Bacik <josef@redhat.com>
Currently there is nothing protecting the pending_snapshots list on the
transaction. We only hold the directory mutex that we are snapshotting and a
read lock on the subvol_sem, so we could race with somebody else creating a
snapshot in a different directory and end up with list corruption. So protect
this list with the trans_lock. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
The delayed ref patch accidently removed the btrfs_free_path in
btrfs_unlink_subvol, this puts it back and means we don't leak a path. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: use join_transaction in btrfs_evict_inode()
Btrfs - use %pU to print fsid
Btrfs: fix extent state leak on failed nodatasum reads
btrfs: fix unlocked access of delalloc_inodes
Btrfs: avoid stack bloat in btrfs_ioctl_fs_info()
btrfs: remove 64bit alignment padding to allow extent_buffer to fit into one fewer cacheline
Btrfs: clear current->journal_info on async transaction commit
Btrfs: make sure to recheck for bitmaps in clusters
btrfs: remove unneeded includes from scrub.c
btrfs: reinitialize scrub workers
btrfs: scrub: errors in tree enumeration
Btrfs: don't map extent buffer if path->skip_locking is set
Btrfs: unlock the trans lock properly
Btrfs: don't map extent buffer if path->skip_locking is set
Btrfs: fix duplicate checking logic
Btrfs: fix the allocator loop logic
Btrfs: fix bitmap regression
Btrfs: don't commit the transaction if we dont have enough pinned bytes
Btrfs: noinline the cluster searching functions
Btrfs: cache bitmaps when searching for a cluster
The WARN_ON() in start_transaction() was triggered while balancing.
The cause is btrfs_relocate_chunk() started a transaction and
then called iput() on the inode that stores free space cache,
and iput() called btrfs_start_transaction() again.
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Reviewed-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Get rid of FIXME comment. Uuids from dmesg are now the same as uuids
given by btrfs-progs.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When encountering an EIO while reading from a nodatasum extent, we
insert an error record into the inode's failure tree.
btrfs_readpage_end_io_hook returns early for nodatasum inodes. We'd
better clear the failure tree in that case, otherwise the kernel
complains about
BUG extent_state: Objects remaining on kmem_cache_close()
on rmmod.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
list_splice_init will make delalloc_inodes empty, but without a spinlock
around, this may produce corrupted list head, accessed in many placess,
The race window is very tight and nobody seems to have hit it so far.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The size of struct btrfs_ioctl_fs_info_args is as big as 1KB, so
don't declare the variable on stack.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Reviewed-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Reorder extent_buffer to remove 8 bytes of alignment padding on 64 bit
builds. This shrinks its size to 128 bytes allowing it to fit into one
fewer cache lines and allows more objects per slab in its kmem_cache.
slabinfo extent_buffer reports :-
before:-
Sizes (bytes) Slabs
----------------------------------
Object : 136 Total : 123
SlabObj: 136 Full : 121
SlabSiz: 4096 Partial: 0
Loss : 0 CpuSlab: 2
Align : 8 Objects: 30
after :-
Object : 128 Total : 4
SlabObj: 128 Full : 2
SlabSiz: 4096 Partial: 0
Loss : 0 CpuSlab: 2
Align : 8 Objects: 32
Signed-off-by: Richard Kennedy <richard@rsk.demon.co.uk>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Normally current->jouranl_info is cleared by commit_transaction. For an
async snap or subvol creation, though, it runs in a work queue. Clear
it in btrfs_commit_transaction_async() to avoid leaking a non-NULL
journal_info when we return to userspace. When the actual commit runs in
the other thread it won't care that it's current->journal_info is already
NULL.
Signed-off-by: Sage Weil <sage@newdream.net>
Tested-by: Jim Schutt <jaschut@sandia.gov>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Josef recently changed the free extent cache to look in
the block group cluster for any bitmaps before trying to
add a new bitmap for the same offset. This avoids BUG_ON()s due
covering duplicate ranges.
