1
Commit Graph

142 Commits

Author SHA1 Message Date
Thomas Gleixner
d94d71cb45 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 266
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 as
  published by the free software foundation this program is
  distributed in the hope that it will be useful but without any
  warranty without even the implied warranty of merchantability or
  fitness for a particular purpose see the gnu general public license
  for more details you should have received a copy of the gnu general
  public license along with this program if not write to the free
  software foundation 51 franklin street fifth floor boston ma 02110
  1301 usa

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 67 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141333.953658117@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-05 17:30:28 +02:00
Paul Mackerras
0d4ee88d92 KVM: PPC: Book3S HV: Use new mutex to synchronize MMU setup
Currently the HV KVM code uses kvm->lock in conjunction with a flag,
kvm->arch.mmu_ready, to synchronize MMU setup and hold off vcpu
execution until the MMU-related data structures are ready.  However,
this means that kvm->lock is being taken inside vcpu->mutex, which
is contrary to Documentation/virtual/kvm/locking.txt and results in
lockdep warnings.

To fix this, we add a new mutex, kvm->arch.mmu_setup_lock, which nests
inside the vcpu mutexes, and is taken in the places where kvm->lock
was taken that are related to MMU setup.

Additionally we take the new mutex in the vcpu creation code at the
point where we are creating a new vcore, in order to provide mutual
exclusion with kvmppc_update_lpcr() and ensure that an update to
kvm->arch.lpcr doesn't get missed, which could otherwise lead to a
stale vcore->lpcr value.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-05-29 13:44:36 +10:00
Ira Weiny
73b0140bf0 mm/gup: change GUP fast to use flags rather than a write 'bool'
To facilitate additional options to get_user_pages_fast() change the
singular write parameter to be gup_flags.

This patch does not change any functionality.  New functionality will
follow in subsequent patches.

Some of the get_user_pages_fast() call sites were unchanged because they
already passed FOLL_WRITE or 0 for the write parameter.

NOTE: It was suggested to change the ordering of the get_user_pages_fast()
arguments to ensure that callers were converted.  This breaks the current
GUP call site convention of having the returned pages be the final
parameter.  So the suggestion was rejected.

Link: http://lkml.kernel.org/r/20190328084422.29911-4-ira.weiny@intel.com
Link: http://lkml.kernel.org/r/20190317183438.2057-4-ira.weiny@intel.com
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Mike Marshall <hubcap@omnibond.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:46 -07:00
Suraj Jitindar Singh
1b6422574e KVM: PPC: Book3S HV: Optimise mmio emulation for devices on FAST_MMIO_BUS
Devices on the KVM_FAST_MMIO_BUS by definition have length zero and are
thus used for notification purposes rather than data transfer. For
example eventfd for virtio devices.

This means that when emulating mmio instructions which target devices on
this bus we can immediately handle them and return without needing to load
the instruction from guest memory.

For now we restrict this to stores as this is the only use case at
present.

For a normal guest the effect is negligible, however for a nested guest
we save on the order of 5us per access.

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-02-19 16:00:15 +11:00
Linus Torvalds
96d4f267e4 Remove 'type' argument from access_ok() function
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument
of the user address range verification function since we got rid of the
old racy i386-only code to walk page tables by hand.

It existed because the original 80386 would not honor the write protect
bit when in kernel mode, so you had to do COW by hand before doing any
user access.  But we haven't supported that in a long time, and these
days the 'type' argument is a purely historical artifact.

A discussion about extending 'user_access_begin()' to do the range
checking resulted this patch, because there is no way we're going to
move the old VERIFY_xyz interface to that model.  And it's best done at
the end of the merge window when I've done most of my merges, so let's
just get this done once and for all.

This patch was mostly done with a sed-script, with manual fix-ups for
the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form.

There were a couple of notable cases:

 - csky still had the old "verify_area()" name as an alias.

 - the iter_iov code had magical hardcoded knowledge of the actual
   values of VERIFY_{READ,WRITE} (not that they mattered, since nothing
   really used it)

 - microblaze used the type argument for a debug printout

but other than those oddities this should be a total no-op patch.

I tried to fix up all architectures, did fairly extensive grepping for
access_ok() uses, and the changes are trivial, but I may have missed
something.  Any missed conversion should be trivially fixable, though.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-03 18:57:57 -08:00
Paul Mackerras
5af3e9d06d KVM: PPC: Book3S HV: Flush guest mappings when turning dirty tracking on/off
This adds code to flush the partition-scoped page tables for a radix
guest when dirty tracking is turned on or off for a memslot.  Only the
guest real addresses covered by the memslot are flushed.  The reason
for this is to get rid of any 2M PTEs in the partition-scoped page
tables that correspond to host transparent huge pages, so that page
dirtiness is tracked at a system page (4k or 64k) granularity rather
than a 2M granularity.  The page tables are also flushed when turning
dirty tracking off so that the memslot's address space can be
repopulated with THPs if possible.

To do this, we add a new function kvmppc_radix_flush_memslot().  Since
this does what's needed for kvmppc_core_flush_memslot_hv() on a radix
guest, we now make kvmppc_core_flush_memslot_hv() call the new
kvmppc_radix_flush_memslot() rather than calling kvm_unmap_radix()
for each page in the memslot.  This has the effect of fixing a bug in
that kvmppc_core_flush_memslot_hv() was previously calling
kvm_unmap_radix() without holding the kvm->mmu_lock spinlock, which
is required to be held.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-12-17 10:58:51 +11:00
Paul Mackerras
234ff0b729 KVM: PPC: Book3S HV: Fix race between kvm_unmap_hva_range and MMU mode switch
Testing has revealed an occasional crash which appears to be caused
by a race between kvmppc_switch_mmu_to_hpt and kvm_unmap_hva_range_hv.
The symptom is a NULL pointer dereference in __find_linux_pte() called
from kvm_unmap_radix() with kvm->arch.pgtable == NULL.

Looking at kvmppc_switch_mmu_to_hpt(), it does indeed clear
kvm->arch.pgtable (via kvmppc_free_radix()) before setting
kvm->arch.radix to NULL, and there is nothing to prevent
kvm_unmap_hva_range_hv() or the other MMU callback functions from
being called concurrently with kvmppc_switch_mmu_to_hpt() or
kvmppc_switch_mmu_to_radix().

This patch therefore adds calls to spin_lock/unlock on the kvm->mmu_lock
around the assignments to kvm->arch.radix, and makes sure that the
partition-scoped radix tree or HPT is only freed after changing
kvm->arch.radix.

This also takes the kvm->mmu_lock in kvmppc_rmap_reset() to make sure
that the clearing of each rmap array (one per memslot) doesn't happen
concurrently with use of the array in the kvm_unmap_hva_range_hv()
or the other MMU callbacks.

Fixes: 18c3640cef ("KVM: PPC: Book3S HV: Add infrastructure for running HPT guests on radix host")
Cc: stable@vger.kernel.org # v4.15+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-12-14 15:33:15 +11:00
Paul Mackerras
f3c99f97a3 KVM: PPC: Book3S HV: Don't access HFSCR, LPIDR or LPCR when running nested
When running as a nested hypervisor, this avoids reading hypervisor
privileged registers (specifically HFSCR, LPIDR and LPCR) at startup;
instead reasonable default values are used.  This also avoids writing
LPIDR in the single-vcpu entry/exit path.

