1
Commit Graph

11 Commits

Author SHA1 Message Date
Christoph Lameter
4ba9b9d0ba Slab API: remove useless ctor parameter and reorder parameters
Slab constructors currently have a flags parameter that is never used.  And
the order of the arguments is opposite to other slab functions.  The object
pointer is placed before the kmem_cache pointer.

Convert

        ctor(void *object, struct kmem_cache *s, unsigned long flags)

to

        ctor(struct kmem_cache *s, void *object)

throughout the kernel

[akpm@linux-foundation.org: coupla fixes]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:42:45 -07:00
Paul Mundt
20c2df83d2 mm: Remove slab destructors from kmem_cache_create().
Slab destructors were no longer supported after Christoph's
c59def9f22 change. They've been
BUGs for both slab and slub, and slob never supported them
either.

This rips out support for the dtor pointer from kmem_cache_create()
completely and fixes up every single callsite in the kernel (there were
about 224, not including the slab allocator definitions themselves,
or the documentation references).

Signed-off-by: Paul Mundt <lethal@linux-sh.org>
2007-07-20 10:11:58 +09:00
Christoph Lameter
a35afb830f Remove SLAB_CTOR_CONSTRUCTOR
SLAB_CTOR_CONSTRUCTOR is always specified. No point in checking it.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Steven French <sfrench@us.ibm.com>
Cc: Michael Halcrow <mhalcrow@us.ibm.com>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Dave Kleikamp <shaggy@austin.ibm.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Anton Altaparmakov <aia21@cantab.net>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@ucw.cz>
Cc: David Chinner <dgc@sgi.com>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-17 05:23:04 -07:00
Christoph Lameter
50953fe9e0 slab allocators: Remove SLAB_DEBUG_INITIAL flag
I have never seen a use of SLAB_DEBUG_INITIAL.  It is only supported by
SLAB.

I think its purpose was to have a callback after an object has been freed
to verify that the state is the constructor state again?  The callback is
performed before each freeing of an object.

I would think that it is much easier to check the object state manually
before the free.  That also places the check near the code object
manipulation of the object.

Also the SLAB_DEBUG_INITIAL callback is only performed if the kernel was
compiled with SLAB debugging on.  If there would be code in a constructor
handling SLAB_DEBUG_INITIAL then it would have to be conditional on
SLAB_DEBUG otherwise it would just be dead code.  But there is no such code
in the kernel.  I think SLUB_DEBUG_INITIAL is too problematic to make real
use of, difficult to understand and there are easier ways to accomplish the
same effect (i.e.  add debug code before kfree).

There is a related flag SLAB_CTOR_VERIFY that is frequently checked to be
clear in fs inode caches.  Remove the pointless checks (they would even be
pointless without removeal of SLAB_DEBUG_INITIAL) from the fs constructors.

This is the last slab flag that SLUB did not support.  Remove the check for
unimplemented flags from SLUB.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 12:12:57 -07:00
Christoph Lameter
e18b890bb0 [PATCH] slab: remove kmem_cache_t
Replace all uses of kmem_cache_t with struct kmem_cache.

The patch was generated using the following script:

	#!/bin/sh
	#
	# Replace one string by another in all the kernel sources.
	#

	set -e

	for file in `find * -name "*.c" -o -name "*.h"|xargs grep -l $1`; do
		quilt add $file
		sed -e "1,\$s/$1/$2/g" $file >/tmp/$$
		mv /tmp/$$ $file
		quilt refresh
	done

The script was run like this

	sh replace kmem_cache_t "struct kmem_cache"

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 08:39:25 -08:00
Christoph Lameter
e94b176609 [PATCH] slab: remove SLAB_KERNEL
SLAB_KERNEL is an alias of GFP_KERNEL.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 08:39:24 -08:00
Alexey Dobriyan
1a1d92c10d [PATCH] Really ignore kmem_cache_destroy return value
* Rougly half of callers already do it by not checking return value
* Code in drivers/acpi/osl.c does the following to be sure:

	(void)kmem_cache_destroy(cache);

* Those who check it printk something, however, slab_error already printed
  the name of failed cache.
* XFS BUGs on failed kmem_cache_destroy which is not the decision
  low-level filesystem driver should make. Converted to ignore.

Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 08:26:10 -07:00
Paul Jackson
4b6a9316fa [PATCH] cpuset memory spread: slab cache filesystems
Mark file system inode and similar slab caches subject to SLAB_MEM_SPREAD
memory spreading.

If a slab cache is marked SLAB_MEM_SPREAD, then anytime that a task that's
in a cpuset with the 'memory_spread_slab' option enabled goes to allocate
from such a slab cache, the allocations are spread evenly over all the
memory nodes (task->mems_allowed) allowed to that task, instead of favoring
allocation on the node local to the current cpu.

The following inode and similar caches are marked SLAB_MEM_SPREAD:

    file                               cache
    ====                               =====
    fs/adfs/super.c                    adfs_inode_cache
    fs/affs/super.c                    affs_inode_cache
    fs/befs/linuxvfs.c                 befs_inode_cache
    fs/bfs/inode.c                     bfs_inode_cache
    fs/block_dev.c                     bdev_cache
    fs/cifs/cifsfs.c                   cifs_inode_cache
    fs/coda/inode.c                    coda_inode_cache
    fs/dquot.c                         dquot
    fs/efs/super.c                     efs_inode_cache
    fs/ext2/super.c                    ext2_inode_cache
    fs/ext2/xattr.c (fs/mbcache.c)     ext2_xattr
    fs/ext3/super.c                    ext3_inode_cache
    fs/ext3/xattr.c (fs/mbcache.c)     ext3_xattr
    fs/fat/cache.c                     fat_cache
    fs/fat/inode.c                     fat_inode_cache
    fs/freevxfs/vxfs_super.c           vxfs_inode
    fs/hpfs/super.c                    hpfs_inode_cache
    fs/isofs/inode.c                   isofs_inode_cache
    fs/jffs/inode-v23.c                jffs_fm
    fs/jffs2/super.c                   jffs2_i
    fs/jfs/super.c                     jfs_ip
    fs/minix/inode.c                   minix_inode_cache
    fs/ncpfs/inode.c                   ncp_inode_cache
    fs/nfs/direct.c                    nfs_direct_cache
    fs/nfs/inode.c                     nfs_inode_cache
    fs/ntfs/super.c                    ntfs_big_inode_cache_name
    fs/ntfs/super.c                    ntfs_inode_cache
    fs/ocfs2/dlm/dlmfs.c               dlmfs_inode_cache
    fs/ocfs2/super.c                   ocfs2_inode_cache
    fs/proc/inode.c                    proc_inode_cache
    fs/qnx4/inode.c                    qnx4_inode_cache
    fs/reiserfs/super.c                reiser_inode_cache
    fs/romfs/inode.c                   romfs_inode_cache
    fs/smbfs/inode.c                   smb_inode_cache
    fs/sysv/inode.c                    sysv_inode_cache
    fs/udf/super.c                     udf_inode_cache
    fs/ufs/super.c                     ufs_inode_cache
    net/socket.c                       sock_inode_cache
    net/sunrpc/rpc_pipe.c              rpc_inode_cache

The choice of which slab caches to so mark was quite simple.  I marked
those already marked SLAB_RECLAIM_ACCOUNT, except for fs/xfs, dentry_cache,
inode_cache, and buffer_head, which were marked in a previous patch.  Even
though SLAB_RECLAIM_ACCOUNT is for a different purpose, it marks the same
potentially large file system i/o related slab caches as we need for memory
spreading.

Given that the rule now becomes "wherever you would have used a
SLAB_RECLAIM_ACCOUNT slab cache flag before (usually the inode cache), use
the SLAB_MEM_SPREAD flag too", this should be easy enough to maintain.
Future file system writers will just copy one of the existing file system
slab cache setups and tend to get it right without thinking.

Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-24 07:33:23 -08:00
OGAWA Hirofumi
e5174baaea [PATCH] fat: support ->direct_IO()
This patch add to support of ->direct_IO() for mostly read.

The user of this seems to want to use for streaming read.  So, current direct
I/O has limitation, it can only overwrite.  (For write operation, mainly we
need to handle the hole etc..)

Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 20:13:46 -08:00
Andrew Morton
ef6689eff4 [PATCH] fatfs sectioning fix
Fixup for the recent slab leak fix

Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-30 22:29:48 -07:00
Linus Torvalds
1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00