But it didn't go quite far enough. A given free range might span
between one or more bitmaps or free space entries. The code has
looping to cover this, but it doesn't check for clustered bitmaps
every time.
This shuffles our gotos to check for a bitmap in the cluster
for every new bitmap entry we try to add.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Scrub starts the workers each time a scrub starts and stops them after it
finished. This patch adds an initialization for the workers before each
start, otherwise the workers behave strangely.
Signed-off-by: Arne Jansen <sensille@gmx.net>
due to the semantics of btrfs_search_slot the path can point to an
invalid slot when ret > 0. This condition went unnoticed, which in
turn could have led to an incomplete scrubbing.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Arne's scrub stuff exposed a problem with mapping the extent buffer in
reada_for_search. He searches the commit root with multiple threads and with
skip_locking set, so we can race and overwrite node->map_token since node isn't
locked. So fix this so that we only map the extent buffer if we don't already
have a map_token and skip_locking isn't set. Without this patch scrub would
panic almost immediately, with the patch it doesn't panic anymore. Thanks,
Reported-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Josef Bacik <josef@redhat.com>
In btrfs_wait_for_commit if we came upon a transaction that had committed we
just exited, but that's bad since we are holding the trans_lock. So break
instead so that the lock is dropped. Thanks,
Reported-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <josef@redhat.com>
Arne's scrub stuff exposed a problem with mapping the extent buffer in
reada_for_search. He searches the commit root with multiple threads and with
skip_locking set, so we can race and overwrite node->map_token since node isn't
locked. So fix this so that we only map the extent buffer if we don't already
have a map_token and skip_locking isn't set. Without this patch scrub would
panic almost immediately, with the patch it doesn't panic anymore. Thanks,
Reported-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Josef Bacik <josef@redhat.com>
When merging my code into the integration test the second check for duplicate
entries got screwed up. This patch fixes it by dropping ret2 and just using ret
for the return value, and checking if we got an error before adding the bitmap
to the local list. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
I was testing with empty_cluster = 0 to try and reproduce a problem and kept
hitting early enospc panics. This was because our loop logic was a little
confused. So this is what I did
1) Make the loop variable the ultimate decider on wether we should loop again
isntead of checking to see if we had an uncached bg, empty size or empty
cluster.
2) Increment loop before checking to see what we are on to make the loop
definitions make more sense.
3) If we are on the chunk alloc loop don't set empty_size/empty_cluster to 0
unless we didn't actually allocate a chunk. If we did allocate a chunk we
should be able to easily setup a new cluster so clearing
empty_size/empty_cluster makes us less efficient.
This kept me from hitting panics while trying to reproduce the other problem.
Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
In cleaning up the clustering code I accidently introduced a regression by
adding bitmap entries to the cluster rb tree. The problem is if we've maxed out
the number of bitmaps we can have for the block group we can only add free space
to the bitmaps, but since the bitmap is on the cluster we can't find it and we
try to create another one. This would result in a panic because the total
bitmaps was bigger than the max bitmaps that were allowed. This patch fixes
this by checking to see if we have a cluster, and then looking at the cluster rb
tree to see if it has a bitmap entry and if it does and that space belongs to
that bitmap, go ahead and add it to that bitmap.
I could hit this panic every time with an fs_mark test within a couple of
minutes. With this patch I no longer hit the panic and fs_mark goes to
completion. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
I noticed when running an enospc test that we would get stuck committing the
transaction in check_data_space even though we truly didn't have enough space.