Also, this removes the check for CPU_FTR_HVMODE in kvmppc_mmu_hv_init()
since its only caller already checks this.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Radim Krčmář
732b53146a PPC KVM fixes for 4.19
Two small fixes for KVM on POWER machines; one fixes a bug where pages
 might not get marked dirty, causing guest memory corruption on migration,
 and the other fixes a bug causing reads from guest memory to use the
 wrong guest real address for very large HPT guests (>256G of memory),
 leading to failures in instruction emulation.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQEcBAABCAAGBQJbfVFcAAoJEJ2a6ncsY3GfwAcH/i4BDNm5bSXLbCZv1Zqc9iWM
 ZqCNSlx9fuR5z+Bl3FWvm14CqfG7JFMd1pVXVD3AEGN6nv0mtLPotmoaw+BUWXIP
 aD3BRIBSfOVHj90CiWJ1pqZGzE49vAKrjUGocuqHhBiqGjYmnnE7QKgD+lQ13SND
 LWDV3XaQgoO9+NZdqtV6hsWMmKCmXWIHykkG9H+EVkD+341e2EBQf6r83qibAGz4
 U5SHkr/3JqL8oC7RJixT8CS/dV5qCgmuL8Vs5NYDTUnc6DmKhdes2s7OiugK7nHg
 twKe8K0aRVowmTA8yIwEN22OeH1FAUmYDClkgHozHFWyD2+u7O9kLrAYZxEN9Q4=
 =61nR
 -----END PGP SIGNATURE-----

Merge tag 'kvm-ppc-fixes-4.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc

PPC KVM fixes for 4.19

Two small fixes for KVM on POWER machines; one fixes a bug where pages
might not get marked dirty, causing guest memory corruption on migration,
and the other fixes a bug causing reads from guest memory to use the
wrong guest real address for very large HPT guests (>256G of memory),
leading to failures in instruction emulation.
2018-09-04 21:12:46 +02:00
Paul Mackerras
46dec40fb7 KVM: PPC: Book3S HV: Don't truncate HPTE index in xlate function
This fixes a bug which causes guest virtual addresses to get translated
to guest real addresses incorrectly when the guest is using the HPT MMU
and has more than 256GB of RAM, or more specifically has a HPT larger
than 2GB.  This has showed up in testing as a failure of the host to
emulate doorbell instructions correctly on POWER9 for HPT guests with
more than 256GB of RAM.

The bug is that the HPTE index in kvmppc_mmu_book3s_64_hv_xlate()
is stored as an int, and in forming the HPTE address, the index gets
shifted left 4 bits as an int before being signed-extended to 64 bits.
The simple fix is to make the variable a long int, matching the
return type of kvmppc_hv_find_lock_hpte(), which is what calculates
the index.

Fixes: 697d3899dc ("KVM: PPC: Implement MMIO emulation support for Book3S HV guests")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-08-20 16:05:45 +10:00
Christophe Leroy
45ef5992e0 powerpc: remove unnecessary inclusion of asm/tlbflush.h
asm/tlbflush.h is only needed for:
- using functions xxx_flush_tlb_xxx()
- using MMU_NO_CONTEXT
- including asm-generic/pgtable.h

Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-07-30 22:48:20 +10:00
Paolo Bonzini
09027ab73b Merge tag 'kvm-ppc-next-4.18-2' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into HEAD 2018-06-14 17:42:54 +02:00
Kees Cook
42bc47b353 treewide: Use array_size() in vmalloc()
The vmalloc() function has no 2-factor argument form, so multiplication
factors need to be wrapped in array_size(). This patch replaces cases of:

        vmalloc(a * b)

with:
        vmalloc(array_size(a, b))

as well as handling cases of:

        vmalloc(a * b * c)

with:

        vmalloc(array3_size(a, b, c))

This does, however, attempt to ignore constant size factors like:

        vmalloc(4 * 1024)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  vmalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  vmalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  vmalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
  vmalloc(
-	sizeof(TYPE) * (COUNT_ID)
+	array_size(COUNT_ID, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT_ID
+	array_size(COUNT_ID, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * (COUNT_CONST)
+	array_size(COUNT_CONST, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT_CONST
+	array_size(COUNT_CONST, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT_ID)
+	array_size(COUNT_ID, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT_ID
+	array_size(COUNT_ID, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT_CONST)
+	array_size(COUNT_CONST, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT_CONST
+	array_size(COUNT_CONST, sizeof(THING))
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

  vmalloc(
-	SIZE * COUNT
+	array_size(COUNT, SIZE)
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  vmalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  vmalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  vmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  vmalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  vmalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  vmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  vmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  vmalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  vmalloc(C1 * C2 * C3, ...)
|
  vmalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants.
@@
expression E1, E2;
constant C1, C2;
@@

(
  vmalloc(C1 * C2, ...)
|
  vmalloc(
-	E1 * E2
+	array_size(E1, E2)
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00
Nicholas Piggin
b755745147 KVM: PPC: Book3S HV: Lockless tlbie for HPT hcalls
tlbies to an LPAR do not have to be serialised since POWER4/PPC970,
after which the MMU_FTR_LOCKLESS_TLBIE feature was introduced to
avoid tlbie locking.

Since commit c17b98cf60 ("KVM: PPC: Book3S HV: Remove code for
PPC970 processors"), KVM no longer supports processors that do not
have this feature, so the tlbie locking can be removed completely.
A sanity check for the feature is put in kvmppc_mmu_hv_init.

Testing was done on a POWER9 system in HPT mode, with a -smp 32 guest
in HPT mode. 32 instances of the powerpc fork benchmark from selftests
were run with --fork, and the results measured.

Without this patch, total throughput was about 13.5K/sec, and this is
the top of the host profile:

   74.52%  [k] do_tlbies
    2.95%  [k] kvmppc_book3s_hv_page_fault
    1.80%  [k] calc_checksum
    1.80%  [k] kvmppc_vcpu_run_hv
    1.49%  [k] kvmppc_run_core

After this patch, throughput was about 51K/sec, with this profile:

   21.28%  [k] do_tlbies
    5.26%  [k] kvmppc_run_core
    4.88%  [k] kvmppc_book3s_hv_page_fault
    3.30%  [k] _raw_spin_lock_irqsave
    3.25%  [k] gup_pgd_range

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-05-18 15:38:23 +10:00
Paul Mackerras
39c983ea0f KVM: PPC: Remove unused kvm_unmap_hva callback
Since commit fb1522e099 ("KVM: update to new mmu_notifier semantic
v2", 2017-08-31), the MMU notifier code in KVM no longer calls the
kvm_unmap_hva callback.  This removes the PPC implementations of
kvm_unmap_hva().

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-03-19 10:08:29 +11:00
Radim Krčmář
1ab03c072f Second PPC KVM update for 4.16
Seven fixes that are either trivial or that address bugs that people
 are actually hitting.  The main ones are:
 
 - Drop spinlocks before reading guest memory
 
 - Fix a bug causing corruption of VCPU state in PR KVM with preemption
   enabled
 
 - Make HPT resizing work on POWER9
 
 - Add MMIO emulation for vector loads and stores, because guests now
   use these instructions in memcpy and similar routines.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABAgAGBQJafWn0AAoJEJ2a6ncsY3GfaMsIANF0hQD8SS78WNKnoy0vnZ/X
 PUXdjwHEsfkg5KdQ7o0oaa2BJHHqO3vozddmMiG14r2L1mNCHJpnVZCVV0GaEJcZ
 eU8++OPK6yrsPNNpAjnrtQ0Vk4LwzoT0bftEjS3TtLt1s2uSo+R1+HLmxbxGhQUX
 bZngo9wQ3cjUfAXLrPtAVhE5wTmgVOiufVRyfRsBRdFzRsAWqjY4hBtJAfwdff4r
 AA5H0RCrXO6e1feKr5ElU8KzX6b7IjH9Xu868oJ1r16zZfE05PBl1X5n4XG7XDm7
 xWvs8uLAB7iRv2o/ecFznYJ+Dz1NCBVzD0RmAUTqPCcVKDrxixaTkqMPFW97IAA=
 =HOJR
 -----END PGP SIGNATURE-----

Merge tag 'kvm-ppc-next-4.16-2' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc

Second PPC KVM update for 4.16

Seven fixes that are either trivial or that address bugs that people
are actually hitting.  The main ones are:

- Drop spinlocks before reading guest memory

- Fix a bug causing corruption of VCPU state in PR KVM with preemption
  enabled

- Make HPT resizing work on POWER9

- Add MMIO emulation for vector loads and stores, because guests now
  use these instructions in memcpy and similar routines.
2018-02-09 22:03:06 +01:00
David Gibson
790a9df5fb KVM: PPC: Book3S HV: Make HPT resizing work on POWER9
This adds code to enable the HPT resizing code to work on POWER9,
which uses a slightly modified HPT entry format compared to POWER8.
On POWER9, we convert HPTEs read from the HPT from the new format to
the old format so that the rest of the HPT resizing code can work as
before.  HPTEs written to the new HPT are converted to the new format
as the last step before writing them into the new HPT.

