Instead of always assigning an increasing inode number in new_inode
move the call to assign it into those callers that actually need it.
For now callers that need it is estimated conservatively, that is
the call is added to all filesystems that do not assign an i_ino
by themselves. For a few more filesystems we can avoid assigning
any inode number given that they aren't user visible, and for others
it could be done lazily when an inode number is actually needed,
but that's left for later patches.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Now, rw_verify_area() checsk f_pos is negative or not. And if negative,
returns -EINVAL.
But, some special files as /dev/(k)mem and /proc/<pid>/mem etc.. has
negative offsets. And we can't do any access via read/write to the
file(device).
So introduce FMODE_UNSIGNED_OFFSET to allow negative file offsets.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* 'llseek' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/bkl:
vfs: make no_llseek the default
vfs: don't use BKL in default_llseek
llseek: automatically add .llseek fop
libfs: use generic_file_llseek for simple_attr
mac80211: disallow seeks in minstrel debug code
lirc: make chardev nonseekable
viotape: use noop_llseek
raw: use explicit llseek file operations
ibmasmfs: use generic_file_llseek
spufs: use llseek in all file operations
arm/omap: use generic_file_llseek in iommu_debug
lkdtm: use generic_file_llseek in debugfs
net/wireless: use generic_file_llseek in debugfs
drm: use noop_llseek
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
Having the limits file world readable will ease the task of system
management on systems where root privileges might be restricted.
Having admin restricted with root priviledges, he/she could not check
other users process' limits.
Also it'd align with most of the /proc stat files.
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Cc: Eugene Teo <eugene@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Prepend "(unreachable)" to path strings if the path is not reachable
from the current root.
Two places updated are
- the return string from getcwd()
- and symlinks under /proc/$PID.
Other uses of d_path() are left unchanged (we know that some old
software crashes if /proc/mounts is changed).
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add three helpers that retrieve a refcounted copy of the root and cwd
from the supplied fs_struct.
get_fs_root()
get_fs_pwd()
get_fs_root_and_pwd()
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: (96 commits)
no need for list_for_each_entry_safe()/resetting with superblock list
Fix sget() race with failing mount
vfs: don't hold s_umount over close_bdev_exclusive() call
sysv: do not mark superblock dirty on remount
sysv: do not mark superblock dirty on mount
btrfs: remove junk sb_dirt change
BFS: clean up the superblock usage
AFFS: wait for sb synchronization when needed
AFFS: clean up dirty flag usage
cifs: truncate fallout
mbcache: fix shrinker function return value
mbcache: Remove unused features
add f_flags to struct statfs(64)
pass a struct path to vfs_statfs
update VFS documentation for method changes.
All filesystems that need invalidate_inode_buffers() are doing that explicitly
convert remaining ->clear_inode() to ->evict_inode()
Make ->drop_inode() just return whether inode needs to be dropped
fs/inode.c:clear_inode() is gone
fs/inode.c:evict() doesn't care about delete vs. non-delete paths now
...
Fix up trivial conflicts in fs/nilfs2/super.c
/proc/pid/oom_adj is now deprecated so that that it may eventually be
removed. The target date for removal is August 2012.
A warning will be printed to the kernel log if a task attempts to use this
interface. Future warning will be suppressed until the kernel is rebooted
to prevent spamming the kernel log.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This a complete rewrite of the oom killer's badness() heuristic which is
used to determine which task to kill in oom conditions. The goal is to
make it as simple and predictable as possible so the results are better
understood and we end up killing the task which will lead to the most
memory freeing while still respecting the fine-tuning from userspace.
Instead of basing the heuristic on mm->total_vm for each task, the task's
rss and swap space is used instead. This is a better indication of the
amount of memory that will be freeable if the oom killed task is chosen
and subsequently exits. This helps specifically in cases where KDE or
GNOME is chosen for oom kill on desktop systems instead of a memory
hogging task.
The baseline for the heuristic is a proportion of memory that each task is
currently using in memory plus swap compared to the amount of "allowable"
memory. "Allowable," in this sense, means the system-wide resources for
unconstrained oom conditions, the set of mempolicy nodes, the mems
attached to current's cpuset, or a memory controller's limit. The
proportion is given on a scale of 0 (never kill) to 1000 (always kill),
roughly meaning that if a task has a badness() score of 500 that the task
consumes approximately 50% of allowable memory resident in RAM or in swap
space.
