When the spinlock routines were moved out of line into
kernel/spinlock.c this made it so that the debugging
spinlocks record lock acquisition program counts in the
kernel/spinlock.c functions not in their callers.
This makes the debugging info kind of useless.
So record the correct caller's program counter and
now this feature is useful once more.
Signed-off-by: David S. Miller <davem@davemloft.net>
Removed sparc64 architecture specific users of asm/segment.h and
asm-sparc64/segment.h itself
Signed-off-by: Kumar Gala <kumar.gala@freescale.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Current uncorrectable error handling was poor enough
that the processor could just loop taking the same
trap over and over again. Fix things up so that we
at least get a log message and perhaps even some register
state.
In the process, much consolidation became possible,
particularly with the correctable error handler.
Prefix assembler and C function names with "spitfire"
to indicate that these are for Ultra-I/II/IIi/IIe only.
More work is needed to make these routines robust and
featureful to the level of the Ultra-III error handlers.
Signed-off-by: David S. Miller <davem@davemloft.net>
Verify we really are taking a data access exception trap, at TL1, from
one of the window spill/fill handlers.
Else call a new function, data_access_exception_tl1, to log the error.
Signed-off-by: David S. Miller <davem@davemloft.net>
1) Read ASI_IMMU SFSR not ASI_DMMU.
2) IMMU has no SFAR, read TPC instead
3) Delete old and incorrect comment about the DTLB protection
trap having a dependency on the SFSR contents in order to
function correctly
Signed-off-by: David S. Miller <davem@davemloft.net>
It has been reported that the way Linux handles NODEFER for signals is
not consistent with the way other Unix boxes handle it. I've written a
program to test the behavior of how this flag affects signals and had
several reports from people who ran this on various Unix boxes,
confirming that Linux seems to be unique on the way this is handled.
The way NODEFER affects signals on other Unix boxes is as follows:
1) If NODEFER is set, other signals in sa_mask are still blocked.
2) If NODEFER is set and the signal is in sa_mask, then the signal is
still blocked. (Note: this is the behavior of all tested but Linux _and_
NetBSD 2.0 *).
The way NODEFER affects signals on Linux:
1) If NODEFER is set, other signals are _not_ blocked regardless of
sa_mask (Even NetBSD doesn't do this).
2) If NODEFER is set and the signal is in sa_mask, then the signal being
handled is not blocked.
The patch converts signal handling in all current Linux architectures to
the way most Unix boxes work.
Unix boxes that were tested: DU4, AIX 5.2, Irix 6.5, NetBSD 2.0, SFU
3.5 on WinXP, AIX 5.3, Mac OSX, and of course Linux 2.6.13-rcX.
* NetBSD was the only other Unix to behave like Linux on point #2. The
main concern was brought up by point #1 which even NetBSD isn't like
Linux. So with this patch, we leave NetBSD as the lonely one that
behaves differently here with #2.
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
pcibios_bus_to_resource is exported on all architectures except ia64
and sparc. Add exports for the two missing architectures. Needed when
Yenta socket support is compiled as a module.
Signed-off-by: Keith Owens <kaos@sgi.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
GCC 4.x really dislikes the games we are playing in
unaligned.c, and the cleanest way to fix this is to
move things into assembler.
Noted by Al Viro.
Signed-off-by: David S. Miller <davem@davemloft.net>
From: Dave Johnson <djohnson+linux-kernel@sw.starentnetworks.com>
sendmsg()/recvmsg() syscalls from o32/n32 apps to a 64bit kernel will
cause a kernel memory leak if iov_len > UIO_FASTIOV for each syscall!
This is because both sys_sendmsg() and verify_compat_iovec() kmalloc a
new iovec structure. Only the one from sys_sendmsg() is free'ed.
I wrote a simple test program to confirm this after identifying the
problem:
http://davej.org/programs/testsendmsg.c
Note that the below fix will break solaris_sendmsg()/solaris_recvmsg() as
it also calls verify_compat_iovec() but expects it to malloc internally.
[ I fixed that. -DaveM ]
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Revert commit fec59a711e, which is
breaking sparc64 that doesn't have a working pci_update_resource.
We'll re-do this after 2.6.13 when we'll do it all properly.
Some PCI devices (e.g. 3c905B, 3c556B) lose all configuration
(including BARs) when transitioning from D3hot->D0. This leaves such
a device in an inaccessible state. The patch below causes the BARs
to be restored when enabling such a device, so that its driver will
be able to access it.