So check to see if bytes_pinned is bigger than num_bytes, if it's not don't
commit the transaction. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
When profiling the find cluster code it's hard to tell where we are spending our
time because the bitmap and non-bitmap functions get inlined by the compiler, so
make that not happen. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
If we are looking for a cluster in a particularly sparse or fragmented block
group, we will do a lot of looping through the free space tree looking for
various things, and if we need to look at bitmaps we will endup doing the whole
dance twice. So instead add the bitmap entries to a temporary list so if we
have to do the bitmap search we can just look through the list of entries we've
found quickly instead of having to loop through the entire tree again. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
* 'for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6:
vfs: make unlink() and rmdir() return ENOENT in preference to EROFS
lmLogOpen() broken failure exit
usb: remove bad dput after dentry_unhash
more conservative S_NOSEC handling
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable: (25 commits)
btrfs: fix uninitialized variable warning
btrfs: add helper for fs_info->closing
Btrfs: add mount -o inode_cache
btrfs: scrub: add explicit plugging
btrfs: use btrfs_ino to access inode number
Btrfs: don't save the inode cache if we are deleting this root
btrfs: false BUG_ON when degraded
Btrfs: don't save the inode cache in non-FS roots
Btrfs: make sure we don't overflow the free space cache crc page
Btrfs: fix uninit variable in the delayed inode code
btrfs: scrub: don't reuse bios and pages
Btrfs: leave spinning on lookup and map the leaf
Btrfs: check for duplicate entries in the free space cache
Btrfs: don't try to allocate from a block group that doesn't have enough space
Btrfs: don't always do readahead
Btrfs: try not to sleep as much when doing slow caching
Btrfs: kill BTRFS_I(inode)->block_group
Btrfs: don't look at the extent buffer level 3 times in a row
Btrfs: map the node block when looking for readahead targets
Btrfs: set range_start to the right start in count_range_bits
...
With Linus' tree, today's linux-next build (powercp ppc64_defconfig)
produced this warning:
fs/btrfs/delayed-inode.c: In function 'btrfs_delayed_update_inode':
fs/btrfs/delayed-inode.c:1598:6: warning: 'ret' may be used
uninitialized in this function
Introduced by commit 16cdcec736 ("btrfs: implement delayed inode items
operation").
This fixes a bug in btrfs_update_inode(): if the returned value from
btrfs_delayed_update_inode is a nonzero garbage, inode stat data are not
updated and several call paths may hit a BUG_ON or fail with strange
code.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: David Sterba <dsterba@suse.cz>
This makes the inode map cache default to off until we
fix the overflow problem when the free space crcs don't fit
inside a single page.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
With the removal of the implicit plugging scrub ends up doing more and
smaller I/O than necessary. This patch adds explicit plugging per chunk.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
commit 4cb5300bc ("Btrfs: add mount -o auto_defrag") accesses inode
number directly while it should use the helper with the new inode
number allocator.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
With xfstest 254 I can panic the box every time with the inode number caching
stuff on. This is because we clean the inodes out when we delete the subvolume,
but then we write out the inode cache which adds an inode to the subvolume inode
tree, and then when it gets evicted again the root gets added back on the dead
roots list and is deleted again, so we have a double free. To stop this from
happening just return 0 if refs is 0 (and we're not the tree root since tree
root always has refs of 0). With this fix 254 no longer panics. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
In degraded mode the struct btrfs_device of missing devs don't have
device->name set. A kstrdup of NULL correctly returns NULL. Don't
BUG in this case.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This adds extra checks to make sure the inode map we are caching really
belongs to a FS root instead of a special relocation tree. It
prevents crashes during balancing operations.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The free space cache uses only one page for crcs right now,
which means we can't have a cache file bigger than the
crcs we can fit in the first page. This adds a check to
enforce that restriction.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The current scrub implementation reuses bios and pages as often as possible,
allocating them only on start and releasing them when finished. This leads
to more problems with the block layer than it's worth. The elevator gets
confused when there are more pages added to the bio than bi_size suggests.
This patch completely rips out the reuse of bios and pages and allocates
them freshly for each submit.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Chris Maosn <chris.mason@oracle.com>
Caching "we have already removed suid/caps" was overenthusiastic as merged.
On network filesystems we might have had suid/caps set on another client,
silently picked by this client on revalidate, all of that *without* clearing
the S_NOSEC flag.
