* 'btrfs' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
btrfs: take allocation of ->tree_root into open_ctree()
btrfs: let ->s_fs_info point to fs_info, not root...
btrfs: consolidate failure exits in btrfs_mount() a bit
btrfs: make free_fs_info() call ->kill_sb() unconditional
btrfs: merge free_fs_info() calls on fill_super failures
btrfs: kill pointless reassignment of ->s_fs_info in btrfs_fill_super()
btrfs: make open_ctree() return int
btrfs: sanitizing ->fs_info, part 5
btrfs: sanitizing ->fs_info, part 4
btrfs: sanitizing ->fs_info, part 3
btrfs: sanitizing ->fs_info, part 2
btrfs: sanitizing ->fs_info, part 1
btrfs: fix a deadlock in btrfs_scan_one_device()
btrfs: fix mount/umount race
btrfs: get ->kill_sb() of its own
btrfs: preparation to fixing mount/umount race
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (62 commits)
Btrfs: use larger system chunks
Btrfs: add a delalloc mutex to inodes for delalloc reservations
Btrfs: space leak tracepoints
Btrfs: protect orphan block rsv with spin_lock
Btrfs: add allocator tracepoints
Btrfs: don't call btrfs_throttle in file write
Btrfs: release space on error in page_mkwrite
Btrfs: fix btrfsck error 400 when truncating a compressed
Btrfs: do not use btrfs_end_transaction_throttle everywhere
Btrfs: add balance progress reporting
Btrfs: allow for resuming restriper after it was paused
Btrfs: allow for canceling restriper
Btrfs: allow for pausing restriper
Btrfs: add skip_balance mount option
Btrfs: recover balance on mount
Btrfs: save balance parameters to disk
Btrfs: soft profile changing mode (aka soft convert)
Btrfs: implement online profile changing
Btrfs: do not reduce profile in do_chunk_alloc()
Btrfs: virtual address space subset filter
...
Fix up trivial conflict in fs/btrfs/ioctl.c due to the use of the new
mnt_drop_write_file() helper.
Implement an ioctl for canceling restriper. Currently we wait until
relocation of the current block group is finished, in future this can be
done by triggering a commit. Balance item is deleted and no memory
about the interrupted balance is kept.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Implement an ioctl for pausing restriper. This pauses the relocation,
but balance is still considered to be "in progress": balance item is
not deleted, other volume operations cannot be started, etc. If paused
in the middle of profile changing operation we will continue making
allocations with the target profile.
Add a hook to close_ctree() to pause restriper and free its data
structures on unmount. (It's safe to unmount when restriper is in
"paused" state, we will resume with the same parameters on the next
mount)
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
On mount, if balance item is found, resume balance in a separate
kernel thread.
Try to be smart to continue roughly where previous balance (or convert)
was interrupted. For chunk types that were being converted to some
profile we turn on soft convert, in case of a simple balance we turn on
usage filter and relocate only less-than-90%-full chunks of that type.
These are just heuristics but they help quite a bit, and can be improved
in future.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Add basic restriper infrastructure: extended balancing ioctl and all
related ioctl data structures, add data structure for tracking
restriper's state to fs_info, etc. The semantics of the old balancing
ioctl are fully preserved.
Explicitly disallow any volume operations when balance is in progress.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
This patch adds a lightweight sync migrate operation MIGRATE_SYNC_LIGHT
mode that avoids writing back pages to backing storage. Async compaction
maps to MIGRATE_ASYNC while sync compaction maps to MIGRATE_SYNC_LIGHT.
For other migrate_pages users such as memory hotplug, MIGRATE_SYNC is
used.
This avoids sync compaction stalling for an excessive length of time,
particularly when copying files to a USB stick where there might be a
large number of dirty pages backed by a filesystem that does not support
->writepages.