The patch also adds pci_restore_bars as a new global symbol, and adds a
correpsonding EXPORT_SYMBOL_GPL for that.
Some firmware (e.g. Thinkpad T21) leaves devices in D3hot after a
(re)boot. Most drivers call pci_enable_device very early, so devices
left in D3hot that lose configuration during the D3hot->D0 transition
will be inaccessible to their drivers.
Drivers could be modified to account for this, but it would
be difficult to know which drivers need modification. This is
especially true since often many devices are covered by the same
driver. It likely would be necessary to replicate code across dozens
of drivers.
The patch below should trigger only when transitioning from D3hot->D0
(or at boot), and only for devices that have the "no soft reset" bit
cleared in the PM control register. I believe it is safe to include
this patch as part of the PCI infrastructure.
The cleanest implementation of pci_restore_bars was to call
pci_update_resource. Unfortunately, that does not currently exist
for the sparc64 architecture. The patch below includes a null
implemenation of pci_update_resource for sparc64.
Some have expressed interest in making general use of the the
pci_restore_bars function, so that has been exported to GPL licensed
modules.
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The page->flags D-cache dirty state tracking depended upon
NR_CPUS being a power-of-2 via it's "NR_CPUS - 1" masking.
Fix that to use a fixed (256 - 1) mask as that is the limit
imposed by thread_info->cpu which is a "u8".
Finally, add a compile time check that NR_CPUS is not greater
than 256.
Signed-off-by: David S. Miller <davem@davemloft.net>
machine_restart, machine_halt and machine_power_off are machine
specific hooks deep into the reboot logic, that modules
have no business messing with. Usually code should be calling
kernel_restart, kernel_halt, kernel_power_off, or
emergency_restart. So don't export machine_restart,
machine_halt, and machine_power_off so we can catch buggy users.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
These two bits were accesses non-atomically from assembler
code. So, in order to eliminate any potential races resulting
from that, move these pieces of state into two bytes elsewhere
in struct thread_info.
Signed-off-by: David S. Miller <davem@davemloft.net>
It is only used by some localized code in irq.c, and also
delete enable_prom_timer() as that is totally unused.
Signed-off-by: David S. Miller <davem@davemloft.net>
arch/sparc64/kernel/smp.c:48: error: parse error before "__attribute__"
arch/sparc64/kernel/smp.c:49: error: parse error before "__attribute__"
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Create a new top-level menu named "Networking" thus moving
net related options and protocol selection way from the drivers
menu and up on the top-level where they belong.
To implement this all architectures has to source "net/Kconfig" before
drivers/*/Kconfig in their Kconfig file. This change has been
implemented for all architectures.
Device drivers for ordinary NIC's are still to be found
in the Device Drivers section, but Bluetooth, IrDA and ax25
are located with their corresponding menu entries under the new
networking menu item.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Also fix a bug in 32-bit syscall tracing. We forgot to update
this code when we moved over to the convention that all 32-bit
syscall arguments are zero extended by default.
Signed-off-by: David S. Miller <davem@davemloft.net>
The membar changes made the size of __cheetah_flush_tlb_pending
grow by one instruction, but the boot-time code patching was
not updated to match.
Signed-off-by: David S. Miller <davem@davemloft.net>
The following renames arch_init, a kprobes function for performing any
architecture specific initialization, to arch_init_kprobes in order to
cleanup the namespace.
Also, this patch adds arch_init_kprobes to sparc64 to fix the sparc64 kprobes
build from the last return probe patch.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Use macro instead of magic value for Tomatillo discard-
timeout interrupt enable register bit.
Leave OBP programming PTO value unless Tomatillo and
version >= 0x2.
If no-bus-parking property is present, explicitly clear
PCICTRL_PARK bit.
Signed-off-by: David S. Miller <davem@davemloft.net>
This was the main impetus behind adding the PCI IRQ shim.
In order to properly order DMA writes wrt. interrupts, you have to
write to a PCI controller register, then poll for that bit clearing.
There is one bit for each interrupt source, and setting this register
bit tells Tomatillo to drain all pending DMA from that device.
Furthermore, Tomatillo's with revision less than 4 require us to do a
block store due to some memory transaction ordering issues it has on
JBUS.
Signed-off-by: David S. Miller <davem@davemloft.net>
This allows a PCI controller to shim into IRQ delivery
so that DMA queues can be drained, if necessary.
