1
Commit Graph

35 Commits

Author SHA1 Message Date
Tejun Heo
a2f4b16e73 sched_ext: Build fix on !CONFIG_STACKTRACE[_SUPPORT]
scx_dump_task() uses stack_trace_save_tsk() which is only available when
CONFIG_STACKTRACE. Make CONFIG_SCHED_CLASS_EXT select CONFIG_STACKTRACE if
the support is available and skip capturing stack trace if
!CONFIG_STACKTRACE.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202407161844.reewQQrR-lkp@intel.com/
Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2024-08-01 07:08:01 -10:00
Andrea Righi
b5ba2e1a95 sched_ext: add CONFIG_DEBUG_INFO_BTF dependency
Without BTF, attempting to load any sched_ext scheduler will result in
an error like the following:

  libbpf: kernel BTF is missing at '/sys/kernel/btf/vmlinux', was CONFIG_DEBUG_INFO_BTF enabled?

This makes sched_ext pretty much unusable, so explicitly depend on
CONFIG_DEBUG_INFO_BTF to prevent these issues.

Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2024-06-27 09:06:47 -10:00
Tejun Heo
fa48e8d2c7 sched_ext: Documentation: scheduler: Document extensible scheduler class
Add Documentation/scheduler/sched-ext.rst which gives a high-level overview
and pointers to the examples.

v6: - Add paragraph explaining debug dump.

v5: - Updated to reflect /sys/kernel interface change. Kconfig options
      added.

v4: - README improved, reformatted in markdown and renamed to README.md.

v3: - Added tools/sched_ext/README.

    - Dropped _example prefix from scheduler names.

v2: - Apply minor edits suggested by Bagas. Caveats section dropped as all
      of them are addressed.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
Cc: Bagas Sanjaya <bagasdotme@gmail.com>
2024-06-18 10:09:21 -10:00
Tejun Heo
7b0888b7cc sched_ext: Implement core-sched support
The core-sched support is composed of the following parts:

- task_struct->scx.core_sched_at is added. This is a timestamp which can be
  used to order tasks. Depending on whether the BPF scheduler implements
  custom ordering, it tracks either global FIFO ordering of all tasks or
  local-DSQ ordering within the dispatched tasks on a CPU.

- prio_less() is updated to call scx_prio_less() when comparing SCX tasks.
  scx_prio_less() calls ops.core_sched_before() if available or uses the
  core_sched_at timestamp. For global FIFO ordering, the BPF scheduler
  doesn't need to do anything. Otherwise, it should implement
  ops.core_sched_before() which reflects the ordering.

- When core-sched is enabled, balance_scx() balances all SMT siblings so
  that they all have tasks dispatched if necessary before pick_task_scx() is
  called. pick_task_scx() picks between the current task and the first
  dispatched task on the local DSQ based on availability and the
  core_sched_at timestamps. Note that FIFO ordering is expected among the
  already dispatched tasks whether running or on the local DSQ, so this path
  always compares core_sched_at instead of calling into
  ops.core_sched_before().

qmap_core_sched_before() is added to scx_qmap. It scales the
distances from the heads of the queues to compare the tasks across different
priority queues and seems to behave as expected.

v3: Fixed build error when !CONFIG_SCHED_SMT reported by Andrea Righi.

v2: Sched core added the const qualifiers to prio_less task arguments.
    Explicitly drop them for ops.core_sched_before() task arguments. BPF
    enforces access control through the verifier, so the qualifier isn't
    actually operative and only gets in the way when interacting with
    various helpers.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Reviewed-by: Josh Don <joshdon@google.com>
Cc: Andrea Righi <andrea.righi@canonical.com>
2024-06-18 10:09:20 -10:00
Tejun Heo
f0e1a0643a sched_ext: Implement BPF extensible scheduler class
Implement a new scheduler class sched_ext (SCX), which allows scheduling
policies to be implemented as BPF programs to achieve the following:

1. Ease of experimentation and exploration: Enabling rapid iteration of new
   scheduling policies.

2. Customization: Building application-specific schedulers which implement
   policies that are not applicable to general-purpose schedulers.