[aarcange@redhat.com: This patch is heavily based on Andrea's work]
[akpm@linux-foundation.org: fix fs/nfs/write.c build]
[akpm@linux-foundation.org: fix fs/btrfs/disk-io.c build]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andy Isaacson <adi@hexapodia.org>
Cc: Nai Xia <nai.xia@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Asynchronous compaction is used when allocating transparent hugepages to
avoid blocking for long periods of time. Due to reports of stalling,
there was a debate on disabling synchronous compaction but this severely
impacted allocation success rates. Part of the reason was that many dirty
pages are skipped in asynchronous compaction by the following check;
if (PageDirty(page) && !sync &&
mapping->a_ops->migratepage != migrate_page)
rc = -EBUSY;
This skips over all mapping aops using buffer_migrate_page() even though
it is possible to migrate some of these pages without blocking. This
patch updates the ->migratepage callback with a "sync" parameter. It is
the responsibility of the callback to fail gracefully if migration would
block.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andy Isaacson <adi@hexapodia.org>
Cc: Nai Xia <nai.xia@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The correct lock order is uuid_mutex -> volume_mutex -> chunk_mutex,
but when we mount a filesystem which has backing seed devices, we have
this lock chain:
open_ctree()
lock(chunk_mutex);
read_chunk_tree();
read_one_dev();
open_seed_devices();
lock(uuid_mutex);
and then we hit a lockdep splat.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
the latter can be obtained from the former (by looking as ->tree_root)
just as cheaply as we currently are doing the other way round.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
It returns either ERR_PTR(-ve) or sb->s_fs_info. The latter can
be found by caller just as well, TYVM, no need to return it. Just
return -ve or 0...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
close_ctree() uses a weird mix of accesses to root->fs_info and
its value at the beginning of function stored in local variable.
Since ->fs_info *never* changes, let's just use the local variable
to avoid confusion.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
A new helper: btrfs_alloc_root(fs_info); allocates btrfs_root
and sets ->fs_info. All places allocating the suckers converted
to it. At that point we *never* reassign ->fs_info of btrfs_root;
it's set before anyone sees the address of newly allocated
struct btrfs_root and never assigned anywhere else.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
move assignments to ->fs_info in open_ctree() up, to the place
just after the original allocations. Assignment for tree_root
becomes a no-op - we'd obtained fs_info from tree_root->fs_info
in the first place.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We need fs_info and root to live until the moment when the victim
superblock leaves the list, so we need to postpone free_fs_info()
until after ->put_super(). The call is buried in close_ctree(),
though, so we need to lift it into the callers (including
btrfs_put_super()) first.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add a for_cow parameter to add_delayed_*_ref and pass the appropriate value
from every call site. The for_cow parameter will later on be used to
determine if a ref will change anything with respect to qgroups.
Delayed refs coming from relocation are always counted as for_cow, as they
don't change subvol quota.
Also pass in the fs_info for later use.
btrfs_find_all_roots() will use this as an optimization, as changes that are
for_cow will not change anything with respect to which root points to a
certain leaf. Thus, we don't need to add the current sequence number to
those delayed refs.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
* master: (848 commits)
SELinux: Fix RCU deref check warning in sel_netport_insert()
binary_sysctl(): fix memory leak
mm/vmalloc.c: remove static declaration of va from __get_vm_area_node
ipmi_watchdog: restore settings when BMC reset
oom: fix integer overflow of points in oom_badness
memcg: keep root group unchanged if creation fails
nilfs2: potential integer overflow in nilfs_ioctl_clean_segments()
nilfs2: unbreak compat ioctl
cpusets: stall when updating mems_allowed for mempolicy or disjoint nodemask
evm: prevent racing during tfm allocation
evm: key must be set once during initialization
mmc: vub300: fix type of firmware_rom_wait_states module parameter
Revert "mmc: enable runtime PM by default"
mmc: sdhci: remove "state" argument from sdhci_suspend_host
x86, dumpstack: Fix code bytes breakage due to missing KERN_CONT
IB/qib: Correct sense on freectxts increment and decrement
RDMA/cma: Verify private data length
cgroups: fix a css_set not found bug in cgroup_attach_proc
oprofile: Fix uninitialized memory access when writing to writing to oprofilefs
Revert "xen/pv-on-hvm kexec: add xs_reset_watches to shutdown watches from old kernel"
...
