When we were converting the attr code to use an explicit operation code
instead of keying off of attr->value being null, we forgot to change the
code that initializes the transaction reservation. Split the function
into two helpers that handle the !remove and remove cases, then fix both
callsites to handle this correctly.
Fixes: c27411d4c6 ("xfs: make attr removal an explicit operation")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
The attr name of a parent pointer is a string, and the attr value of a
parent pointer is (more or less) a file handle. So we need to modify
attr_namecheck to verify the parent pointer name, and add a
xfs_parent_valuecheck function to sanitize the handle. At the same
time, we need to validate attr values during log recovery if the xattr
is really a parent pointer.
Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
[djwong: move functions to xfs_parent.c, adjust for new disk format]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
For parent pointer updates, record the i_generation of the file that is
being updated so that we don't accidentally jump generations.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Make the necessary alterations to the extended attribute log intent item
ondisk format so that we can log parent pointer operations. This
requires the creation of new opcodes specific to parent pointers, and a
new four-argument replace operation to handle renames. At this point
this part of the patchset has changed so much from what Allison original
wrote that I no longer think her SoB applies.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move this feature check down to the per-op checks so that we can ensure
that we never see parent pointer attr items on non-pptr filesystems, and
that logged xattrs are turned on for non-pptr attr items.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create a separate function to compute name hashvalues for extended
attributes. When we get to parent pointers we'll be altering the rules
so that metadump obfuscation doesn't turn heinous.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the code that adds the incore xfs_attr_item deferred work data to a
transaction live with the ATTRI log item code. This means that the
upper level extended attribute code no longer has to know about the
inner workings of the ATTRI log items.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create a standardized helper function to enforce one namespace bit per
extended attribute, and refactor all the open-coded hweight logic. This
function is not a static inline to avoid porting hassles in userspace.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Hoist the code that checks the attr name and value iovecs into separate
helpers so that we can add more callsites for the new parent pointer
attr intent items.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the name and length checks into the attr op switch statement so
that we can perform more specific checks of the value length. Over the
next few patches we're going to add new attr op flags with different
validation requirements.
While we're at it, remove the incorrect comment.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
We're about to start using tagged unions in the xattr log format, so
create a bunch of local variables in the recovery function so we only
have to decode the log item fields once.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Always set args->value to the recovered value buffer. This reduces the
amount of code in the switch statement, and hence the amount of thinking
that I have to do. We validated the recovered buffers, supposedly.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Strengthen the xattri log item recovery code by checking that we
actually have the required name and newname buffers for whatever
operation we're replaying.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create helper functions to extract the xattr op from the ondisk xattri
log item and the incore attr intent item. These will get more use in
the patches that follow.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Check that the number of recovered log iovecs is what is expected for
the xattri opcode is expecting.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Per reviewer request, use an OPSTATE flag (+ helpers) to decide if
logged xattrs are enabled, instead of querying the xfs_sb.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The XFS_SB_FEAT_INCOMPAT_LOG_XATTRS feature bit protects a filesystem
from old kernels that do not know how to recover extended attribute log
intent items. Make this check mandatory instead of a debugging assert.
Fixes: fd92000878 ("xfs: Set up infrastructure for log attribute replay")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Christoph noticed that the xfs_attr_is_leaf in xfs_attr_get_ilocked can
access the incore extent tree of the attr fork, but nothing in the
xfs_attr_get path guarantees that the incore tree is actually loaded.
Most of the time it is, but seeing as xfs_attr_is_leaf ignores the
return value of xfs_iext_get_extent I guess we've been making choices
based on random stack contents and nobody's complained?
Reported-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Add an explicit owner field to xfs_da_args, which will make it easier
for online fsck to set the owner field of the temporary directory and
xattr structures that it builds to repair damaged metadata.
Note: I hopefully found all the xfs_da_args definitions by looking for
automatic stack variable declarations and xfs_da_args.dp assignments:
git grep -E '(args.*dp =|struct xfs_da_args[[:space:]]*[a-z0-9][a-z0-9]*)'
Note that callers of xfs_attr_{get,set,change} can set the owner to zero
(or leave it unset) to have the default set to args->dp.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Add a helper to translate from the item list head to the attr_intent
item structure and use it so shorten assignments and avoid the need for
extra local variables.
Inspired-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When recovery starts processing intents, all of the initial intent
allocations are done outside of transaction contexts. That means
they need to specifically use GFP_NOFS as we do not want memory
reclaim to attempt to run direct reclaim of filesystem objects while
we have lots of objects added into deferred operations.