3. Rapid scheduler deployments: Non-disruptive swap outs of scheduling
   policies in production environments.

sched_ext leverages BPF’s struct_ops feature to define a structure which
exports function callbacks and flags to BPF programs that wish to implement
scheduling policies. The struct_ops structure exported by sched_ext is
struct sched_ext_ops, and is conceptually similar to struct sched_class. The
role of sched_ext is to map the complex sched_class callbacks to the more
simple and ergonomic struct sched_ext_ops callbacks.

For more detailed discussion on the motivations and overview, please refer
to the cover letter.

Later patches will also add several example schedulers and documentation.

This patch implements the minimum core framework to enable implementation of
BPF schedulers. Subsequent patches will gradually add functionalities
including safety guarantee mechanisms, nohz and cgroup support.

include/linux/sched/ext.h defines struct sched_ext_ops. With the comment on
top, each operation should be self-explanatory. The followings are worth
noting:

- Both "sched_ext" and its shorthand "scx" are used. If the identifier
  already has "sched" in it, "ext" is used; otherwise, "scx".

- In sched_ext_ops, only .name is mandatory. Every operation is optional and
  if omitted a simple but functional default behavior is provided.

- A new policy constant SCHED_EXT is added and a task can select sched_ext
  by invoking sched_setscheduler(2) with the new policy constant. However,
  if the BPF scheduler is not loaded, SCHED_EXT is the same as SCHED_NORMAL
  and the task is scheduled by CFS. When the BPF scheduler is loaded, all
  tasks which have the SCHED_EXT policy are switched to sched_ext.

- To bridge the workflow imbalance between the scheduler core and
  sched_ext_ops callbacks, sched_ext uses simple FIFOs called dispatch
  queues (dsq's). By default, there is one global dsq (SCX_DSQ_GLOBAL), and
  one local per-CPU dsq (SCX_DSQ_LOCAL). SCX_DSQ_GLOBAL is provided for
  convenience and need not be used by a scheduler that doesn't require it.
  SCX_DSQ_LOCAL is the per-CPU FIFO that sched_ext pulls from when putting
  the next task on the CPU. The BPF scheduler can manage an arbitrary number
  of dsq's using scx_bpf_create_dsq() and scx_bpf_destroy_dsq().

- sched_ext guarantees system integrity no matter what the BPF scheduler
  does. To enable this, each task's ownership is tracked through
  p->scx.ops_state and all tasks are put on scx_tasks list. The disable path
  can always recover and revert all tasks back to CFS. See p->scx.ops_state
  and scx_tasks.

- A task is not tied to its rq while enqueued. This decouples CPU selection
  from queueing and allows sharing a scheduling queue across an arbitrary
  subset of CPUs. This adds some complexities as a task may need to be
  bounced between rq's right before it starts executing. See
  dispatch_to_local_dsq() and move_task_to_local_dsq().

- One complication that arises from the above weak association between task
  and rq is that synchronizing with dequeue() gets complicated as dequeue()
  may happen anytime while the task is enqueued and the dispatch path might
  need to release the rq lock to transfer the task. Solving this requires a
  bit of complexity. See the logic around p->scx.sticky_cpu and
  p->scx.ops_qseq.

- Both enable and disable paths are a bit complicated. The enable path
  switches all tasks without blocking to avoid issues which can arise from
  partially switched states (e.g. the switching task itself being starved).
  The disable path can't trust the BPF scheduler at all, so it also has to
  guarantee forward progress without blocking. See scx_ops_enable() and
  scx_ops_disable_workfn().

- When sched_ext is disabled, static_branches are used to shut down the
  entry points from hot paths.

v7: - scx_ops_bypass() was incorrectly and unnecessarily trying to grab
      scx_ops_enable_mutex which can lead to deadlocks in the disable path.
      Fixed.

    - Fixed TASK_DEAD handling bug in scx_ops_enable() path which could lead
      to use-after-free.