The proportion is always relative to the amount of "allowable" memory and
not the total amount of RAM systemwide so that mempolicies and cpusets may
operate in isolation; they shall not need to know the true size of the
machine on which they are running if they are bound to a specific set of
nodes or mems, respectively.
Root tasks are given 3% extra memory just like __vm_enough_memory()
provides in LSMs. In the event of two tasks consuming similar amounts of
memory, it is generally better to save root's task.
Because of the change in the badness() heuristic's baseline, it is also
necessary to introduce a new user interface to tune it. It's not possible
to redefine the meaning of /proc/pid/oom_adj with a new scale since the
ABI cannot be changed for backward compatability. Instead, a new tunable,
/proc/pid/oom_score_adj, is added that ranges from -1000 to +1000. It may
be used to polarize the heuristic such that certain tasks are never
considered for oom kill while others may always be considered. The value
is added directly into the badness() score so a value of -500, for
example, means to discount 50% of its memory consumption in comparison to
other tasks either on the system, bound to the mempolicy, in the cpuset,
or sharing the same memory controller.
/proc/pid/oom_adj is changed so that its meaning is rescaled into the
units used by /proc/pid/oom_score_adj, and vice versa. Changing one of
these per-task tunables will rescale the value of the other to an
equivalent meaning. Although /proc/pid/oom_adj was originally defined as
a bitshift on the badness score, it now shares the same linear growth as
/proc/pid/oom_score_adj but with different granularity. This is required
so the ABI is not broken with userspace applications and allows oom_adj to
be deprecated for future removal.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a kernel thread is using use_mm(), badness() returns a positive value.
This is not a big issue because caller take care of it correctly. But
there is one exception, /proc/<pid>/oom_score calls badness() directly and
doesn't care that the task is a regular process.
Another example, /proc/1/oom_score return !0 value. But it's unkillable.
This incorrectness makes administration a little confusing.
This patch fixes it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace inode_setattr with opencoded variants of it in all callers. This
moves the remaining call to vmtruncate into the filesystem methods where it
can be replaced with the proper truncate sequence.
In a few cases it was obvious that we would never end up calling vmtruncate
so it was left out in the opencoded variant:
spufs: explicitly checks for ATTR_SIZE earlier
btrfs,hugetlbfs,logfs,dlmfs: explicitly clears ATTR_SIZE earlier
ufs: contains an opencoded simple_seattr + truncate that sets the filesize just above
In addition to that ncpfs called inode_setattr with handcrafted iattrs,
which allowed to trim down the opencoded variant.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
I removed 3 unused assignments. The first two get reset on the first
statement of their functions. For "err" in root.c we don't return an
error and we don't use the variable again.
Signed-off-by: Dan Carpenter <error27@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that task->signal can't go away get_nr_threads() doesn't need
->siglock to read signal->count.
Also, make it inline, move into sched.h, and convert 2 other proc users of
signal->count to use this (now trivial) helper.
Henceforth get_nr_threads() is the only valid user of signal->count, we
are ready to turn it into "int nr_threads" or, perhaps, kill it.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'bkl/procfs' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/random-tracing:
sunrpc: Include missing smp_lock.h
procfs: Kill the bkl in ioctl
procfs: Push down the bkl from ioctl
procfs: Use generic_file_llseek in /proc/vmcore
procfs: Use generic_file_llseek in /proc/kmsg
procfs: Use generic_file_llseek in /proc/kcore
procfs: Kill BKL in llseek on proc base
We don't use the BKL elsewhere, so use generic_file_llseek
so we can avoid default_llseek taking the BKL.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
[restore proc_fdinfo_file_operations as non-seekable]
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: John Kacur <jkacur@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
proc_oom_score(task) has a reference to task_struct, but that is all.
If this task was already released before we take tasklist_lock
- we can't use task->group_leader, it points to nowhere
- it is not safe to call badness() even if this task is
->group_leader, has_intersects_mems_allowed() assumes
it is safe to iterate over ->thread_group list.
- even worse, badness() can hit ->signal == NULL
Add the pid_alive() check to ensure __unhash_process() was not called.