Rather than use GFP_NOFS for these specific allocations, just place
the entire intent recovery process under NOFS context and we can
then just use GFP_KERNEL for these allocations.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
When running in a transaction context, memory allocations are scoped
to GFP_NOFS. Hence we don't need to use GFP_NOFS contexts in pure
transaction context allocations - GFP_KERNEL will automatically get
converted to GFP_NOFS as appropriate.
Go through the code and convert all the obvious GFP_NOFS allocations
in transaction context to use GFP_KERNEL. This further reduces the
explicit use of GFP_NOFS in XFS.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
The remaining callers of kmem_free() are freeing heap memory, so
we can convert them directly to kfree() and get rid of kmem_free()
altogether.
This conversion was done with:
$ for f in `git grep -l kmem_free fs/xfs`; do
> sed -i s/kmem_free/kfree/ $f
> done
$
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Start getting rid of kmem_free() by converting all the cases where
memory can come from vmalloc interfaces to calling kvfree()
directly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
There's no reason to keep the kmem_zalloc() around anymore, it's
just a thin wrapper around kmalloc(), so lets get rid of it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
xfs_defer_start_recovery is only called from xlog_recover_intent_item,
and the callers of that all have the actual xfs_defer_ops_type operation
vector at hand. Pass that directly instead of looking it up from the
defer_op_types table.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
The dfp_type field in struct xfs_defer_pending is only used to either
look up the operations associated with the pending word or in trace
points. Replace it with a direct pointer to the operations vector,
and store a pretty name in the vector for tracing.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
We'll reference it directly in xlog_recover_attri_commit_pass2, so move
it up a bit.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Extended attribute updates use the deferred work machinery to manage
state across a chain of smaller transactions. All previous deferred
work users have employed log intent items and log done items to manage
restarting of interrupted operations, which means that ->create_intent
sets dfp_intent to a log intent item and ->create_done uses that item to
create a log intent done item.
However, xattrs have used the INCOMPLETE flag to deal with the lack of
recovery support for an interrupted transaction chain. Log items are
optional if the xattr update caller didn't set XFS_DA_OP_LOGGED to
require a restartable sequence.
In other words, ->create_intent can return NULL to say that there's no
log intent item. If that's the case, no log intent done item should be
created. Clean up xfs_defer_create_done not to do this, so that the
->create_done functions don't have to check for non-null dfp_intent
themselves.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The only log items that need relogging are the ones created for deferred
work operations, and the only part of the code base that relogs log
items is the deferred work machinery. Move the function pointers.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the meat of the ->create_done function helpers into ->create_done
to reduce the amount of boilerplate.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Hoist this dirty flag setting to the ->iop_relog callsite to reduce
boilerplate.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Now that we have a helper to handle creating a log intent done item and
updating all the necessary state flags, use it to reduce boilerplate in
the ->iop_relog implementations.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Hoist the dirty flag setting code out of each ->create_intent
implementation up to the callsite to reduce boilerplate further.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Each log item's ->finish_item function sets up a small amount of state
and calls another function to do the work. Collapse that other function
into ->finish_item to reduce the call stack height.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Each log intent item's ->finish_item call chain inevitably includes some
code to set the dirty flag of the transaction. If there's an associated
log intent done item, it also sets the item's dirty flag and the
transaction's INTENT_DONE flag. This is repeated throughout the
codebase.
Reduce the LOC by moving all that to xfs_defer_finish_one.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
XFS_TRANS_HAS_INTENT_DONE is a flag to the CIL that we've added a log
intent done item to the transaction. This enables an optimization
wherein we avoid writing out log intent and log intent done items if
they would have ended up in the same checkpoint. This reduces writes to
the ondisk log and speeds up recovery as a result.
However, callers can use the defer ops machinery to modify xattrs
without using the log items. In this situation, there won't be an
intent done item, so we do not need to set the flag.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Finish off the series by moving the intent item recovery function
pointer to the xfs_defer_op_type struct, since this is really a deferred
work function now.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Get rid of the open-coded calls to xfs_defer_finish_one. This also
means that the recovery transaction takes care of cleaning up the dfp,
and we have solved (I hope) all the ownership issues in recovery.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
If xfs_attri_item_recover receives a corruption error when it tries to
finish a recovered log intent item, it should dump the log item for
debugging, just like all the other log intent items.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Recreate work items for each xfs_defer_pending object when we are
recovering intent items.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Now that we pass the xfs_defer_pending object into the intent item
recovery functions, we know exactly when ownership of the sole refcount
passes from the recovery context to the intent done item. At that
point, we need to null out dfp_intent so that the recovery mechanism
won't release it. This should fix the UAF problem reported by Long Li.