AFAICS, the only reasonably sane way to deal with that is
* new superblock flag; unless set, S_NOSEC is not going to be set.
* local block filesystems set it in their ->mount() (more accurately,
mount_bdev() does, so does btrfs ->mount(), users of mount_bdev() other than
local block ones clear it)
* if any network filesystem (or a cluster one) wants to use S_NOSEC,
it'll need to set MS_NOSEC in sb->s_flags *AND* take care to clear S_NOSEC when
inode attribute changes are picked from other clients.
It's not an earth-shattering hole (anybody that can set suid on another client
will almost certainly be able to write to the file before doing that anyway),
but it's a bug that needs fixing.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: (36 commits)
Cache xattr security drop check for write v2
fs: block_page_mkwrite should wait for writeback to finish
mm: Wait for writeback when grabbing pages to begin a write
configfs: remove unnecessary dentry_unhash on rmdir, dir rename
fat: remove unnecessary dentry_unhash on rmdir, dir rename
hpfs: remove unnecessary dentry_unhash on rmdir, dir rename
minix: remove unnecessary dentry_unhash on rmdir, dir rename
fuse: remove unnecessary dentry_unhash on rmdir, dir rename
coda: remove unnecessary dentry_unhash on rmdir, dir rename
afs: remove unnecessary dentry_unhash on rmdir, dir rename
affs: remove unnecessary dentry_unhash on rmdir, dir rename
9p: remove unnecessary dentry_unhash on rmdir, dir rename
ncpfs: fix rename over directory with dangling references
ncpfs: document dentry_unhash usage
ecryptfs: remove unnecessary dentry_unhash on rmdir, dir rename
hostfs: remove unnecessary dentry_unhash on rmdir, dir rename
hfsplus: remove unnecessary dentry_unhash on rmdir, dir rename
hfs: remove unnecessary dentry_unhash on rmdir, dir rename
omfs: remove unnecessary dentry_unhash on rmdir, dir rneame
udf: remove unnecessary dentry_unhash from rmdir, dir rename
...
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable: (58 commits)
Btrfs: use the device_list_mutex during write_dev_supers
Btrfs: setup free ino caching in a more asynchronous way
btrfs scrub: don't coalesce pages that are logically discontiguous
Btrfs: return -ENOMEM in clear_extent_bit
Btrfs: add mount -o auto_defrag
Btrfs: using rcu lock in the reader side of devices list
Btrfs: drop unnecessary device lock
Btrfs: fix the race between remove dev and alloc chunk
Btrfs: fix the race between reading and updating devices
Btrfs: fix bh leak on __btrfs_open_devices path
Btrfs: fix unsafe usage of merge_state
Btrfs: allocate extent state and check the result properly
fs/btrfs: Add missing btrfs_free_path
Btrfs: check return value of btrfs_inc_extent_ref()
Btrfs: return error to caller if read_one_inode() fails
Btrfs: BUG_ON is deleted from the caller of btrfs_truncate_item & btrfs_extend_item
Btrfs: return error code to caller when btrfs_del_item fails
Btrfs: return error code to caller when btrfs_previous_item fails
btrfs: fix typo 'testeing' -> 'testing'
btrfs: typo: 'btrfS' -> 'btrfs'
...
write_dev_supers was changed to use RCU to protect the list of
devices, but it was then sleeping while it actually wrote the supers.
This fixes it to just use the mutex, since we really don't any
concurrency in write_dev_supers anyway.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Tell the filesystem if we just updated timestamp (I_DIRTY_SYNC) or
anything else, so that the filesystem can track internally if it
needs to push out a transaction for fdatasync or not.
This is just the prototype change with no user for it yet. I plan
to push large XFS changes for the next merge window, and getting
this trivial infrastructure in this window would help a lot to avoid
tree interdependencies.