Also, use "task" instead of task->group_leader. badness() should return
the same result for any sub-thread. Currently this is not true, but
this should be changed anyway.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: (52 commits)
init: Open /dev/console from rootfs
mqueue: fix typo "failues" -> "failures"
mqueue: only set error codes if they are really necessary
mqueue: simplify do_open() error handling
mqueue: apply mathematics distributivity on mq_bytes calculation
mqueue: remove unneeded info->messages initialization
mqueue: fix mq_open() file descriptor leak on user-space processes
fix race in d_splice_alias()
set S_DEAD on unlink() and non-directory rename() victims
vfs: add NOFOLLOW flag to umount(2)
get rid of ->mnt_parent in tomoyo/realpath
hppfs can use existing proc_mnt, no need for do_kern_mount() in there
Mirror MS_KERNMOUNT in ->mnt_flags
get rid of useless vfsmount_lock use in put_mnt_ns()
Take vfsmount_lock to fs/internal.h
get rid of insanity with namespace roots in tomoyo
take check for new events in namespace (guts of mounts_poll()) to namespace.c
Don't mess with generic_permission() under ->d_lock in hpfs
sanitize const/signedness for udf
nilfs: sanitize const/signedness in dealing with ->d_name.name
...
Fix up fairly trivial (famous last words...) conflicts in
drivers/infiniband/core/uverbs_main.c and security/tomoyo/realpath.c
We end up trying to kfree() nd.last.name on open("/mnt/tmp", O_CREAT)
if /mnt/tmp is an autofs direct mount. The reason is that nd.last_type
is bogus here; we want LAST_BIND for everything of that kind and we
get LAST_NORM left over from finding parent directory.
So make sure that it *is* set properly; set to LAST_BIND before
doing ->follow_link() - for normal symlinks it will be changed
by __vfs_follow_link() and everything else needs it set that way.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Currently all architectures but microblaze unconditionally define
USE_ELF_CORE_DUMP. The microblaze omission seems like an error to me, so
let's kill this ifdef and make sure we are the same everywhere.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: <linux-arch@vger.kernel.org>
Cc: Michal Simek <michal.simek@petalogix.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Setting a thread's comm to be something unique is a very useful ability
and is helpful for debugging complicated threaded applications. However
currently the only way to set a thread name is for the thread to name
itself via the PR_SET_NAME prctl.
However, there may be situations where it would be advantageous for a
thread dispatcher to be naming the threads its managing, rather then
having the threads self-describe themselves. This sort of behavior is
available on other systems via the pthread_setname_np() interface.
This patch exports a task's comm via proc/pid/comm and
proc/pid/task/tid/comm interfaces, and allows thread siblings to write to
these values.
[akpm@linux-foundation.org: cleanups]
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Mike Fulton <fultonm@ca.ibm.com>
Cc: Sean Foley <Sean_Foley@ca.ibm.com>
Cc: Darren Hart <dvhltc@us.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Daniel Lezcano reported a leak in 'struct pid' and 'struct pid_namespace'
that is discussed in:
http://lkml.org/lkml/2009/10/2/159.
To summarize the thread, when container-init is terminated, it sets the
PF_EXITING flag, zaps other processes in the container and waits to reap
them. As a part of reaping, the container-init should flush any /proc
dentries associated with the processes. But because the container-init is
itself exiting and the following PF_EXITING check, the dentries are not
flushed, resulting in leak in /proc inodes and dentries.
This fix reverts the commit 7766755a2f ("Fix /proc dcache deadlock
in do_exit") which introduced the check for PF_EXITING. At the time of
the commit, shrink_dcache_parent() flushed dentries from other filesystems
also and could have caused a deadlock which the commit fixed. But as
pointed out by Eric Biederman, after commit 0feae5c47a,
shrink_dcache_parent() no longer affects other filesystems. So reverting
the commit is now safe.
As pointed out by Jan Kara, the leak is not as critical since the
unclaimed space will be reclaimed under memory pressure or by:
echo 3 > /proc/sys/vm/drop_caches
But since this check is no longer required, its best to remove it.
Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Reported-by: Daniel Lezcano <dlezcano@fr.ibm.com>
Acked-by: Eric W. Biederman <ebiederm@xmission.com>
Acked-by: Jan Kara <jack@ucw.cz>
Cc: Andrea Arcangeli <andrea@cpushare.com>
Cc: Serge Hallyn <serue@us.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove obfuscated zero-length input check and return -EINVAL instead of
-EIO error to make the error message clear to user. Add whitespace
stripping. No functionality changes.
The old code:
echo 1 > /proc/pid/make-it-fail (ok)
echo 1foo > /proc/pid/make-it-fail (-bash: echo: write error: Input/output error)
The new code:
echo 1 > /proc/pid/make-it-fail (ok)
echo 1foo > /proc/pid/make-it-fail (-bash: echo: write error: Invalid argument)
This patch is conservative in changes to not breaking existing
scripts/applications.
Signed-off-by: Vincent Li <macli@brc.ubc.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The exiting sub-thread flushes /proc/pid only, but this doesn't buy too
much: ps and friends mostly use /proc/tid/task/pid.
Remove "if (thread_group_leader())" checks from proc_flush_task() path,
this means we always remove /proc/tid/task/pid dentry on exit, and this
actually matches the comment above proc_flush_task().
The test-case:
static void* tfunc(void *arg)
{
char name[256];
sprintf(name, "/proc/%d/task/%ld/status", getpid(), gettid());
close(open(name, O_RDONLY));
return NULL;
}
int main(void)
{
pthread_t t;
for (;;) {
if (!pthread_create(&t, NULL, &tfunc, NULL))
pthread_join(t, NULL);
}
}
slabtop shows that pid/proc_inode_cache/etc grow quickly and
"indefinitely" until the task is killed or shrink_slab() is called, not
good. And the main thread needs a lot of time to exit.
The same can happen if something like "ps -efL" runs continuously, while
some application spawns short-living threads.
Reported-by: "James M. Leddy" <jleddy@redhat.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dominic Duval <dduval@redhat.com>
Cc: Frank Hirtz <fhirtz@redhat.com>
Cc: "Fuller, Johnray" <Johnray.Fuller@gs.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Paul Batkowski <pbatkowski@redhat.com>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
/proc/$pid/limits should show RLIMIT_CPU as seconds, which is the unit
used in kernel/posix-cpu-timers.c:
unsigned long psecs = cputime_to_secs(ptime);
...
if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
...
__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
Signed-off-by: Kees Cook <kees.cook@canonical.com>
Acked-by: WANG Cong <xiyou.wangcong@gmail.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andrew Morton pointed out oom_adjust_write() has very strange EIO
and new line handling. this patch fixes it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
oom-killer kills a process, not task. Then oom_score should be calculated
as per-process too. it makes consistency more and makes speed up
select_bad_process().
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, OOM logic callflow is here.
__out_of_memory()
select_bad_process() for each task
badness() calculate badness of one task
oom_kill_process() search child
oom_kill_task() kill target task and mm shared tasks with it
example, process-A have two thread, thread-A and thread-B and it have very
fat memory and each thread have following oom_adj and oom_score.
thread-A: oom_adj = OOM_DISABLE, oom_score = 0
thread-B: oom_adj = 0, oom_score = very-high
Then, select_bad_process() select thread-B, but oom_kill_task() refuse
kill the task because thread-A have OOM_DISABLE. Thus __out_of_memory()
call select_bad_process() again. but select_bad_process() select the same
task. It mean kernel fall in livelock.
The fact is, select_bad_process() must select killable task. otherwise
OOM logic go into livelock.
And root cause is, oom_adj shouldn't be per-thread value. it should be
per-process value because OOM-killer kill a process, not thread. Thus
This patch moves oomkilladj (now more appropriately named oom_adj) from
struct task_struct to struct signal_struct. it naturally prevent
select_bad_process() choose wrong task.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The commit 2ff05b2b (oom: move oom_adj value) moveed the oom_adj value to
the mm_struct. It was a very good first step for sanitize OOM.
However Paul Menage reported the commit makes regression to his job
scheduler. Current OOM logic can kill OOM_DISABLED process.
Why? His program has the code of similar to the following.