Note that we still want to recreate the full deferred work state. That
will be addressed in the next patches.
Fixes: 2e76f188fd ("xfs: cancel intents immediately if process_intents fails")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Now that log intent item recovery recreates the xfs_defer_pending state,
we should pass that into the ->iop_recover routines so that the intent
item can finish the recreation work.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
One thing I never quite got around to doing is porting the log intent
item recovery code to reconstruct the deferred pending work state. As a
result, each intent item open codes xfs_defer_finish_one in its recovery
method, because that's what the EFI code did before xfs_defer.c even
existed.
This is a gross thing to have left unfixed -- if an EFI cannot proceed
due to busy extents, we end up creating separate new EFIs for each
unfinished work item, which is a change in behavior from what runtime
would have done.
Worse yet, Long Li pointed out that there's a UAF in the recovery code.
The ->commit_pass2 function adds the intent item to the AIL and drops
the refcount. The one remaining refcount is now owned by the recovery
mechanism (aka the log intent items in the AIL) with the intent of
giving the refcount to the intent done item in the ->iop_recover
function.
However, if something fails later in recovery, xlog_recover_finish will
walk the recovered intent items in the AIL and release them. If the CIL
hasn't been pushed before that point (which is possible since we don't
force the log until later) then the intent done release will try to free
its associated intent, which has already been freed.
This patch starts to address this mess by having the ->commit_pass2
functions recreate the xfs_defer_pending state. The next few patches
will fix the recovery functions.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
If recovery finds an xattr log intent item calling for the removal of an
attribute and the file doesn't even have an attr fork, we know that the
removal is trivially complete. However, we can't just exit the recovery
function without doing something about the recovered log intent item --
it's still on the AIL, and not logging an attrd item means it stays
there forever.
This has likely not been seen in practice because few people use LARP
and the runtime code won't log the attri for a no-attrfork removexattr
operation. But let's fix this anyway.
Also we shouldn't really be testing the attr fork presence until we've
taken the ILOCK, though this doesn't matter much in recovery, which is
single threaded.
Fixes: fdaf1bb3ca ("xfs: ATTR_REPLACE algorithm with LARP enabled needs rework")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Wengang Wang reports that a customer's system was running a number of
truncate operations on a filesystem with a very small log. Contention
on the reserve heads lead to other threads stalling on smaller updates
(e.g. mtime updates) long enough to result in the node being rebooted
on account of the lack of responsivenes. The node failed to recover
because log recovery of an EFI became stuck waiting for a grant of
reserve space. From Wengang's report:
"For the file deletion, log bytes are reserved basing on
xfs_mount->tr_itruncate which is:
tr_logres = 175488,
tr_logcount = 2,
tr_logflags = XFS_TRANS_PERM_LOG_RES,
"You see it's a permanent log reservation with two log operations (two
transactions in rolling mode). After calculation (xlog_calc_unit_res()
adds space for various log headers), the final log space needed per
transaction changes from 175488 to 180208 bytes. So the total log
space needed is 360416 bytes (180208 * 2). [That quantity] of log space
(360416 bytes) needs to be reserved for both run time inode removing
(xfs_inactive_truncate()) and EFI recover (xfs_efi_item_recover())."
In other words, runtime pre-reserves 360K of space in anticipation of
running a chain of two transactions in which each transaction gets a
180K reservation.
Now that we've allocated the transaction, we delete the bmap mapping,
log an EFI to free the space, and roll the transaction as part of
finishing the deferops chain. Rolling creates a new xfs_trans which
shares its ticket with the old transaction. Next, xfs_trans_roll calls
__xfs_trans_commit with regrant == true, which calls xlog_cil_commit
with the same regrant parameter.
xlog_cil_commit calls xfs_log_ticket_regrant, which decrements t_cnt and
subtracts t_curr_res from the reservation and write heads.
If the filesystem is fresh and the first transaction only used (say)
20K, then t_curr_res will be 160K, and we give that much reservation
back to the reservation head. Or if the file is really fragmented and
the first transaction actually uses 170K, then t_curr_res will be 10K,
and that's what we give back to the reservation.
Having done that, we're now headed into the second transaction with an
EFI and 180K of reservation. Other threads apparently consumed all the
reservation for smaller transactions, such as timestamp updates.