Conflicts:
kernel/cgroup_freezer.c
This is the last part of the patch series. It modifies the btrfs
code to use the integrity check module if configured to do so
with the define BTRFS_FS_CHECK_INTEGRITY. If this define is not set,
the only effective change is that code is added that handles the
mount option to activate the integrity check. If the mount option is
set and the define BTRFS_FS_CHECK_INTEGRITY is not set, that code
complains in the log and the mount fails with EINVAL.
Add the mount option to activate the usage of the integrity check
code.
Add invocation of btrfs integrity check code init and cleanup
function on mount and umount, respectively.
Add hook to call btrfs integrity check code version of
submit_bh/submit_bio.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: unplug every once and a while
Btrfs: deal with NULL srv_rsv in the delalloc inode reservation code
Btrfs: only set cache_generation if we setup the block group
Btrfs: don't panic if orphan item already exists
Btrfs: fix leaked space in truncate
Btrfs: fix how we do delalloc reservations and how we free reservations on error
Btrfs: deal with enospc from dirtying inodes properly
Btrfs: fix num_workers_starting bug and other bugs in async thread
BTRFS: Establish i_ops before calling d_instantiate
Btrfs: add a cond_resched() into the worker loop
Btrfs: fix ctime update of on-disk inode
btrfs: keep orphans for subvolume deletion
Btrfs: fix inaccurate available space on raid0 profile
Btrfs: fix wrong disk space information of the files
Btrfs: fix wrong i_size when truncating a file to a larger size
Btrfs: fix btrfs_end_bio to deal with write errors to a single mirror
* 'for-linus-3.2' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: lower the dirty balance poll interval
Al pointed out we have some random problems with the way we account for
num_workers_starting in the async thread stuff. First of all we need to make
sure to decrement num_workers_starting if we fail to start the worker, so make
__btrfs_start_workers do this. Also fix __btrfs_start_workers so that it
doesn't call btrfs_stop_workers(), there is no point in stopping everybody if we
failed to create a worker. Also check_pending_worker_creates needs to call
__btrfs_start_work in it's work function since it already increments
num_workers_starting.
People only start one worker at a time, so get rid of the num_workers argument
everywhere, and make btrfs_queue_worker a void since it will always succeed.
Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
* 'pm-freezer' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/misc: (24 commits)
freezer: fix wait_event_freezable/__thaw_task races
freezer: kill unused set_freezable_with_signal()
dmatest: don't use set_freezable_with_signal()
usb_storage: don't use set_freezable_with_signal()
freezer: remove unused @sig_only from freeze_task()
freezer: use lock_task_sighand() in fake_signal_wake_up()
freezer: restructure __refrigerator()
freezer: fix set_freezable[_with_signal]() race
freezer: remove should_send_signal() and update frozen()
freezer: remove now unused TIF_FREEZE
freezer: make freezing() test freeze conditions in effect instead of TIF_FREEZE
cgroup_freezer: prepare for removal of TIF_FREEZE
freezer: clean up freeze_processes() failure path
freezer: kill PF_FREEZING
freezer: test freezable conditions while holding freezer_lock
freezer: make freezing indicate freeze condition in effect
freezer: use dedicated lock instead of task_lock() + memory barrier
freezer: don't distinguish nosig tasks on thaw
freezer: remove racy clear_freeze_flag() and set PF_NOFREEZE on dead tasks
freezer: rename thaw_process() to __thaw_task() and simplify the implementation
...