    - Consolidated per-cpu variable usages and other cleanups.

v6: - SCX_NR_ONLINE_OPS replaced with SCX_OPI_*_BEGIN/END so that multiple
      groups can be expressed. Later CPU hotplug operations are put into
      their own group.

    - SCX_OPS_DISABLING state is replaced with the new bypass mechanism
      which allows temporarily putting the system into simple FIFO
      scheduling mode bypassing the BPF scheduler. In addition to the shut
      down path, this will also be used to isolate the BPF scheduler across
      PM events. Enabling and disabling the bypass mode requires iterating
      all runnable tasks. rq->scx.runnable_list addition is moved from the
      later watchdog patch.

    - ops.prep_enable() is replaced with ops.init_task() and
      ops.enable/disable() are now called whenever the task enters and
      leaves sched_ext instead of when the task becomes schedulable on
      sched_ext and stops being so. A new operation - ops.exit_task() - is
      called when the task stops being schedulable on sched_ext.

    - scx_bpf_dispatch() can now be called from ops.select_cpu() too. This
      removes the need for communicating local dispatch decision made by
      ops.select_cpu() to ops.enqueue() via per-task storage.
      SCX_KF_SELECT_CPU is added to support the change.

    - SCX_TASK_ENQ_LOCAL which told the BPF scheudler that
      scx_select_cpu_dfl() wants the task to be dispatched to the local DSQ
      was removed. Instead, scx_bpf_select_cpu_dfl() now dispatches directly
      if it finds a suitable idle CPU. If such behavior is not desired,
      users can use scx_bpf_select_cpu_dfl() which returns the verdict in a
      bool out param.

    - scx_select_cpu_dfl() was mishandling WAKE_SYNC and could end up
      queueing many tasks on a local DSQ which makes tasks to execute in
      order while other CPUs stay idle which made some hackbench numbers
      really bad. Fixed.

    - The current state of sched_ext can now be monitored through files
      under /sys/sched_ext instead of /sys/kernel/debug/sched/ext. This is
      to enable monitoring on kernels which don't enable debugfs.

    - sched_ext wasn't telling BPF that ops.dispatch()'s @prev argument may
      be NULL and a BPF scheduler which derefs the pointer without checking
      could crash the kernel. Tell BPF. This is currently a bit ugly. A
      better way to annotate this is expected in the future.

    - scx_exit_info updated to carry pointers to message buffers instead of
      embedding them directly. This decouples buffer sizes from API so that
      they can be changed without breaking compatibility.

    - exit_code added to scx_exit_info. This is used to indicate different
      exit conditions on non-error exits and will be used to handle e.g. CPU
      hotplugs.

    - The patch "sched_ext: Allow BPF schedulers to switch all eligible
      tasks into sched_ext" is folded in and the interface is changed so
      that partial switching is indicated with a new ops flag
      %SCX_OPS_SWITCH_PARTIAL. This makes scx_bpf_switch_all() unnecessasry
      and in turn SCX_KF_INIT. ops.init() is now called with
      SCX_KF_SLEEPABLE.

    - Code reorganized so that only the parts necessary to integrate with
      the rest of the kernel are in the header files.

    - Changes to reflect the BPF and other kernel changes including the
      addition of bpf_sched_ext_ops.cfi_stubs.

v5: - To accommodate 32bit configs, p->scx.ops_state is now atomic_long_t
      instead of atomic64_t and scx_dsp_buf_ent.qseq which uses
      load_acquire/store_release is now unsigned long instead of u64.

    - Fix the bug where bpf_scx_btf_struct_access() was allowing write
      access to arbitrary fields.

    - Distinguish kfuncs which can be called from any sched_ext ops and from
      anywhere. e.g. scx_bpf_pick_idle_cpu() can now be called only from
      sched_ext ops.

    - Rename "type" to "kind" in scx_exit_info to make it easier to use on
      languages in which "type" is a reserved keyword.

    - Since cff9b2332a ("kernel/sched: Modify initial boot task idle
      setup"), PF_IDLE is not set on idle tasks which haven't been online
      yet which made scx_task_iter_next_filtered() include those idle tasks
      in iterations leading to oopses. Update scx_task_iter_next_filtered()
      to directly test p->sched_class against idle_sched_class instead of
      using is_idle_task() which tests PF_IDLE.