Now let's say the first transaction gets written to disk and we crash
without ever completing the second transaction. Now we remount the fs,
log recovery finds the unfinished EFI, and calls xfs_efi_recover to
finish the EFI. However, xfs_efi_recover starts a new tr_itruncate
tranasction, which asks for 360K log reservation. This is a lot more
than the 180K that we had reserved at the time of the crash. If the
first EFI to be recovered is also pinning the tail of the log, we will
be unable to free any space in the log, and recovery livelocks.
Wengang confirmed this:
"Now we have the second transaction which has 180208 log bytes reserved
too. The second transaction is supposed to process intents including
extent freeing. With my hacking patch, I blocked the extent freeing 5
hours. So in that 5 hours, 180208 (NOT 360416) log bytes are reserved.
"With my test case, other transactions (update timestamps) then happen.
As my hacking patch pins the journal tail, those timestamp-updating
transactions finally use up (almost) all the left available log space
(in memory in on disk). And finally the on disk (and in memory)
available log space goes down near to 180208 bytes. Those 180208 bytes
are reserved by [the] second (extent-free) transaction [in the chain]."
Wengang and I noticed that EFI recovery starts a transaction, completes
one step of the chain, and commits the transaction without completing
any other steps of the chain. Those subsequent steps are completed by
xlog_finish_defer_ops, which allocates yet another transaction to
finish the rest of the chain. That transaction gets the same tr_logres
as the head transaction, but with tr_logcount = 1 to force regranting
with every roll to avoid livelocks.
In other words, we already figured this out in commit 929b92f640
("xfs: xfs_defer_capture should absorb remaining transaction
reservation"), but should have applied that logic to each intent item's
recovery function. For Wengang's case, the xfs_trans_alloc call in the
EFI recovery function should only be asking for a single transaction's
worth of log reservation -- 180K, not 360K.
Quoting Wengang again:
"With log recovery, during EFI recovery, we use tr_itruncate again to
reserve two transactions that needs 360416 log bytes. Reserving 360416
bytes fails [stalls] because we now only have about 180208 available.
"Actually during the EFI recover, we only need one transaction to free
the extents just like the 2nd transaction at RUNTIME. So it only needs
to reserve 180208 rather than 360416 bytes. We have (a bit) more than
180208 available log bytes on disk, so [if we decrease the reservation
to 180K] the reservation goes and the recovery [finishes]. That is to
say: we can fix the log recover part to fix the issue. We can introduce
a new xfs_trans_res xfs_mount->tr_ext_free
{
tr_logres = 175488,
tr_logcount = 0,
tr_logflags = 0,
}
"and use tr_ext_free instead of tr_itruncate in EFI recover."
However, I don't think it quite makes sense to create an entirely new
transaction reservation type to handle single-stepping during log
recovery. Instead, we should copy the transaction reservation
information in the xfs_mount, change tr_logcount to 1, and pass that
into xfs_trans_alloc. We know this won't risk changing the min log size
computation since we always ask for a fraction of the reservation for
all known transaction types.
This looks like it's been lurking in the codebase since commit
3d3c8b5222, which changed the xfs_trans_reserve call in
xlog_recover_process_efi to use the tr_logcount in tr_itruncate.
That changed the EFI recovery transaction from making a
non-XFS_TRANS_PERM_LOG_RES request for one transaction's worth of log
space to a XFS_TRANS_PERM_LOG_RES request for two transactions worth.
Fixes: 3d3c8b5222 ("xfs: refactor xfs_trans_reserve() interface")
Complements: 929b92f640 ("xfs: xfs_defer_capture should absorb remaining transaction reservation")
Suggested-by: Wengang Wang <wen.gang.wang@oracle.com>
Cc: Srikanth C S <srikanth.c.s@oracle.com>
[djwong: apply the same transformation to all log intent recovery]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
If log recovery decides that an intent item is corrupt and wants to
abort the mount, capture a hexdump of the corrupt log item in the kernel
log for further analysis. Some of the log item code already did this,
so we're fixing the rest to do it consistently.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Before we start fixing all the complaints about memcpy'ing log items
around, let's fix some inadequate validation in the xattr log item
recovery code and get rid of the (now trivial) copy_format function.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
In xfs_attri_log_nameval_alloc(), xlog_kvmalloc() is called
to alloc memory, which will always return
successfully, so we donot need to check return value.
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Zhiqiang Liu <liuzhiqiang26@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>