If some bus specific code needs to run before an IRQ
handler is invoked, the bus driver simply needs to setup
the function pointer in bucket->irq_info->pre_handler and
the two args bucket->irq_info->pre_handler_arg[12].
The Schizo PCI driver is converted over to use a pre-handler
for the DMA write-sync processing it needs when a device
is behind a PCI->PCI bus deeper than the top-level APB
bridges.
While we're here, clean up all of the action allocation
and handling. Now, we allocate the irqaction as part of
the bucket->irq_info area. There is an array of 4 irqaction
(for PCI irq sharing) and a bitmask saying which entries
are active.
The bucket->irq_info is allocated at build_irq() time, not
at request_irq() time. This simplifies request_irq() and
free_irq() tremendously.
The SMP dynamic IRQ retargetting code got removed in this
change too. It was disabled for a few months now, and we
can resurrect it in the future if we want.
Signed-off-by: David S. Miller <davem@davemloft.net>
The following patch adds some ioctls to include/linux/compat_ioctl.h
to allow using ppdev from the 32 bit user space on sparc64.
This patch also adds the PPDEV option in the sparc64 menu, near Parallel
printer support in the 'General machine setup' submenu.
All those ioctls seem to be compatible, since (correct me if I'm wrong)
they dont use the 'long' type. See include/linux/ppdev.h.
The application I used to test the new ioctls only used the following:
PPEXCL
PPCLAIM
PPNEGOT
PPGETMODES
PPRCONTROL
PPWCONTROL
PPDATADIR
PPWDATA
PPRDATA
But I beleive that the other ioctls will work fine.
Signed-off-by: David S. Miller <davem@davemloft.net>
The only real user was the assembler floppy interrupt
handler, which does not need to be in assembly.
This makes it so that there are less pieces of code which
know about the internal layout of ivector_table[] and
friends.
Signed-off-by: David S. Miller <davem@davemloft.net>
In particular, avoid membar instructions in the delay
slot of a jmpl instruction.
UltraSPARC-I, II, IIi, and IIe have a bug, documented in
the UltraSPARC-IIi User's Manual, Appendix K, Erratum 51
The long and short of it is that if the IMU unit misses
on a branch or jmpl, and there is a store buffer synchronizing
membar in the delay slot, the chip can stop fetching instructions.
If interrupts are enabled or some other trap is enabled, the
chip will unwedge itself, but performance will suffer.
We already had a workaround for this bug in a few spots, but
it's better to have the entire tree sanitized for this rule.
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch is based on work by Carlos O'Donell and Matthew Wilcox. It
introduces/updates the compat_time_t type and uses it for compat siginfo
structures. I have built this on ppc64 and x86_64.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch includes sparc64 architecture specific changes to support temporary
disarming on reentrancy of probes.
Signed-of-by: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The architecture independent code of the current kprobes implementation is
arming and disarming kprobes at registration time. The problem is that the
code is assuming that arming and disarming is a just done by a simple write
of some magic value to an address. This is problematic for ia64 where our
instructions look more like structures, and we can not insert break points
by just doing something like:
*p->addr = BREAKPOINT_INSTRUCTION;
The following patch to 2.6.12-rc4-mm2 adds two new architecture dependent
functions:
* void arch_arm_kprobe(struct kprobe *p)
* void arch_disarm_kprobe(struct kprobe *p)
and then adds the new functions for each of the architectures that already
implement kprobes (spar64/ppc64/i386/x86_64).
I thought arch_[dis]arm_kprobe was the most descriptive of what was really
happening, but each of the architectures already had a disarm_kprobe()
function that was really a "disarm and do some other clean-up items as
needed when you stumble across a recursive kprobe." So... I took the
liberty of changing the code that was calling disarm_kprobe() to call
arch_disarm_kprobe(), and then do the cleanup in the block of code dealing
with the recursive kprobe case.
So far this patch as been tested on i386, x86_64, and ppc64, but still
needs to be tested in sparc64.
Signed-off-by: Rusty Lynch <rusty.lynch@intel.com>
Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
For all architectures, this just means that you'll see a "Memory Model"
choice in your architecture menu. For those that implement DISCONTIGMEM,
you may eventually want to make your ARCH_DISCONTIGMEM_ENABLE a "def_bool
y" and make your users select DISCONTIGMEM right out of the new choice
menu. The only disadvantage might be if you have some specific things that
you need in your help option to explain something about DISCONTIGMEM.