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: remove free-space-cache.c WARN during log replay
Btrfs: sectorsize align offsets in fiemap
Btrfs: clear pages dirty for io and set them extent mapped
Btrfs: wait on caching if we're loading the free space cache
Btrfs: prefix resize related printks with btrfs:
btrfs: fix stat blocks accounting
Btrfs: avoid unnecessary bitmap search for cluster setup
Btrfs: fix to search one more bitmap for cluster setup
btrfs: mirror_num should be int, not u64
btrfs: Fix up 32/64-bit compatibility for new ioctls
Btrfs: fix barrier flushes
Btrfs: fix tree corruption after multi-thread snapshots and inode_cache flush
There is no reason to export two functions for entering the
refrigerator. Calling refrigerator() instead of try_to_freeze()
doesn't save anything noticeable or removes any race condition.
* Rename refrigerator() to __refrigerator() and make it return bool
indicating whether it scheduled out for freezing.
* Update try_to_freeze() to return bool and relay the return value of
__refrigerator() if freezing().
* Convert all refrigerator() users to try_to_freeze().
* Update documentation accordingly.
* While at it, add might_sleep() to try_to_freeze().
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Samuel Ortiz <samuel@sortiz.org>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jan Kara <jack@suse.cz>
Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp>
Cc: Christoph Hellwig <hch@infradead.org>
My previous patch introduced some u64 for failed_mirror variables, this one
makes it consistent again.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When btrfs is writing the super blocks, it send barrier flushes to make
sure writeback caching drives get all the metadata on disk in the
right order.
But, we have two bugs in the way these are sent down. When doing
full commits (not via the tree log), we are sending the barrier down
before the last super when it should be going down before the first.
In multi-device setups, we should be waiting for the barriers to
complete on all devices before writing any of the supers.
Both of these bugs can cause corruptions on power failures. We fix it
with some new code to send down empty barriers to all devices before
writing the first super.
Alexandre Oliva found the multi-device bug. Arne Jansen did the async
barrier loop.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Reported-by: Alexandre Oliva <oliva@lsd.ic.unicamp.br>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: rename the option to nospace_cache
Btrfs: handle bio_add_page failure gracefully in scrub
Btrfs: fix deadlock caused by the race between relocation
Btrfs: only map pages if we know we need them when reading the space cache
Btrfs: fix orphan backref nodes
Btrfs: Abstract similar code for btrfs_block_rsv_add{, _noflush}
Btrfs: fix unreleased path in btrfs_orphan_cleanup()
Btrfs: fix no reserved space for writing out inode cache
Btrfs: fix nocow when deleting the item
Btrfs: tweak the delayed inode reservations again
Btrfs: rework error handling in btrfs_mount()
Btrfs: close devices on all error paths in open_ctree()
Btrfs: avoid null dereference and leaks when bailing from open_ctree()
Btrfs: fix subvol_name leak on error in btrfs_mount()
Btrfs: fix memory leak in btrfs_parse_early_options()
Btrfs: fix our reservations for updating an inode when completing io
Btrfs: fix oops on NULL trans handle in btrfs_truncate
btrfs: fix double-free 'tree_root' in 'btrfs_mount()'
Fix a bug introduced by 7e662854 where we would leave devices busy on
certain error paths in open_ctree(). fs_info is guaranteed to be
non-NULL now so it's safe to dereference it on all error paths.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Fix bugs introduced by 6c41761f. Firstly, after failing to allocate any
of the tree roots (first 'goto fail' in open_ctree()) we would
dereference a NULL fs_info pointer in free_fs_info(). Secondly, after
failures from init_srcu_struct(), setup_bdi() and new_inode() we would
leak all earlier allocated roots: fs_info fields haven't been
initialized yet so free_fs_info() is rendered useless.