...
set_oom_adj(OOM_DISABLE); /* The job scheduler never killed by oom */
...
if (vfork() == 0) {
set_oom_adj(0); /* Invoked child can be killed */
execve("foo-bar-cmd");
}
....
vfork() parent and child are shared the same mm_struct. then above
set_oom_adj(0) doesn't only change oom_adj for vfork() child, it's also
change oom_adj for vfork() parent. Then, vfork() parent (job scheduler)
lost OOM immune and it was killed.
Actually, fork-setting-exec idiom is very frequently used in userland program.
We must not break this assumption.
Then, this patch revert commit 2ff05b2b and related commit.
Reverted commit list
---------------------
- commit 2ff05b2b4e (oom: move oom_adj value from task_struct to mm_struct)
- commit 4d8b9135c3 (oom: avoid unnecessary mm locking and scanning for OOM_DISABLE)
- commit 8123681022 (oom: only oom kill exiting tasks with attached memory)
- commit 933b787b57 (mm: copy over oom_adj value at fork time)
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The problem is minor, but without ->cred_guard_mutex held we can race
with exec() and get the new ->mm but check old creds.
Now we do not need to re-check task->mm after ptrace_may_access(), it
can't be changed to the new mm under us.
Strictly speaking, this also fixes another very minor problem. Unless
security check fails or the task exits mm_for_maps() should never
return NULL, the caller should get either old or new ->mm.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
mm_for_maps() takes ->mmap_sem after security checks, this looks
strange and obfuscates the locking rules. Move this lock to its
single caller, m_start().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
It would be nice to kill __ptrace_may_access(). It requires task_lock(),
but this lock is only needed to read mm->flags in the middle.
Convert mm_for_maps() to use ptrace_may_access(), this also simplifies
the code a little bit.
Also, we do not need to take ->mmap_sem in advance. In fact I think
mm_for_maps() should not play with ->mmap_sem at all, the caller should
take this lock.
With or without this patch, without ->cred_guard_mutex held we can race
with exec() and get the new ->mm but check old creds.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
The per-task oom_adj value is a characteristic of its mm more than the
task itself since it's not possible to oom kill any thread that shares the
mm. If a task were to be killed while attached to an mm that could not be
freed because another thread were set to OOM_DISABLE, it would have
needlessly been terminated since there is no potential for future memory
freeing.
This patch moves oomkilladj (now more appropriately named oom_adj) from
struct task_struct to struct mm_struct. This requires task_lock() on a
task to check its oom_adj value to protect against exec, but it's already
necessary to take the lock when dereferencing the mm to find the total VM
size for the badness heuristic.
This fixes a livelock if the oom killer chooses a task and another thread
sharing the same memory has an oom_adj value of OOM_DISABLE. This occurs
because oom_kill_task() repeatedly returns 1 and refuses to kill the
chosen task while select_bad_process() will repeatedly choose the same
task during the next retry.
Taking task_lock() in select_bad_process() to check for OOM_DISABLE and in
oom_kill_task() to check for threads sharing the same memory will be
removed in the next patch in this series where it will no longer be
necessary.
Writing to /proc/pid/oom_adj for a kthread will now return -EINVAL since
these threads are immune from oom killing already. They simply report an
oom_adj value of OOM_DISABLE.
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
proc_pident_instantiate() has following call flow.
proc_pident_lookup()
proc_pident_instantiate()
proc_pid_make_inode()
And, proc_pident_lookup() has following error handling.
const struct pid_entry *p, *last;
error = ERR_PTR(-ENOENT);
if (!task)
goto out_no_task;
Then, proc_pident_instantiate should return ENOENT too when racing against
exit(2) occur.
EINAL has two bad reason.
- it implies caller is wrong. bad the race isn't caller's mistake.
- man 2 open don't explain EINVAL. user often don't handle it.
Note: Other proc_pid_make_inode() caller already use ENOENT properly.
Acked-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Guard the setprocattr security hook against ptrace by taking the target task's
cred_guard_mutex around it. The problem is that setprocattr() may otherwise
note the lack of a debugger, and then perform an action on that basis whilst
letting a debugger attach between the two points. Holding cred_guard_mutex
across the test and the action prevents ptrace_attach() from doing that.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
By using the same test as is used for /proc/pid/maps and /proc/pid/smaps,
only allow processes that can ptrace() a given process to see information
that might be used to bypass address space layout randomization (ASLR).
These include eip, esp, wchan, and start_stack in /proc/pid/stat as well
as the non-symbolic output from /proc/pid/wchan.