This takes out the checks added by commit bcd3bb63db ("KVM: PPC:
Book3S HV: Disable HPT resizing on POWER9 for now", 2017-02-18),
now that HPT resizing works on POWER9.

On POWER9, when we pivot to the new HPT, we now call
kvmppc_setup_partition_table() to update the partition table in order
to make the hardware use the new HPT.

[paulus@ozlabs.org - added kvmppc_setup_partition_table() call,
 wrote commit message.]

Tested-by: Laurent Vivier <lvivier@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-02-09 15:36:36 +11:00
Paul Mackerras
05f2bb0313 KVM: PPC: Book3S HV: Fix handling of secondary HPTEG in HPT resizing code
This fixes the computation of the HPTE index to use when the HPT
resizing code encounters a bolted HPTE which is stored in its
secondary HPTE group.  The code inverts the HPTE group number, which
is correct, but doesn't then mask it with new_hash_mask.  As a result,
new_pteg will be effectively negative, resulting in new_hptep
pointing before the new HPT, which will corrupt memory.

In addition, this removes two BUG_ON statements.  The condition that
the BUG_ONs were testing -- that we have computed the hash value
incorrectly -- has never been observed in testing, and if it did
occur, would only affect the guest, not the host.  Given that
BUG_ON should only be used in conditions where the kernel (i.e.
the host kernel, in this case) can't possibly continue execution,
it is not appropriate here.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-02-09 15:35:24 +11:00
David Gibson
ecba8297aa KVM: PPC: Book3S HV: Always flush TLB in kvmppc_alloc_reset_hpt()
The KVM_PPC_ALLOCATE_HTAB ioctl(), implemented by kvmppc_alloc_reset_hpt()
is supposed to completely clear and reset a guest's Hashed Page Table (HPT)
allocating or re-allocating it if necessary.

In the case where an HPT of the right size already exists and it just
zeroes it, it forces a TLB flush on all guest CPUs, to remove any stale TLB
entries loaded from the old HPT.

However, that situation can arise when the HPT is resizing as well - or
even when switching from an RPT to HPT - so those cases need a TLB flush as
well.

So, move the TLB flush to trigger in all cases except for errors.

Cc: stable@vger.kernel.org # v4.10+
Fixes: f98a8bf9ee ("KVM: PPC: Book3S HV: Allow KVM_PPC_ALLOCATE_HTAB ioctl() to change HPT size")
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-01-10 20:45:41 +11:00
Serhii Popovych
4ed11aeefd KVM: PPC: Book3S HV: Fix use after free in case of multiple resize requests
When serving multiple resize requests following could happen:

    CPU0                                    CPU1
    ----                                    ----
    kvm_vm_ioctl_resize_hpt_prepare(1);
      -> schedule_work()
                                            /* system_rq might be busy: delay */
    kvm_vm_ioctl_resize_hpt_prepare(2);
      mutex_lock();
      if (resize) {
         ...
         release_hpt_resize();
      }
      ...                                   resize_hpt_prepare_work()
      -> schedule_work()                    {
      mutex_unlock()                           /* resize->kvm could be wrong */
                                               struct kvm *kvm = resize->kvm;

                                               mutex_lock(&kvm->lock);   <<<< UAF
                                               ...
                                            }

i.e. a second resize request with different order could be started by
kvm_vm_ioctl_resize_hpt_prepare(), causing the previous request to be
free()d when there's still an active worker thread which will try to
access it.  This leads to a use after free in point marked with UAF on
the diagram above.

To prevent this from happening, instead of unconditionally releasing a
pre-existing resize structure from the prepare ioctl(), we check if
the existing structure has an in-progress worker.  We do that by
checking if the resize->error == -EBUSY, which is safe because the
resize->error field is protected by the kvm->lock.  If there is an
active worker, instead of releasing, we mark the structure as stale by
unlinking it from kvm_struct.

In the worker thread we check for a stale structure (with kvm->lock
held), and in that case abort, releasing the stale structure ourself.
We make the check both before and the actual allocation.  Strictly,
only the check afterwards is needed, the check before is an
optimization: if the structure happens to become stale before the
worker thread is dispatched, rather than during the allocation, it
means we can avoid allocating then immediately freeing a potentially
substantial amount of memory.

This fixes following or similar host kernel crash message:

[  635.277361] Unable to handle kernel paging request for data at address 0x00000000
[  635.277438] Faulting instruction address: 0xc00000000052f568
[  635.277446] Oops: Kernel access of bad area, sig: 11 [#1]
[  635.277451] SMP NR_CPUS=2048 NUMA PowerNV
[  635.277470] Modules linked in: xt_CHECKSUM iptable_mangle ipt_MASQUERADE
nf_nat_masquerade_ipv4 iptable_nat nf_nat_ipv4 nf_nat nf_conntrack_ipv4
nf_defrag_ipv4 xt_conntrack nf_conntrack ipt_REJECT nf_reject_ipv4 tun bridge stp llc
ebtable_filter ebtables ip6table_filter ip6_tables iptable_filter nfsv3 nfs_acl nfs
lockd grace fscache kvm_hv kvm rpcrdma sunrpc ib_isert iscsi_target_mod ib_iser libiscsi
scsi_transport_iscsi ib_srpt target_core_mod ext4 ib_srp scsi_transport_srp
ib_ipoib mbcache jbd2 rdma_ucm ib_ucm ib_uverbs ib_umad rdma_cm ib_cm iw_cm ocrdma(T)
ib_core ses enclosure scsi_transport_sas sg shpchp leds_powernv ibmpowernv i2c_opal
i2c_core powernv_rng ipmi_powernv ipmi_devintf ipmi_msghandler ip_tables xfs
libcrc32c sr_mod sd_mod cdrom lpfc nvme_fc(T) nvme_fabrics nvme_core ipr nvmet_fc(T)
tg3 nvmet libata be2net crc_t10dif crct10dif_generic scsi_transport_fc ptp scsi_tgt
pps_core crct10dif_common dm_mirror dm_region_hash dm_log dm_mod
[  635.278687] CPU: 40 PID: 749 Comm: kworker/40:1 Tainted: G
------------ T 3.10.0.bz1510771+ #1
[  635.278782] Workqueue: events resize_hpt_prepare_work [kvm_hv]
[  635.278851] task: c0000007e6840000 ti: c0000007e9180000 task.ti: c0000007e9180000
[  635.278919] NIP: c00000000052f568 LR: c0000000009ea310 CTR: c0000000009ea4f0
[  635.278988] REGS: c0000007e91837f0 TRAP: 0300   Tainted: G
------------ T  (3.10.0.bz1510771+)
[  635.279077] MSR: 9000000100009033 <SF,HV,EE,ME,IR,DR,RI,LE>  CR: 24002022  XER:
00000000
[  635.279248] CFAR: c000000000009368 DAR: 0000000000000000 DSISR: 40000000 SOFTE: 1
GPR00: c0000000009ea310 c0000007e9183a70 c000000001250b00 c0000007e9183b10
GPR04: 0000000000000000 0000000000000000 c0000007e9183650 0000000000000000
GPR08: c0000007ffff7b80 00000000ffffffff 0000000080000028 d00000000d2529a0
GPR12: 0000000000002200 c000000007b56800 c000000000120028 c0000007f135bb40
GPR16: 0000000000000000 c000000005c1e018 c000000005c1e018 0000000000000000
GPR20: 0000000000000001 c0000000011bf778 0000000000000001 fffffffffffffef7
GPR24: 0000000000000000 c000000f1e262e50 0000000000000002 c0000007e9180000
GPR28: c000000f1e262e4c c000000f1e262e50 0000000000000000 c0000007e9183b10
[  635.280149] NIP [c00000000052f568] __list_add+0x38/0x110
[  635.280197] LR [c0000000009ea310] __mutex_lock_slowpath+0xe0/0x2c0
[  635.280253] Call Trace:
[  635.280277] [c0000007e9183af0] [c0000000009ea310] __mutex_lock_slowpath+0xe0/0x2c0
[  635.280356] [c0000007e9183b70] [c0000000009ea554] mutex_lock+0x64/0x70
[  635.280426] [c0000007e9183ba0] [d00000000d24da04]
resize_hpt_prepare_work+0xe4/0x1c0 [kvm_hv]
[  635.280507] [c0000007e9183c40] [c000000000113c0c] process_one_work+0x1dc/0x680
[  635.280587] [c0000007e9183ce0] [c000000000114250] worker_thread+0x1a0/0x520
[  635.280655] [c0000007e9183d80] [c00000000012010c] kthread+0xec/0x100
[  635.280724] [c0000007e9183e30] [c00000000000a4b8] ret_from_kernel_thread+0x5c/0xa4
[  635.280814] Instruction dump:
[  635.280880] 7c0802a6 fba1ffe8 fbc1fff0 7cbd2b78 fbe1fff8 7c9e2378 7c7f1b78
f8010010
[  635.281099] f821ff81 e8a50008 7fa52040 40de00b8 <e8be0000> 7fbd2840 40de008c
7fbff040
[  635.281324] ---[ end trace b628b73449719b9d ]---