Also remove incorrect comments that ->dirty_inode can't block. That
has been changed a long time ago, and many implementations rely on it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
For a filesystem that has lots of files in it, the first time we mount
it with free ino caching support, it can take quite a long time to
setup the caching before we can create new files.
Here we fill the cache with [highest_ino, BTRFS_LAST_FREE_OBJECTID]
before we start the caching thread to search through the extent tree.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
scrub_page collects several pages into one bio as long as they are physically
contiguous. As we only save one logical address for the whole bio, don't
collect pages that are physically contiguous but logically discontiguous.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This will detect small random writes into files and
queue the up for an auto defrag process. It isn't well suited to
database workloads yet, but works for smaller files such as rpm, sqlite
or bdb databases.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/djm/tmem:
xen: cleancache shim to Xen Transcendent Memory
ocfs2: add cleancache support
ext4: add cleancache support
btrfs: add cleancache support
ext3: add cleancache support
mm/fs: add hooks to support cleancache
mm: cleancache core ops functions and config
fs: add field to superblock to support cleancache
mm/fs: cleancache documentation
Fix up trivial conflict in fs/btrfs/extent_io.c due to includes
This sixth patch of eight in this cleancache series "opts-in"
cleancache for btrfs. Filesystems must explicitly enable
cleancache by calling cleancache_init_fs anytime an instance
of the filesystem is mounted. Btrfs uses its own readpage
which must be hooked, but all other cleancache hooks are in
the VFS layer including the matching cleancache_flush_fs hook
which must be called on unmount.
Details and a FAQ can be found in Documentation/vm/cleancache.txt
[v6-v8: no changes]
[v5: jeremy@goop.org: simplify init hook and any future fs init changes]
Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Reviewed-by: Jeremy Fitzhardinge <jeremy@goop.org>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Matthew Wilcox <matthew@wil.cx>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik Van Riel <riel@redhat.com>
Cc: Jan Beulich <JBeulich@novell.com>
Cc: Andreas Dilger <adilger@sun.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <joel.becker@oracle.com>
Cc: Nitin Gupta <ngupta@vflare.org>
fs_devices->devices is only updated on remove and add device paths, so we can
use rcu to protect it in the reader side
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Drop device_list_mutex for the reader side on clone_fs_devices and
btrfs_rm_device pathes since the fs_info->volume_mutex can ensure the device
list is not updated
btrfs_close_extra_devices is the initialized path, we can not add or remove
device at this time, so we can simply drop the mutex safely, like other
initialized function does(add_missing_dev, __find_device, __btrfs_open_devices
...).
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
On remove device path, it updates device->dev_alloc_list but does not hold
chunk lock
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
On btrfs_congested_fn and __unplug_io_fn paths, we should hold
device_list_mutex to avoid remove/add device path to
update fs_devices->devices
On __btrfs_close_devices and btrfs_prepare_sprout paths, the devices in
fs_devices->devices or fs_devices->devices is updated, so we should hold
the mutex to avoid the reader side to reach them
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
'bh' is forgot to release if no error is detected
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
merge_state can free the current state if it can be merged with the next node,
but in set_extent_bit(), after merge_state, we still use the current extent to
get the next node and cache it into cached_state
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
It doesn't allocate extent_state and check the result properly:
- in set_extent_bit, it doesn't allocate extent_state if the path is not
allowed wait
- in clear_extent_bit, it doesn't check the result after atomic-ly allocate,
we trigger BUG_ON() if it's fail
- if allocate fail, we trigger BUG_ON instead of returning -ENOMEM since
the return value of clear_extent_bit() is ignored by many callers
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs_alloc_path should be matched with btrfs_free_path in error-handling code.
A simplified version of the semantic match that finds this problem is as
follows: (http://coccinelle.lip6.fr/)
// <smpl>
@r exists@
local idexpression struct btrfs_path * x;
expression ra,rb;
position p1,p2;
@@
x = btrfs_alloc_path@p1(...)