    - Other updates to match upstream changes such as adding const to
      set_cpumask() param and renaming check_preempt_curr() to
      wakeup_preempt().

v4: - SCHED_CHANGE_BLOCK replaced with the previous
      sched_deq_and_put_task()/sched_enq_and_set_tsak() pair. This is
      because upstream is adaopting a different generic cleanup mechanism.
      Once that lands, the code will be adapted accordingly.

    - task_on_scx() used to test whether a task should be switched into SCX,
      which is confusing. Renamed to task_should_scx(). task_on_scx() now
      tests whether a task is currently on SCX.

    - scx_has_idle_cpus is barely used anymore and replaced with direct
      check on the idle cpumask.

    - SCX_PICK_IDLE_CORE added and scx_pick_idle_cpu() improved to prefer
      fully idle cores.

    - ops.enable() now sees up-to-date p->scx.weight value.

    - ttwu_queue path is disabled for tasks on SCX to avoid confusing BPF
      schedulers expecting ->select_cpu() call.

    - Use cpu_smt_mask() instead of topology_sibling_cpumask() like the rest
      of the scheduler.

v3: - ops.set_weight() added to allow BPF schedulers to track weight changes
      without polling p->scx.weight.

    - move_task_to_local_dsq() was losing SCX-specific enq_flags when
      enqueueing the task on the target dsq because it goes through
      activate_task() which loses the upper 32bit of the flags. Carry the
      flags through rq->scx.extra_enq_flags.

    - scx_bpf_dispatch(), scx_bpf_pick_idle_cpu(), scx_bpf_task_running()
      and scx_bpf_task_cpu() now use the new KF_RCU instead of
      KF_TRUSTED_ARGS to make it easier for BPF schedulers to call them.

    - The kfunc helper access control mechanism implemented through
      sched_ext_entity.kf_mask is improved. Now SCX_CALL_OP*() is always
      used when invoking scx_ops operations.

v2: - balance_scx_on_up() is dropped. Instead, on UP, balance_scx() is
      called from put_prev_taks_scx() and pick_next_task_scx() as necessary.
      To determine whether balance_scx() should be called from
      put_prev_task_scx(), SCX_TASK_DEQD_FOR_SLEEP flag is added. See the
      comment in put_prev_task_scx() for details.

    - sched_deq_and_put_task() / sched_enq_and_set_task() sequences replaced
      with SCHED_CHANGE_BLOCK().

    - Unused all_dsqs list removed. This was a left-over from previous
      iterations.

    - p->scx.kf_mask is added to track and enforce which kfunc helpers are
      allowed. Also, init/exit sequences are updated to make some kfuncs
      always safe to call regardless of the current BPF scheduler state.
      Combined, this should make all the kfuncs safe.

    - BPF now supports sleepable struct_ops operations. Hacky workaround
      removed and operations and kfunc helpers are tagged appropriately.

    - BPF now supports bitmask / cpumask helpers. scx_bpf_get_idle_cpumask()
      and friends are added so that BPF schedulers can use the idle masks
      with the generic helpers. This replaces the hacky kfunc helpers added
      by a separate patch in V1.

    - CONFIG_SCHED_CLASS_EXT can no longer be enabled if SCHED_CORE is
      enabled. This restriction will be removed by a later patch which adds
      core-sched support.