Cc: stable@vger.kernel.org # v4.10+
Fixes: b5baa68773 ("KVM: PPC: Book3S HV: KVM-HV HPT resizing implementation")
Signed-off-by: Serhii Popovych <spopovyc@redhat.com>
[dwg: Replaced BUG_ON()s with WARN_ONs() and reworded commit message
 for clarity]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-12-06 13:36:22 +11:00
Serhii Popovych
3073774e63 KVM: PPC: Book3S HV: Drop prepare_done from struct kvm_resize_hpt
Currently the kvm_resize_hpt structure has two fields relevant to the
state of an ongoing resize: 'prepare_done', which indicates whether
the worker thread has completed or not, and 'error' which indicates
whether it was successful or not.

Since the success/failure isn't known until completion, this is
confusingly redundant.  This patch consolidates the information into
just the 'error' value: -EBUSY indicates the worked is still in
progress, other negative values indicate (completed) failure, 0
indicates successful completion.

As a bonus this reduces size of struct kvm_resize_hpt by
__alignof__(struct kvm_hpt_info) and saves few bytes of code.

While there correct comment in struct kvm_resize_hpt which references
a non-existent semaphore (leftover from an early draft).

Assert with WARN_ON() in case of HPT allocation thread work runs more
than once for resize request or resize_hpt_allocate() returns -EBUSY
that is treated specially.

Change comparison against zero to make checkpatch.pl happy.

Cc: stable@vger.kernel.org # v4.10+
Signed-off-by: Serhii Popovych <spopovyc@redhat.com>
[dwg: Changed BUG_ON()s to WARN_ON()s and altered commit message for
 clarity]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-12-06 13:35:21 +11:00
Paul Mackerras
ded13fc11b KVM: PPC: Book3S HV: Fix migration and HPT resizing of HPT guests on radix hosts
This fixes two errors that prevent a guest using the HPT MMU from
successfully migrating to a POWER9 host in radix MMU mode, or resizing
its HPT when running on a radix host.

The first bug was that commit 8dc6cca556 ("KVM: PPC: Book3S HV:
Don't rely on host's page size information", 2017-09-11) missed two
uses of hpte_base_page_size(), one in the HPT rehashing code and
one in kvm_htab_write() (which is used on the destination side in
migrating a HPT guest).  Instead we use kvmppc_hpte_base_page_shift().
Having the shift count means that we can use left and right shifts
instead of multiplication and division in a few places.

Along the way, this adds a check in kvm_htab_write() to ensure that the
page size encoding in the incoming HPTEs is recognized, and if not
return an EINVAL error to userspace.

The second bug was that kvm_htab_write was performing some but not all
of the functions of kvmhv_setup_mmu(), resulting in the destination VM
being left in radix mode as far as the hardware is concerned.  The
simplest fix for now is make kvm_htab_write() call
kvmppc_setup_partition_table() like kvmppc_hv_setup_htab_rma() does.
In future it would be better to refactor the code more extensively
to remove the duplication.

Fixes: 8dc6cca556 ("KVM: PPC: Book3S HV: Don't rely on host's page size information")
Fixes: 7a84084c60 ("KVM: PPC: Book3S HV: Set partition table rather than SDR1 on POWER9")
Reported-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Tested-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-11-23 14:17:54 +11:00
Paul Mackerras
072df8130c Merge branch 'kvm-ppc-fixes' into kvm-ppc-next
This merges in a couple of fixes from the kvm-ppc-fixes branch that
modify the same areas of code as some commits from the kvm-ppc-next
branch, in order to resolve the conflicts.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-11-09 14:30:24 +11:00
Paul Mackerras
38c53af853 KVM: PPC: Book3S HV: Fix exclusion between HPT resizing and other HPT updates
Commit 5e9859699a ("KVM: PPC: Book3S HV: Outline of KVM-HV HPT resizing
implementation", 2016-12-20) added code that tries to exclude any use
or update of the hashed page table (HPT) while the HPT resizing code
is iterating through all the entries in the HPT.  It does this by
taking the kvm->lock mutex, clearing the kvm->arch.hpte_setup_done
flag and then sending an IPI to all CPUs in the host.  The idea is
that any VCPU task that tries to enter the guest will see that the
hpte_setup_done flag is clear and therefore call kvmppc_hv_setup_htab_rma,
which also takes the kvm->lock mutex and will therefore block until
we release kvm->lock.

However, any VCPU that is already in the guest, or is handling a
hypervisor page fault or hypercall, can re-enter the guest without
rechecking the hpte_setup_done flag.  The IPI will cause a guest exit
of any VCPUs that are currently in the guest, but does not prevent
those VCPU tasks from immediately re-entering the guest.

The result is that after resize_hpt_rehash_hpte() has made a HPTE
absent, a hypervisor page fault can occur and make that HPTE present
again.  This includes updating the rmap array for the guest real page,
meaning that we now have a pointer in the rmap array which connects
with pointers in the old rev array but not the new rev array.  In
fact, if the HPT is being reduced in size, the pointer in the rmap
array could point outside the bounds of the new rev array.  If that
happens, we can get a host crash later on such as this one:

[91652.628516] Unable to handle kernel paging request for data at address 0xd0000000157fb10c
[91652.628668] Faulting instruction address: 0xc0000000000e2640
[91652.628736] Oops: Kernel access of bad area, sig: 11 [#1]
[91652.628789] LE SMP NR_CPUS=1024 NUMA PowerNV
[91652.628847] Modules linked in: binfmt_misc vhost_net vhost tap xt_CHECKSUM ipt_MASQUERADE nf_nat_masquerade_ipv4 ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 nf_conntrack_ipv6 nf_defrag_ipv6 xt_conntrack ip_set nfnetlink ebtable_nat ebtable_broute bridge stp llc ip6table_mangle ip6table_security ip6table_raw iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack libcrc32c iptable_mangle iptable_security iptable_raw ebtable_filter ebtables ip6table_filter ip6_tables ses enclosure scsi_transport_sas i2c_opal ipmi_powernv ipmi_devintf i2c_core ipmi_msghandler powernv_op_panel nfsd auth_rpcgss oid_registry nfs_acl lockd grace sunrpc kvm_hv kvm_pr kvm scsi_dh_alua dm_service_time dm_multipath tg3 ptp pps_core [last unloaded: stap_552b612747aec2da355051e464fa72a1_14259]
[91652.629566] CPU: 136 PID: 41315 Comm: CPU 21/KVM Tainted: G           O    4.14.0-1.rc4.dev.gitb27fc5c.el7.centos.ppc64le #1
[91652.629684] task: c0000007a419e400 task.stack: c0000000028d8000
[91652.629750] NIP:  c0000000000e2640 LR: d00000000c36e498 CTR: c0000000000e25f0
[91652.629829] REGS: c0000000028db5d0 TRAP: 0300   Tainted: G           O     (4.14.0-1.rc4.dev.gitb27fc5c.el7.centos.ppc64le)
[91652.629932] MSR:  900000010280b033 <SF,HV,VEC,VSX,EE,FP,ME,IR,DR,RI,LE,TM[E]>  CR: 44022422  XER: 00000000
[91652.630034] CFAR: d00000000c373f84 DAR: d0000000157fb10c DSISR: 40000000 SOFTE: 1
[91652.630034] GPR00: d00000000c36e498 c0000000028db850 c000000001403900 c0000007b7960000
[91652.630034] GPR04: d0000000117fb100 d000000007ab00d8 000000000033bb10 0000000000000000
[91652.630034] GPR08: fffffffffffffe7f 801001810073bb10 d00000000e440000 d00000000c373f70
[91652.630034] GPR12: c0000000000e25f0 c00000000fdb9400 f000000003b24680 0000000000000000
[91652.630034] GPR16: 00000000000004fb 00007ff7081a0000 00000000000ec91a 000000000033bb10
[91652.630034] GPR20: 0000000000010000 00000000001b1190 0000000000000001 0000000000010000
[91652.630034] GPR24: c0000007b7ab8038 d0000000117fb100 0000000ec91a1190 c000001e6a000000
[91652.630034] GPR28: 00000000033bb100 000000000073bb10 c0000007b7960000 d0000000157fb100
[91652.630735] NIP [c0000000000e2640] kvmppc_add_revmap_chain+0x50/0x120
[91652.630806] LR [d00000000c36e498] kvmppc_book3s_hv_page_fault+0xbb8/0xc40 [kvm_hv]
[91652.630884] Call Trace:
[91652.630913] [c0000000028db850] [c0000000028db8b0] 0xc0000000028db8b0 (unreliable)
[91652.630996] [c0000000028db8b0] [d00000000c36e498] kvmppc_book3s_hv_page_fault+0xbb8/0xc40 [kvm_hv]
[91652.631091] [c0000000028db9e0] [d00000000c36a078] kvmppc_vcpu_run_hv+0xdf8/0x1300 [kvm_hv]
[91652.631179] [c0000000028dbb30] [d00000000c2248c4] kvmppc_vcpu_run+0x34/0x50 [kvm]
[91652.631266] [c0000000028dbb50] [d00000000c220d54] kvm_arch_vcpu_ioctl_run+0x114/0x2a0 [kvm]
[91652.631351] [c0000000028dbbd0] [d00000000c2139d8] kvm_vcpu_ioctl+0x598/0x7a0 [kvm]
[91652.631433] [c0000000028dbd40] [c0000000003832e0] do_vfs_ioctl+0xd0/0x8c0
[91652.631501] [c0000000028dbde0] [c000000000383ba4] SyS_ioctl+0xd4/0x130
[91652.631569] [c0000000028dbe30] [c00000000000b8e0] system_call+0x58/0x6c
[91652.631635] Instruction dump:
[91652.631676] fba1ffe8 fbc1fff0 fbe1fff8 f8010010 f821ffa1 2fa70000 793d0020 e9432110
[91652.631814] 7bbf26e4 7c7e1b78 7feafa14 409e0094 <807f000c> 786326e4 7c6a1a14 93a40008
[91652.631959] ---[ end trace ac85ba6db72e5b2e ]---

To fix this, we tighten up the way that the hpte_setup_done flag is
checked to ensure that it does provide the guarantee that the resizing
code needs.  In kvmppc_run_core(), we check the hpte_setup_done flag
after disabling interrupts and refuse to enter the guest if it is
clear (for a HPT guest).  The code that checks hpte_setup_done and
calls kvmppc_hv_setup_htab_rma() is moved from kvmppc_vcpu_run_hv()
to a point inside the main loop in kvmppc_run_vcpu(), ensuring that
we don't just spin endlessly calling kvmppc_run_core() while
hpte_setup_done is clear, but instead have a chance to block on the
kvm->lock mutex.

Finally we also check hpte_setup_done inside the region in
kvmppc_book3s_hv_page_fault() where the HPTE is locked and we are about
to update the HPTE, and bail out if it is clear.  If another CPU is
inside kvm_vm_ioctl_resize_hpt_commit) and has cleared hpte_setup_done,
then we know that either we are looking at a HPTE
that resize_hpt_rehash_hpte() has not yet processed, which is OK,
or else we will see hpte_setup_done clear and refuse to update it,
because of the full barrier formed by the unlock of the HPTE in
resize_hpt_rehash_hpte() combined with the locking of the HPTE
in kvmppc_book3s_hv_page_fault().

Fixes: 5e9859699a ("KVM: PPC: Book3S HV: Outline of KVM-HV HPT resizing implementation")
Cc: stable@vger.kernel.org # v4.10+
Reported-by: Satheesh Rajendran <satheera@in.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-11-08 15:14:02 +11:00
Paul Mackerras
18c3640cef KVM: PPC: Book3S HV: Add infrastructure for running HPT guests on radix host
This sets up the machinery for switching a guest between HPT (hashed
page table) and radix MMU modes, so that in future we can run a HPT
guest on a radix host on POWER9 machines.

* The KVM_PPC_CONFIGURE_V3_MMU ioctl can now specify either HPT or
  radix mode, on a radix host.

* The KVM_CAP_PPC_MMU_HASH_V3 capability now returns 1 on POWER9
  with HV KVM on a radix host.

* The KVM_PPC_GET_SMMU_INFO returns information about the HPT MMU on a
  radix host.

* The KVM_PPC_ALLOCATE_HTAB ioctl on a radix host will switch the
  guest to HPT mode and allocate a HPT.

* For simplicity, we now allocate the rmap array for each memslot,
  even on a radix host, since it will be needed if the guest switches
  to HPT mode.

* Since we cannot yet run a HPT guest on a radix host, the KVM_RUN
  ioctl will return an EINVAL error in that case.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-11-01 15:36:28 +11:00
Paul Mackerras
e641a31783 KVM: PPC: Book3S HV: Unify dirty page map between HPT and radix
Currently, the HPT code in HV KVM maintains a dirty bit per guest page
in the rmap array, whether or not dirty page tracking has been enabled
for the memory slot.  In contrast, the radix code maintains a dirty
bit per guest page in memslot->dirty_bitmap, and only does so when
dirty page tracking has been enabled.

This changes the HPT code to maintain the dirty bits in the memslot
dirty_bitmap like radix does.  This results in slightly less code
overall, and will mean that we do not lose the dirty bits when
transitioning between HPT and radix mode in future.

There is one minor change to behaviour as a result.  With HPT, when
dirty tracking was enabled for a memslot, we would previously clear
all the dirty bits at that point (both in the HPT entries and in the
rmap arrays), meaning that a KVM_GET_DIRTY_LOG ioctl immediately
following would show no pages as dirty (assuming no vcpus have run
in the meantime).  With this change, the dirty bits on HPT entries
are not cleared at the point where dirty tracking is enabled, so
KVM_GET_DIRTY_LOG would show as dirty any guest pages that are
resident in the HPT and dirty.  This is consistent with what happens
on radix.

This also fixes a bug in the mark_pages_dirty() function for radix
(in the sense that the function no longer exists).  In the case where
a large page of 64 normal pages or more is marked dirty, the
addressing of the dirty bitmap was incorrect and could write past
the end of the bitmap.  Fortunately this case was never hit in
practice because a 2MB large page is only 32 x 64kB pages, and we
don't support backing the guest with 1GB huge pages at this point.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-11-01 15:36:21 +11:00
Paul Mackerras
1b151ce466 KVM: PPC: Book3S HV: Rename hpte_setup_done to mmu_ready
This renames the kvm->arch.hpte_setup_done field to mmu_ready because
we will want to use it for radix guests too -- both for setting things
up before vcpu execution, and for excluding vcpus from executing while
MMU-related things get changed, such as in future switching the MMU
from radix to HPT mode or vice-versa.

This also moves the call to kvmppc_setup_partition_table() that was
done in kvmppc_hv_setup_htab_rma() for HPT guests, and the setting
of mmu_ready, into the caller in kvmppc_vcpu_run_hv().