... when != btrfs_free_path(x,...)
when != if (...) { ... btrfs_free_path(x,...) ...}
when != x = ra
if(...) { ... when != x = rb
when forall
when != btrfs_free_path(x,...)
\(return <+...x...+>; \| return@p2...; \) }
@script:python@
p1 << r.p1;
p2 << r.p2;
@@
cocci.print_main("alloc",p1)
cocci.print_secs("return",p2)
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
If return value of btrfs_inc_extent_ref() is not 0, BUG() is called.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When read_one_inode() fails, error code is returned to caller instead
of BUG_ON().
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Currently, btrfs_truncate_item and btrfs_extend_item returns only 0.
So, the check by BUG_ON in the caller is unnecessary.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The error code is returned instead of calling BUG_ON when
btrfs_del_item returns the error.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The error code is returned instead of calling BUG_ON when
btrfs_previous_item returns the error.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Observed as a large delay when --mixed filesystem is filled up.
Test example:
1. create tiny --mixed FS:
$ dd if=/dev/zero of=2G.img seek=$((2048 * 1024 * 1024 - 1)) count=1 bs=1
$ mkfs.btrfs --mixed 2G.img
$ mount -oloop 2G.img /mnt/ut/
2. Try to fill it up:
$ dd if=/dev/urandom of=10M.file bs=10240 count=1024
$ seq 1 256 | while read file_no; do echo $file_no; time cp 10M.file ${file_no}.copy; done
Up to '200.copy' it goes fast, but when disk fills-up each -ENOSPC
message takes 3 seconds to pop-up _every_ ENOSPC (and in usermode linux
it's even more: 30-60 seconds!). (Maybe, time depends on kernel's timer resolution).
No IO, no CPU load, just rescheduling. Some debugging revealed busy spinning
in shrink_delalloc.
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
Reviewed-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
In 2008, commit b4f6c45dfb dropped the use
of fs/btrfs/version.sh, but left the script behind. Kill it.
Commit by Jamey Sharp and Josh Triplett.
Signed-off-by: Jamey Sharp <jamey@minilop.net>
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs's tree search ioctl has a field to indicate that no more than a
given number of records should be returned. The ioctl doesn't honour
this, as the tested value is not incremented until the end of the
copy_to_sk function. This patch removes an unnecessary local variable,
and updates the num_found counter as each key is found in the tree.
Signed-off-by: Hugo Mills <hugo@carfax.org.uk>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
240f62c875 replaced the node_lock with rcu_read_lock, but forgot
to remove the actual lock in the data structure. Remove it here.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
On lookup we only want to read the inode item, so leave the path spinning. Also
we're just wholesale reading the leaf off, so map the leaf so we don't do a
bunch of kmap/kunmaps. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
If there are duplicate entries in the free space cache, discard the entire cache
and load it the old fashioned way. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
If we have a very large filesystem, we can spend a lot of time in
find_free_extent just trying to allocate from empty block groups. So instead
check to see if the block group even has enough space for the allocation, and if
not go on to the next block group.