ASLR can be bypassed by sampling eip as shown by the proof-of-concept
code at http://code.google.com/p/fuzzyaslr/ As part of a presentation
(http://www.cr0.org/paper/to-jt-linux-alsr-leak.pdf) esp and wchan were
also noted as possibly usable information leaks as well. The
start_stack address also leaks potentially useful information.
Cc: Stable Team <stable@kernel.org>
Signed-off-by: Jake Edge <jake@lwn.net>
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In recently sysfs_poll discussion, Neil Brown pointed out /proc/mounts
also should be fixed.
SUSv3 says "Regular files shall always poll TRUE for reading and
writing". see
http://www.opengroup.org/onlinepubs/009695399/functions/poll.html
Then, mounts_poll()'s default should be "POLLIN | POLLRDNORM". it mean
always readable.
In addition, event trigger should use "POLLERR | POLLPRI" instead
POLLERR. it makes consistent to mdstat_poll() and sysfs_poll(). and,
select(2) can handle POLLPRI easily.
Reported-by: Neil Brown <neilb@suse.de>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Miklos Szeredi <mszeredi@suse.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Don't pull it in sched.h; very few files actually need it and those
can include directly. sched.h itself only needs forward declaration
of struct fs_struct;
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
check_unsafe_exec() also notes whether the fs_struct is being
shared by more threads than will get killed by the exec, and if so
sets LSM_UNSAFE_SHARE to make bprm_set_creds() careful about euid.
But /proc/<pid>/cwd and /proc/<pid>/root lookups make transient
use of get_fs_struct(), which also raises that sharing count.
This might occasionally cause a setuid program not to change euid,
in the same way as happened with files->count (check_unsafe_exec
also looks at sighand->count, but /proc doesn't raise that one).
We'd prefer exec not to unshare fs_struct: so fix this in procfs,
replacing get_fs_struct() by get_fs_path(), which does path_get
while still holding task_lock, instead of raising fs->count.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: stable@kernel.org
___
fs/proc/base.c | 50 +++++++++++++++--------------------------------
1 file changed, 16 insertions(+), 34 deletions(-)
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit ee6f779b9e ("filp->f_pos not
correctly updated in proc_task_readdir") changed the proc code to use
filp->f_pos directly, rather than through a temporary variable. In the
process, that caused the operations to be done on the full 64 bits, even
though the offset is never that big.
That's all fine and dandy per se, but for some unfathomable reason gcc
generates absolutely horrid code when using 64-bit values in switch()
statements. To the point of actually calling out to gcc helper
functions like __cmpdi2 rather than just doing the trivial comparisons
directly the way gcc does for normal compares. At which point we get
link failures, because we really don't want to support that kind of
crazy code.
Fix this by just casting the f_pos value to "unsigned long", which
is plenty big enough for /proc, and avoids the gcc code generation issue.
Reported-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Zhang Le <r0bertz@gentoo.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
filp->f_pos only get updated at the end of the function. Thus d_off of those
dirents who are in the middle will be 0, and this will cause a problem in
glibc's readdir implementation, specifically endless loop. Because when overflow
occurs, f_pos will be set to next dirent to read, however it will be 0, unless
the next one is the last one. So it will start over again and again.
There is a sample program in man 2 gendents. This is the output of the program
running on a multithread program's task dir before this patch is applied:
$ ./a.out /proc/3807/task
--------------- nread=128 ---------------
i-node# file type d_reclen d_off d_name
506442 directory 16 1 .
506441 directory 16 0 ..
506443 directory 16 0 3807
506444 directory 16 0 3809
506445 directory 16 0 3812
506446 directory 16 0 3861
506447 directory 16 0 3862
506448 directory 16 8 3863
This is the output after this patch is applied
$ ./a.out /proc/3807/task
--------------- nread=128 ---------------
i-node# file type d_reclen d_off d_name
506442 directory 16 1 .
506441 directory 16 2 ..
506443 directory 16 3 3807
506444 directory 16 4 3809
506445 directory 16 5 3812
506446 directory 16 6 3861
506447 directory 16 7 3862
506448 directory 16 8 3863
Signed-off-by: Zhang Le <r0bertz@gentoo.org>
Acked-by: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>