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Ingo recently introduced a great speedup for allocating new mmaps using the
free_area_cache pointer which boosts the specweb SSL benchmark by 4-5% and
causes huge performance increases in thread creation.
The downside of this patch is that it does lead to fragmentation in the
mmap-ed areas (visible via /proc/self/maps), such that some applications
that work fine under 2.4 kernels quickly run out of memory on any 2.6
kernel.
The problem is twofold:
1) the free_area_cache is used to continue a search for memory where
the last search ended. Before the change new areas were always
searched from the base address on.
So now new small areas are cluttering holes of all sizes
throughout the whole mmap-able region whereas before small holes
tended to close holes near the base leaving holes far from the base
large and available for larger requests.
2) the free_area_cache also is set to the location of the last
munmap-ed area so in scenarios where we allocate e.g. five regions of
1K each, then free regions 4 2 3 in this order the next request for 1K
will be placed in the position of the old region 3, whereas before we
appended it to the still active region 1, placing it at the location
of the old region 2. Before we had 1 free region of 2K, now we only
get two free regions of 1K -> fragmentation.
The patch addresses thes issues by introducing yet another cache descriptor
cached_hole_size that contains the largest known hole size below the
current free_area_cache. If a new request comes in the size is compared
against the cached_hole_size and if the request can be filled with a hole
below free_area_cache the search is started from the base instead.
The results look promising: Whereas 2.6.12-rc4 fragments quickly and my
(earlier posted) leakme.c test program terminates after 50000+ iterations
with 96 distinct and fragmented maps in /proc/self/maps it performs nicely
(as expected) with thread creation, Ingo's test_str02 with 20000 threads
requires 0.7s system time.
Taking out Ingo's patch (un-patch available per request) by basically
deleting all mentions of free_area_cache from the kernel and starting the
search for new memory always at the respective bases we observe: leakme
terminates successfully with 11 distinctive hardly fragmented areas in
/proc/self/maps but thread creating is gringdingly slow: 30+s(!) system
time for Ingo's test_str02 with 20000 threads.
Now - drumroll ;-) the appended patch works fine with leakme: it ends with
only 7 distinct areas in /proc/self/maps and also thread creation seems
sufficiently fast with 0.71s for 20000 threads.
Signed-off-by: Wolfgang Wander <wwc@rentec.com>
Credit-to: "Richard Purdie" <rpurdie@rpsys.net>
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu> (partly)
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
A lot of the code in arch/*/mm/hugetlbpage.c is quite similar. This patch
attempts to consolidate a lot of the code across the arch's, putting the
combined version in mm/hugetlb.c. There are a couple of uglyish hacks in
order to covert all the hugepage archs, but the result is a very large
reduction in the total amount of code. It also means things like hugepage
lazy allocation could be implemented in one place, instead of six.
Tested, at least a little, on ppc64, i386 and x86_64.
Notes:
- this patch changes the meaning of set_huge_pte() to be more
analagous to set_pte()
- does SH4 need s special huge_ptep_get_and_clear()??
Acked-by: William Lee Irwin <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch implements a number of smp_processor_id() cleanup ideas that
Arjan van de Ven and I came up with.
The previous __smp_processor_id/_smp_processor_id/smp_processor_id API
spaghetti was hard to follow both on the implementational and on the
usage side.
Some of the complexity arose from picking wrong names, some of the
complexity comes from the fact that not all architectures defined
__smp_processor_id.
In the new code, there are two externally visible symbols:
- smp_processor_id(): debug variant.
- raw_smp_processor_id(): nondebug variant. Replaces all existing
uses of _smp_processor_id() and __smp_processor_id(). Defined
by every SMP architecture in include/asm-*/smp.h.
There is one new internal symbol, dependent on DEBUG_PREEMPT:
- debug_smp_processor_id(): internal debug variant, mapped to
smp_processor_id().
Also, i moved debug_smp_processor_id() from lib/kernel_lock.c into a new
lib/smp_processor_id.c file. All related comments got updated and/or
clarified.
I have build/boot tested the following 8 .config combinations on x86:
{SMP,UP} x {PREEMPT,!PREEMPT} x {DEBUG_PREEMPT,!DEBUG_PREEMPT}
I have also build/boot tested x64 on UP/PREEMPT/DEBUG_PREEMPT. (Other
architectures are untested, but should work just fine.)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The initial peek read PIO of the match register is just a waste.
Just do the flush writes first, as that is more efficient.
Signed-off-by: David S. Miller <davem@davemloft.net>