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-11-01 15:36:12 +11:00
Paul Mackerras
8dc6cca556 KVM: PPC: Book3S HV: Don't rely on host's page size information
This removes the dependence of KVM on the mmu_psize_defs array (which
stores information about hardware support for various page sizes) and
the things derived from it, chiefly hpte_page_sizes[], hpte_page_size(),
hpte_actual_page_size() and get_sllp_encoding().  We also no longer
rely on the mmu_slb_size variable or the MMU_FTR_1T_SEGMENTS feature
bit.

The reason for doing this is so we can support a HPT guest on a radix
host.  In a radix host, the mmu_psize_defs array contains information
about page sizes supported by the MMU in radix mode rather than the
page sizes supported by the MMU in HPT mode.  Similarly, mmu_slb_size
and the MMU_FTR_1T_SEGMENTS bit are not set.

Instead we hard-code knowledge of the behaviour of the HPT MMU in the
POWER7, POWER8 and POWER9 processors (which are the only processors
supported by HV KVM) - specifically the encoding of the LP fields in
the HPT and SLB entries, and the fact that they have 32 SLB entries
and support 1TB segments.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-11-01 15:36:06 +11:00
Paul Mackerras
891f1ebf65 KVM: PPC: Book3S HV: Explicitly disable HPT operations on radix guests
This adds code to make sure that we don't try to access the
non-existent HPT for a radix guest using the htab file for the VM
in debugfs, a file descriptor obtained using the KVM_PPC_GET_HTAB_FD
ioctl, or via the KVM_PPC_RESIZE_HPT_{PREPARE,COMMIT} ioctls.

At present nothing bad happens if userspace does access these
interfaces on a radix guest, mostly because kvmppc_hpt_npte()
gives 0 for a radix guest, which in turn is because 1 << -4
comes out as 0 on POWER processors.  However, that relies on
undefined behaviour, so it is better to be explicit about not
accessing the HPT for a radix guest.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-10-16 08:09:53 +11:00
Markus Elfring
9c7e53dc00 KVM: PPC: Book3S HV: Delete an error message for a failed memory allocation in kvmppc_allocate_hpt()
Omit an extra message for a memory allocation failure in this function.

This issue was detected by using the Coccinelle software.

Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-10-14 16:38:15 +11:00
nixiaoming
43f6b0cfb2 KVM: PPC: Book3S HV: Fix memory leak in kvm_vm_ioctl_get_htab_fd
We do ctx = kzalloc(sizeof(*ctx), GFP_KERNEL) and then later on call
anon_inode_getfd(), but if that fails we don't free ctx, so that
memory gets leaked.  To fix it, this adds kfree(ctx) in the failure
path.

Signed-off-by: nixiaoming <nixiaoming@huawei.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-09-01 10:17:58 +10:00
Paul Mackerras
4dafecde44 Merge remote-tracking branch 'remotes/powerpc/topic/ppc-kvm' into kvm-ppc-next
This merges in the 'ppc-kvm' topic branch from the powerpc tree in
order to bring in some fixes which touch both powerpc and KVM code.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-08-31 12:37:03 +10:00
Aneesh Kumar K.V
94171b19c3 powerpc/mm: Rename find_linux_pte_or_hugepte()
Add newer helpers to make the function usage simpler. It is always
recommended to use find_current_mm_pte() for walking the page table.
If we cannot use find_current_mm_pte(), it should be documented why
the said usage of __find_linux_pte() is safe against a parallel THP
split.

For now we have KVM code using __find_linux_pte(). This is because kvm
code ends up calling __find_linux_pte() in real mode with MSR_EE=0 but
with PACA soft_enabled = 1. We may want to fix that later and make
sure we keep the MSR_EE and PACA soft_enabled in sync. When we do that
we can switch kvm to use find_linux_pte().

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-08-17 23:13:46 +10:00
Paul Mackerras
ef42719814 KVM: PPC: Book3S HV: Fix host crash on changing HPT size
Commit f98a8bf9ee ("KVM: PPC: Book3S HV: Allow KVM_PPC_ALLOCATE_HTAB
ioctl() to change HPT size", 2016-12-20) changed the behaviour of
the KVM_PPC_ALLOCATE_HTAB ioctl so that it now allocates a new HPT
and new revmap array if there was a previously-allocated HPT of a
different size from the size being requested.  In this case, we need
to reset the rmap arrays of the memslots, because the rmap arrays
will contain references to HPTEs which are no longer valid.  Worse,
these references are also references to slots in the new revmap
array (which parallels the HPT), and the new revmap array contains
random contents, since it doesn't get zeroed on allocation.

The effect of having these stale references to slots in the revmap
array that contain random contents is that subsequent calls to
functions such as kvmppc_add_revmap_chain will crash because they
will interpret the non-zero contents of the revmap array as HPTE
indexes and thus index outside of the revmap array.  This leads to
host crashes such as the following.

[ 7072.862122] Unable to handle kernel paging request for data at address 0xd000000c250c00f8
[ 7072.862218] Faulting instruction address: 0xc0000000000e1c78
[ 7072.862233] Oops: Kernel access of bad area, sig: 11 [#1]
[ 7072.862286] SMP NR_CPUS=1024
[ 7072.862286] NUMA
[ 7072.862325] PowerNV
[ 7072.862378] Modules linked in: kvm_hv vhost_net vhost tap xt_CHECKSUM ipt_MASQUERADE nf_nat_masquerade_ipv4 ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 nf_conntrack_ipv6 nf_defrag_ipv6 xt_conntrack ip_set nfnetlink ebtable_nat ebtable_broute bridge stp llc ip6table_mangle ip6table_security ip6table_raw iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle iptable_security iptable_raw ebtable_filter ebtables ip6table_filter ip6_tables rpcrdma ib_isert iscsi_target_mod ib_iser libiscsi scsi_transport_iscsi ib_srpt target_core_mod ib_srp scsi_transport_srp ib_ipoib rdma_ucm ib_ucm ib_uverbs ib_umad rdma_cm ib_cm iw_cm iw_cxgb3 mlx5_ib ib_core ses enclosure scsi_transport_sas ipmi_powernv ipmi_devintf ipmi_msghandler powernv_op_panel i2c_opal nfsd auth_rpcgss oid_registry
[ 7072.863085]  nfs_acl lockd grace sunrpc kvm_pr kvm xfs libcrc32c scsi_dh_alua dm_service_time radeon lpfc nvme_fc nvme_fabrics nvme_core scsi_transport_fc i2c_algo_bit tg3 drm_kms_helper ptp pps_core syscopyarea sysfillrect sysimgblt fb_sys_fops ttm drm dm_multipath i2c_core cxgb3 mlx5_core mdio [last unloaded: kvm_hv]
[ 7072.863381] CPU: 72 PID: 56929 Comm: qemu-system-ppc Not tainted 4.12.0-kvm+ #59
[ 7072.863457] task: c000000fe29e7600 task.stack: c000001e3ffec000
[ 7072.863520] NIP: c0000000000e1c78 LR: c0000000000e2e3c CTR: c0000000000e25f0
[ 7072.863596] REGS: c000001e3ffef560 TRAP: 0300   Not tainted  (4.12.0-kvm+)
[ 7072.863658] MSR: 9000000100009033 <SF,HV,EE,ME,IR,DR,RI,LE,TM[E]>
[ 7072.863667]   CR: 44082882  XER: 20000000
[ 7072.863767] CFAR: c0000000000e2e38 DAR: d000000c250c00f8 DSISR: 42000000 SOFTE: 1
GPR00: c0000000000e2e3c c000001e3ffef7e0 c000000001407d00 d000000c250c00f0
GPR04: d00000006509fb70 d00000000b3d2048 0000000003ffdfb7 0000000000000000
GPR08: 00000001007fdfb7 00000000c000000f d0000000250c0000 000000000070f7bf
GPR12: 0000000000000008 c00000000fdad000 0000000010879478 00000000105a0d78
GPR16: 00007ffaf4080000 0000000000001190 0000000000000000 0000000000010000
GPR20: 4001ffffff000415 d00000006509fb70 0000000004091190 0000000ee1881190
GPR24: 0000000003ffdfb7 0000000003ffdfb7 00000000007fdfb7 c000000f5c958000
GPR28: d00000002d09fb70 0000000003ffdfb7 d00000006509fb70 d00000000b3d2048
[ 7072.864439] NIP [c0000000000e1c78] kvmppc_add_revmap_chain+0x88/0x130
[ 7072.864503] LR [c0000000000e2e3c] kvmppc_do_h_enter+0x84c/0x9e0
[ 7072.864566] Call Trace:
[ 7072.864594] [c000001e3ffef7e0] [c000001e3ffef830] 0xc000001e3ffef830 (unreliable)
[ 7072.864671] [c000001e3ffef830] [c0000000000e2e3c] kvmppc_do_h_enter+0x84c/0x9e0
[ 7072.864751] [c000001e3ffef920] [d00000000b38d878] kvmppc_map_vrma+0x168/0x200 [kvm_hv]
[ 7072.864831] [c000001e3ffef9e0] [d00000000b38a684] kvmppc_vcpu_run_hv+0x1284/0x1300 [kvm_hv]
[ 7072.864914] [c000001e3ffefb30] [d00000000f465664] kvmppc_vcpu_run+0x44/0x60 [kvm]
[ 7072.865008] [c000001e3ffefb60] [d00000000f461864] kvm_arch_vcpu_ioctl_run+0x114/0x290 [kvm]
[ 7072.865152] [c000001e3ffefbe0] [d00000000f453c98] kvm_vcpu_ioctl+0x598/0x7a0 [kvm]
[ 7072.865292] [c000001e3ffefd40] [c000000000389328] do_vfs_ioctl+0xd8/0x8c0
[ 7072.865410] [c000001e3ffefde0] [c000000000389be4] SyS_ioctl+0xd4/0x130
[ 7072.865526] [c000001e3ffefe30] [c00000000000b760] system_call+0x58/0x6c
[ 7072.865644] Instruction dump:
[ 7072.865715] e95b2110 793a0020 7b4926e4 7f8a4a14 409e0098 807c000c 786326e4 7c6a1a14
[ 7072.865857] 935e0008 7bbd0020 813c000c 913e000c <93a30008> 93bc000c 48000038 60000000
[ 7072.866001] ---[ end trace 627b6e4bf8080edc ]---