Signed-off-by: Josef Bacik <josef@redhat.com>
Our readahead is sort of sloppy, and really isn't always needed. For example if
ls is doing a stating ls (which is the default) it's going to stat in non-disk
order, so if say you have a directory with a stupid amount of files, readahead
is going to do nothing but waste time in the case of doing the stat. Taking the
unconditional readahead out made my test go from 57 minutes to 36 minutes. This
means that everywhere we do loop through the tree we want to make sure we do set
path->reada properly, so I went through and found all of the places where we
loop through the path and set reada to 1. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
When the fs is super full and we unmount the fs, we could get stuck in this
thing where unmount is waiting for the caching kthread to make progress and the
caching kthread keeps scheduling because we're in the middle of a commit. So
instead just let the caching kthread keep going and only yeild if
need_resched(). This makes my horrible umount case go from taking up to 10
minutes to taking less than 20 seconds. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Originally this was going to be used as a way to give hints to the allocator,
but frankly we can get much better hints elsewhere and it's not even used at all
for anything usefull. In addition to be completely useless, when we initialize
an inode we try and find a freeish block group to set as the inodes block group,
and with a completely full 40gb fs this takes _forever_, so I imagine with say
1tb fs this is just unbearable. So just axe the thing altoghether, we don't
need it and it saves us 8 bytes in the inode and saves us 500 microseconds per
inode lookup in my testcase. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
We have a bit of debugging in btrfs_search_slot to make sure the level of the
cow block is the same as the original block we were cow'ing. I don't think I've
ever seen this tripped, so kill it. This saves us 2 kmap's per level in our
search. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
If we have particularly full nodes, we could call btrfs_node_blockptr up to 32
times, which is 32 pairs of kmap/kunmap, which _sucks_. So go ahead and map the
extent buffer while we look for readahead targets. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
In count_range_bits we are adjusting total_bytes based on the range we are
searching for, but we don't adjust the range start according to the range we are
searching for, which makes for weird results. For example, if the range
[0-8192]
is set DELALLOC, but I search for 4096-8192, I will get back 4096 for the number
of bytes found, but the range_start will be 0, which makes it look like the
range is [0-4096]. So instead set range_start = max(cur_start, state->start).
This makes everything come out right. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
The ceph guys keep running into problems where we have space reserved in our
orphan block rsv when freeing it up. This is because they tend to do snapshots
alot, so their truncates tend to use a bunch of space, so when we go to do
things like update the inode we have to steal reservation space in order to make
the reservation happen. This happens because truncate can use as much space as
it freaking feels like, but we still have to hold space for removing the orphan
item and updating the inode, which will definitely always happen. So in order
to fix this we need to split all of the reservation stuf up. So with this patch
we have
1) The orphan block reserve which only holds the space for deleting our orphan
item when everything is over.
2) The truncate block reserve which gets allocated and used specifically for the
space that the truncate will use on a per truncate basis.
3) The transaction will always have 1 item's worth of data reserved so we can
update the inode normally.
Hopefully this will make the ceph problem go away. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
We use trans_mutex for lots of things, here's a basic list
1) To serialize trans_handles joining the currently running transaction
2) To make sure that no new trans handles are started while we are committing
3) To protect the dead_roots list and the transaction lists
Really the serializing trans_handles joining is not too hard, and can really get
bogged down in acquiring a reference to the transaction. So replace the
trans_mutex with a trans_lock spinlock and use it to do the following
1) Protect fs_info->running_transaction. All trans handles have to do is check
this, and then take a reference of the transaction and keep on going.
2) Protect the fs_info->trans_list. This doesn't get used too much, basically
it just holds the current transactions, which will usually just be the currently
committing transaction and the currently running transaction at most.
3) Protect the dead roots list. This is only ever processed by splicing the
list so this is relatively simple.
4) Protect the fs_info->reloc_ctl stuff. This is very lightweight and was using
the trans_mutex before, so this is a pretty straightforward change.
5) Protect fs_info->no_trans_join. Because we don't hold the trans_lock over
the entirety of the commit we need to have a way to block new people from
creating a new transaction while we're doing our work. So we set no_trans_join
and in join_transaction we test to see if that is set, and if it is we do a
wait_on_commit.
6) Make the transaction use count atomic so we don't need to take locks to
modify it when we're dropping references.
7) Add a commit_lock to the transaction to make sure multiple people trying to
commit the same transaction don't race and commit at the same time.
8) Make open_ioctl_trans an atomic so we don't have to take any locks for ioctl
trans.