Fix this by initializing fs_info pointer and fs_info fields before any
allocations happen.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (114 commits)
Btrfs: check for a null fs root when writing to the backup root log
Btrfs: fix race during transaction joins
Btrfs: fix a potential btrfs_bio leak on scrub fixups
Btrfs: rename btrfs_bio multi -> bbio for consistency
Btrfs: stop leaking btrfs_bios on readahead
Btrfs: stop the readahead threads on failed mount
Btrfs: fix extent_buffer leak in the metadata IO error handling
Btrfs: fix the new inspection ioctls for 32 bit compat
Btrfs: fix delayed insertion reservation
Btrfs: ClearPageError during writepage and clean_tree_block
Btrfs: be smarter about committing the transaction in reserve_metadata_bytes
Btrfs: make a delayed_block_rsv for the delayed item insertion
Btrfs: add a log of past tree roots
btrfs: separate superblock items out of fs_info
Btrfs: use the global reserve when truncating the free space cache inode
Btrfs: release metadata from global reserve if we have to fallback for unlink
Btrfs: make sure to flush queued bios if write_cache_pages waits
Btrfs: fix extent pinning bugs in the tree log
Btrfs: make sure btrfs_remove_free_space doesn't leak EAGAIN
Btrfs: don't wait as long for more batches during SSD log commit
...
During log replay, can commit the transaction before the fs_root
pointers are setup, so we have to make sure they are not null before
trying to use them.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The scrub readahead branch brought in a new error handling hook,
but it was leaking extent_buffer references.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
I've been hitting warnings in use_block_rsv when running the delayed insertion
stuff. It's because we will readjust global block rsv based on what is in use,
which means we could end up discarding reservations that are for the delayed
insertion stuff. So instead create a seperate block rsv for the delayed
insertion stuff. This will also make it easier to debug problems with the
delayed insertion reservations since we will know that only the delayed
insertion code touches this block_rsv. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This takes some of the free space in the btrfs super block
to record information about most of the roots in the last four
commits.
It also adds a -o recovery to use the root history log when
we're not able to read the tree of tree roots, the extent
tree root, the device tree root or the csum root.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
fs_info has now ~9kb, more than fits into one page. This will cause
mount failure when memory is too fragmented. Top space consumers are
super block structures super_copy and super_for_commit, ~2.8kb each.
Allocate them dynamically. fs_info will be ~3.5kb. (measured on x86_64)
Add a wrapper for freeing fs_info and all of it's dynamically allocated
members.
Signed-off-by: David Sterba <dsterba@suse.cz>
write_cache_pages tries to build up a large bio to stuff down the pipe.
But if it needs to wait for a page lock, it needs to make sure and send
down any pending writes so we don't deadlock with anyone who has the
page lock and is waiting for writeback of things inside the bio.
Dave Sterba triggered this as a deadlock between the autodefrag code and
the extent write_cache_pages
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Replace remaining direct i_nlink updates with a new set_nlink()
updater function.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Tested-by: Toshiyuki Okajima <toshi.okajima@jp.fujitsu.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
One of the things that kills us is the fact that our ENOSPC reservations are
horribly over the top in most normal cases. There isn't too much that can be
done about this because when we are completely full we really need them to work
like this so we don't under reserve. However if there is plenty of unallocated
chunks on the disk we can use that to gauge how much we can overcommit. So this
patch adds chunk free space accounting so we always know how much unallocated
space we have. Then if we fail to make a reservation within our allocated
space, check to see if we can overcommit. In the normal flushing case (like
with delalloc metadata reservations) we'll take the free space and divide it by
2 if our metadata profile is setup for DUP or any of those, and then divide it
by 8 to make sure we don't overcommit too much. Then if we're in a non-flushing
case (we really need this reservation now!) we only limit ourselves to half of
the free space. This makes this fio test
[torrent]
filename=torrent-test
rw=randwrite
size=4g
ioengine=sync
directory=/mnt/btrfs-test
go from taking around 45 minutes to 10 seconds on my freshly formatted 3 TiB
file system. This doesn't seem to break my other enospc tests, but could really
use some more testing as this is a super scary change. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
In moving some enospc stuff around I noticed that when we unmount we are often
evicting the free space cache inodes before we do our last commit. This isn't
bad, but it makes us constantly have to re-read the inodes back. So instead
don't evict the cache until after we do our last commit, this will make things a
little less crappy and makes a future enospc change work properly. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>