Note that to trigger this, it is necessary to use a recent upstream
QEMU (or other userspace that resizes the HPT at CAS time), specify
a maximum memory size substantially larger than the current memory
size, and boot a guest kernel that does not support HPT resizing.

This fixes the problem by resetting the rmap arrays when the old HPT
is freed.

Fixes: f98a8bf9ee ("KVM: PPC: Book3S HV: Allow KVM_PPC_ALLOCATE_HTAB ioctl() to change HPT size")
Cc: stable@vger.kernel.org # v4.11+
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-07-24 16:10:44 +10:00
Michal Hocko
dcda9b0471 mm, tree wide: replace __GFP_REPEAT by __GFP_RETRY_MAYFAIL with more useful semantic
__GFP_REPEAT was designed to allow retry-but-eventually-fail semantic to
the page allocator.  This has been true but only for allocations
requests larger than PAGE_ALLOC_COSTLY_ORDER.  It has been always
ignored for smaller sizes.  This is a bit unfortunate because there is
no way to express the same semantic for those requests and they are
considered too important to fail so they might end up looping in the
page allocator for ever, similarly to GFP_NOFAIL requests.

Now that the whole tree has been cleaned up and accidental or misled
usage of __GFP_REPEAT flag has been removed for !costly requests we can
give the original flag a better name and more importantly a more useful
semantic.  Let's rename it to __GFP_RETRY_MAYFAIL which tells the user
that the allocator would try really hard but there is no promise of a
success.  This will work independent of the order and overrides the
default allocator behavior.  Page allocator users have several levels of
guarantee vs.  cost options (take GFP_KERNEL as an example)

 - GFP_KERNEL & ~__GFP_RECLAIM - optimistic allocation without _any_
   attempt to free memory at all. The most light weight mode which even
   doesn't kick the background reclaim. Should be used carefully because
   it might deplete the memory and the next user might hit the more
   aggressive reclaim

 - GFP_KERNEL & ~__GFP_DIRECT_RECLAIM (or GFP_NOWAIT)- optimistic
   allocation without any attempt to free memory from the current
   context but can wake kswapd to reclaim memory if the zone is below
   the low watermark. Can be used from either atomic contexts or when
   the request is a performance optimization and there is another
   fallback for a slow path.

 - (GFP_KERNEL|__GFP_HIGH) & ~__GFP_DIRECT_RECLAIM (aka GFP_ATOMIC) -
   non sleeping allocation with an expensive fallback so it can access
   some portion of memory reserves. Usually used from interrupt/bh
   context with an expensive slow path fallback.

 - GFP_KERNEL - both background and direct reclaim are allowed and the
   _default_ page allocator behavior is used. That means that !costly
   allocation requests are basically nofail but there is no guarantee of
   that behavior so failures have to be checked properly by callers
   (e.g. OOM killer victim is allowed to fail currently).

 - GFP_KERNEL | __GFP_NORETRY - overrides the default allocator behavior
   and all allocation requests fail early rather than cause disruptive
   reclaim (one round of reclaim in this implementation). The OOM killer
   is not invoked.

 - GFP_KERNEL | __GFP_RETRY_MAYFAIL - overrides the default allocator
   behavior and all allocation requests try really hard. The request
   will fail if the reclaim cannot make any progress. The OOM killer
   won't be triggered.

 - GFP_KERNEL | __GFP_NOFAIL - overrides the default allocator behavior
   and all allocation requests will loop endlessly until they succeed.
   This might be really dangerous especially for larger orders.

Existing users of __GFP_REPEAT are changed to __GFP_RETRY_MAYFAIL
because they already had their semantic.  No new users are added.
__alloc_pages_slowpath is changed to bail out for __GFP_RETRY_MAYFAIL if
there is no progress and we have already passed the OOM point.

This means that all the reclaim opportunities have been exhausted except
the most disruptive one (the OOM killer) and a user defined fallback
behavior is more sensible than keep retrying in the page allocator.

[akpm@linux-foundation.org: fix arch/sparc/kernel/mdesc.c]
[mhocko@suse.com: semantic fix]
  Link: http://lkml.kernel.org/r/20170626123847.GM11534@dhcp22.suse.cz
[mhocko@kernel.org: address other thing spotted by Vlastimil]
  Link: http://lkml.kernel.org/r/20170626124233.GN11534@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20170623085345.11304-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alex Belits <alex.belits@cavium.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: David Daney <david.daney@cavium.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: NeilBrown <neilb@suse.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 16:26:03 -07:00
Dan Carpenter
abd80dcbc4 KVM: PPC: Book3S HV: Check for kmalloc errors in ioctl
kzalloc() won't actually fail because sizeof(*resize) is small, but
static checkers complain.

Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-04-06 15:50:43 +10:00
Aneesh Kumar K.V
d19469e841 power/mm: update pte_write and pte_wrprotect to handle savedwrite
We use pte_write() to check whethwer the pte entry is writable.  This is
mostly used to later mark the pte read only if it is writable.  The other
use of pte_write() is to check whether the pte_entry is writable so that
hardware page table entry can be marked accordingly.  This is used in kvm
where we look at qemu page table entry and update hardware hash page table
for the guest with correct write enable bit.

With the above, for the first usage we should also check the savedwrite
bit so that we can correctly clear the savedwite bit.  For the later, we
add a new variant __pte_write().

With this we can revert write_protect_page part of 595cd8f256 ("mm/ksm:
handle protnone saved writes when making page write protect").  But I left
it as it is as an example code for savedwrite check.

Fixes: c137a2757b ("powerpc/mm/autonuma: switch ppc64 to its own implementation of saved write")
Link: http://lkml.kernel.org/r/1488203787-17849-2-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-09 17:01:09 -08:00
Paul Mackerras
bcd3bb63db KVM: PPC: Book3S HV: Disable HPT resizing on POWER9 for now
The new HPT resizing code added in commit b5baa68773 ("KVM: PPC:
Book3S HV: KVM-HV HPT resizing implementation", 2016-12-20) doesn't
have code to handle the new HPTE format which POWER9 uses.  Thus it
would be best not to advertise it to userspace on POWER9 systems
until it works properly.