I have tested this with xfstests, but obviously it is a pretty hairy change so
lots of testing is greatly appreciated. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
We currently track trans handles in current->journal_info, but we don't actually
use it. This patch fixes it. This will cover the case where we have multiple
people starting transactions down the call chain. This keeps us from having to
allocate a new handle and all of that, we just increase the use count of the
current handle, save the old block_rsv, and return. I tested this with xfstests
and it worked out fine. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
I keep forgetting that btrfs_join_transaction() just ignores the num_items
argument, which leads me to sending pointless patches and looking stupid :). So
just kill the num_items argument from btrfs_join_transaction and
btrfs_start_ioctl_transaction, since neither of them use it. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
In the prealloc filling code and compressed code we don't set trans->block_rsv
to the delalloc block reserve properly, which is going to make us use metadata
from the wrong pool, this patch fixes that. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (39 commits)
b43: fix comment typo reqest -> request
Haavard Skinnemoen has left Atmel
cris: typo in mach-fs Makefile
Kconfig: fix copy/paste-ism for dell-wmi-aio driver
doc: timers-howto: fix a typo ("unsgined")
perf: Only include annotate.h once in tools/perf/util/ui/browsers/annotate.c
md, raid5: Fix spelling error in comment ('Ofcourse' --> 'Of course').
treewide: fix a few typos in comments
regulator: change debug statement be consistent with the style of the rest
Revert "arm: mach-u300/gpio: Fix mem_region resource size miscalculations"
audit: acquire creds selectively to reduce atomic op overhead
rtlwifi: don't touch with treewide double semicolon removal
treewide: cleanup continuations and remove logging message whitespace
ath9k_hw: don't touch with treewide double semicolon removal
include/linux/leds-regulator.h: fix syntax in example code
tty: fix typo in descripton of tty_termios_encode_baud_rate
xtensa: remove obsolete BKL kernel option from defconfig
m68k: fix comment typo 'occcured'
arch:Kconfig.locks Remove unused config option.
treewide: remove extra semicolons
...
The current code relogs the entire inode every time during fsync log,
and it is much better suited to small files rather than large ones.
During my performance test, the fsync performace of large files sucks,
and we can ascribe this to the tremendous amount of csum infos of the
large ones, cause we have to flush all of these csum infos into log trees
even when there are only _one_ change in the whole file data. Apparently,
to optimize fsync, we need to create a filter to skip the unnecessary csum
ones, that is, the corresponding file data remains unchanged before this fsync.
Here I have some test results to show, I use sysbench to do "random write + fsync".
===
sysbench --test=fileio --num-threads=1 --file-num=2 --file-block-size=4K --file-total-size=8G --file-test-mode=rndwr --file-io-mode=sync --file-extra-flags= [prepare, run]
===
Sysbench args:
- Number of threads: 1
- Extra file open flags: 0
- 2 files, 4Gb each
- Block size 4Kb
- Number of random requests for random IO: 10000
- Read/Write ratio for combined random IO test: 1.50
- Periodic FSYNC enabled, calling fsync() each 100 requests.
- Calling fsync() at the end of test, Enabled.
- Using synchronous I/O mode
- Doing random write test
Sysbench results:
===
Operations performed: 0 Read, 10000 Write, 200 Other = 10200 Total
Read 0b Written 39.062Mb Total transferred 39.062Mb
===
a) without patch: (*SPEED* : 451.01Kb/sec)
112.75 Requests/sec executed
b) with patch: (*SPEED* : 4.7533Mb/sec)
1216.84 Requests/sec executed
PS: I've made a _sub transid_ stuff patch, but it does not perform as effectively as this patch,
and I'm wanderring where the problem is and trying to improve it more.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Commit e66eed651f ("list: remove prefetching from regular list
iterators") removed the include of prefetch.h from list.h, which
uncovered several cases that had apparently relied on that rather
obscure header file dependency.
So this fixes things up a bit, using
grep -L linux/prefetch.h $(git grep -l '[^a-z_]prefetchw*(' -- '*.[ch]')
grep -L 'prefetchw*(' $(git grep -l 'linux/prefetch.h' -- '*.[ch]')
to guide us in finding files that either need <linux/prefetch.h>
inclusion, or have it despite not needing it.
There are more of them around (mostly network drivers), but this gets
many core ones.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>