Also, since resize_hpt_rehash_hpte() contains BUG_ON() calls that
could be hit on POWER9, let's prevent it from being called on POWER9
for now.

Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-02-18 14:22:47 +11:00
Thomas Huth
3a4f176081 KVM: PPC: Book3S HV: Turn "KVM guest htab" message into a debug message
The average user likely does not know what a "htab" or "LPID" is,
and it's annoying that these messages are quickly filling the dmesg
log when you're doing boot cycle tests, so let's turn it into a debug
message instead.

Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-02-17 22:05:56 +11:00
David Gibson
5b73d6347e KVM: PPC: Book3S HV: Prevent double-free on HPT resize commit path
resize_hpt_release(), called once the HPT resize of a KVM guest is
completed (successfully or unsuccessfully) frees the state structure for
the resize.  It is currently not safe to call with a NULL pointer.

However, one of the error paths in kvm_vm_ioctl_resize_hpt_commit() can
invoke it with a NULL pointer.  This will occur if userspace improperly
invokes KVM_PPC_RESIZE_HPT_COMMIT without previously calling
KVM_PPC_RESIZE_HPT_PREPARE, or if it calls COMMIT twice without an
intervening PREPARE.

To fix this potential crash bug - and maybe others like it, make it safe
(and a no-op) to call resize_hpt_release() with a NULL resize pointer.

Found by Dan Carpenter with a static checker.

Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-02-16 16:32:19 +11:00
David Gibson
b5baa68773 KVM: PPC: Book3S HV: KVM-HV HPT resizing implementation
This adds the "guts" of the implementation for the HPT resizing PAPR
extension.  It has the code to allocate and clear a new HPT, rehash an
existing HPT's entries into it, and accomplish the switchover for a
KVM guest from the old HPT to the new one.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-01-31 22:00:00 +11:00
David Gibson
5e9859699a KVM: PPC: Book3S HV: Outline of KVM-HV HPT resizing implementation
This adds a not yet working outline of the HPT resizing PAPR
extension.  Specifically it adds the necessary ioctl() functions,
their basic steps, the work function which will handle preparation for
the resize, and synchronization between these, the guest page fault
path and guest HPT update path.

The actual guts of the implementation isn't here yet, so for now the
calls will always fail.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-01-31 21:59:56 +11:00
David Gibson
639e459768 KVM: PPC: Book3S HV: Create kvmppc_unmap_hpte_helper()
The kvm_unmap_rmapp() function, called from certain MMU notifiers, is used
to force all guest mappings of a particular host page to be set ABSENT, and
removed from the reverse mappings.

For HPT resizing, we will have some cases where we want to set just a
single guest HPTE ABSENT and remove its reverse mappings.  To prepare with
this, we split out the logic from kvm_unmap_rmapp() to evict a single HPTE,
moving it to a new helper function.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-01-31 21:59:50 +11:00
David Gibson
f98a8bf9ee KVM: PPC: Book3S HV: Allow KVM_PPC_ALLOCATE_HTAB ioctl() to change HPT size
The KVM_PPC_ALLOCATE_HTAB ioctl() is used to set the size of hashed page
table (HPT) that userspace expects a guest VM to have, and is also used to
clear that HPT when necessary (e.g. guest reboot).

At present, once the ioctl() is called for the first time, the HPT size can
never be changed thereafter - it will be cleared but always sized as from
the first call.

With upcoming HPT resize implementation, we're going to need to allow
userspace to resize the HPT at reset (to change it back to the default size
if the guest changed it).

So, we need to allow this ioctl() to change the HPT size.

This patch also updates Documentation/virtual/kvm/api.txt to reflect
the new behaviour.  In fact the documentation was already slightly
incorrect since 572abd5 "KVM: PPC: Book3S HV: Don't fall back to
smaller HPT size in allocation ioctl"

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-01-31 21:59:45 +11:00
David Gibson
aae0777f1e KVM: PPC: Book3S HV: Split HPT allocation from activation
Currently, kvmppc_alloc_hpt() both allocates a new hashed page table (HPT)
and sets it up as the active page table for a VM.  For the upcoming HPT
resize implementation we're going to want to allocate HPTs separately from
activating them.

So, split the allocation itself out into kvmppc_allocate_hpt() and perform
the activation with a new kvmppc_set_hpt() function.  Likewise we split
kvmppc_free_hpt(), which just frees the HPT, from kvmppc_release_hpt()
which unsets it as an active HPT, then frees it.

We also move the logic to fall back to smaller HPT sizes if the first try
fails into the single caller which used that behaviour,
kvmppc_hv_setup_htab_rma().  This introduces a slight semantic change, in
that previously if the initial attempt at CMA allocation failed, we would
fall back to attempting smaller sizes with the page allocator.  Now, we
try first CMA, then the page allocator at each size.  As far as I can tell
this change should be harmless.

To match, we make kvmppc_free_hpt() just free the actual HPT itself.  The
call to kvmppc_free_lpid() that was there, we move to the single caller.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-01-31 21:59:39 +11:00
David Gibson
3d089f84c6 KVM: PPC: Book3S HV: Don't store values derivable from HPT order
Currently the kvm_hpt_info structure stores the hashed page table's order,
and also the number of HPTEs it contains and a mask for its size.  The
last two can be easily derived from the order, so remove them and just
calculate them as necessary with a couple of helper inlines.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-01-31 21:59:34 +11:00
David Gibson
3f9d4f5a5f KVM: PPC: Book3S HV: Gather HPT related variables into sub-structure
Currently, the powerpc kvm_arch structure contains a number of variables
tracking the state of the guest's hashed page table (HPT) in KVM HV.  This
patch gathers them all together into a single kvm_hpt_info substructure.
This makes life more convenient for the upcoming HPT resizing
implementation.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-01-31 21:59:28 +11:00
David Gibson
db9a290d9c KVM: PPC: Book3S HV: Rename kvm_alloc_hpt() for clarity
The difference between kvm_alloc_hpt() and kvmppc_alloc_hpt() is not at
all obvious from the name.  In practice kvmppc_alloc_hpt() allocates an HPT
by whatever means, and calls kvm_alloc_hpt() which will attempt to allocate
it with CMA only.

To make this less confusing, rename kvm_alloc_hpt() to kvm_alloc_hpt_cma().
Similarly, kvm_release_hpt() is renamed kvm_free_hpt_cma().

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-01-31 21:59:23 +11:00
Paul Mackerras
8cf4ecc0ca KVM: PPC: Book3S HV: Enable radix guest support
This adds a few last pieces of the support for radix guests:

* Implement the backends for the KVM_PPC_CONFIGURE_V3_MMU and
  KVM_PPC_GET_RMMU_INFO ioctls for radix guests

* On POWER9, allow secondary threads to be on/off-lined while guests
  are running.

* Set up LPCR and the partition table entry for radix guests.

* Don't allocate the rmap array in the kvm_memory_slot structure
  on radix.

* Don't try to initialize the HPT for radix guests, since they don't
  have an HPT.

* Take out the code that prevents the HV KVM module from
  initializing on radix hosts.

At this stage, we only support radix guests if the host is running
in radix mode, and only support HPT guests if the host is running in
HPT mode.  Thus a guest cannot switch from one mode to the other,
which enables some simplifications.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-01-31 19:11:52 +11:00
Paul Mackerras
8f7b79b837 KVM: PPC: Book3S HV: Implement dirty page logging for radix guests
This adds code to keep track of dirty pages when requested (that is,
when memslot->dirty_bitmap is non-NULL) for radix guests.  We use the
dirty bits in the PTEs in the second-level (partition-scoped) page
tables, together with a bitmap of pages that were dirty when their
PTE was invalidated (e.g., when the page was paged out).  This bitmap
is stored in the first half of the memslot->dirty_bitmap area, and
kvm_vm_ioctl_get_dirty_log_hv() now uses the second half for the
bitmap that gets returned to userspace.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-01-31 19:11:50 +11:00