    - Add MAINTAINERS entries and other misc changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
Co-authored-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
Cc: Andrea Righi <andrea.righi@canonical.com>
2024-06-18 10:09:17 -10:00
Thomas Gleixner
7dd5ad2d3e Revert "signal, x86: Delay calling signals in atomic on RT enabled kernels"
Revert commit bf9ad37dc8. It needs to be better encapsulated and
generalized.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
2022-03-31 10:36:55 +02:00
Linus Torvalds
3fe2f7446f Changes in this cycle were:
- Cleanups for SCHED_DEADLINE
  - Tracing updates/fixes
  - CPU Accounting fixes
  - First wave of changes to optimize the overhead of the scheduler build,
    from the fast-headers tree - including placeholder *_api.h headers for
    later header split-ups.
  - Preempt-dynamic using static_branch() for ARM64
  - Isolation housekeeping mask rework; preperatory for further changes
  - NUMA-balancing: deal with CPU-less nodes
  - NUMA-balancing: tune systems that have multiple LLC cache domains per node (eg. AMD)
  - Updates to RSEQ UAPI in preparation for glibc usage
  - Lots of RSEQ/selftests, for same
  - Add Suren as PSI co-maintainer
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmI5rg8RHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1hGrw/+M3QOk6fH7G48wjlNnBvcOife6ls+Ni4k
 ixOAcF4JKoixO8HieU5vv0A7yf/83tAa6fpeXeMf1hkCGc0NSlmLtuIux+WOmoAL
 LzCyDEYfiP8KnVh0A1Tui/lK0+AkGo21O6ADhQE2gh8o2LpslOHQMzvtyekSzeeb
 mVxMYQN+QH0m518xdO2D8IQv9ctOYK0eGjmkqdNfntOlytypPZHeNel/tCzwklP/
 dElJUjNiSKDlUgTBPtL3DfpoLOI/0mHF2p6NEXvNyULxSOqJTu8pv9Z2ADb2kKo1
 0D56iXBDngMi9MHIJLgvzsA8gKzHLFSuPbpODDqkTZCa28vaMB9NYGhJ643NtEie
 IXTJEvF1rmNkcLcZlZxo0yjL0fjvPkczjw4Vj27gbrUQeEBfb4mfuI4BRmij63Ep
 qEkgQTJhduCqqrQP1rVyhwWZRk1JNcVug+F6N42qWW3fg1xhj0YSrLai2c9nPez6
 3Zt98H8YGS1Z/JQomSw48iGXVqfTp/ETI7uU7jqHK8QcjzQ4lFK5H4GZpwuqGBZi
 NJJ1l97XMEas+rPHiwMEN7Z1DVhzJLCp8omEj12QU+tGLofxxwAuuOVat3CQWLRk
 f80Oya3TLEgd22hGIKDRmHa22vdWnNQyS0S15wJotawBzQf+n3auS9Q3/rh979+t
 ES/qvlGxTIs=
 =Z8uT
 -----END PGP SIGNATURE-----

Merge tag 'sched-core-2022-03-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler updates from Ingo Molnar:

 - Cleanups for SCHED_DEADLINE

 - Tracing updates/fixes

 - CPU Accounting fixes

 - First wave of changes to optimize the overhead of the scheduler
   build, from the fast-headers tree - including placeholder *_api.h
   headers for later header split-ups.

 - Preempt-dynamic using static_branch() for ARM64

 - Isolation housekeeping mask rework; preperatory for further changes

 - NUMA-balancing: deal with CPU-less nodes

 - NUMA-balancing: tune systems that have multiple LLC cache domains per
   node (eg. AMD)

 - Updates to RSEQ UAPI in preparation for glibc usage

 - Lots of RSEQ/selftests, for same

 - Add Suren as PSI co-maintainer

* tag 'sched-core-2022-03-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (81 commits)
  sched/headers: ARM needs asm/paravirt_api_clock.h too
  sched/numa: Fix boot crash on arm64 systems
  headers/prep: Fix header to build standalone: <linux/psi.h>
  sched/headers: Only include <linux/entry-common.h> when CONFIG_GENERIC_ENTRY=y
  cgroup: Fix suspicious rcu_dereference_check() usage warning
  sched/preempt: Tell about PREEMPT_DYNAMIC on kernel headers
  sched/topology: Remove redundant variable and fix incorrect type in build_sched_domains
  sched/deadline,rt: Remove unused parameter from pick_next_[rt|dl]_entity()
  sched/deadline,rt: Remove unused functions for !CONFIG_SMP
  sched/deadline: Use __node_2_[pdl|dle]() and rb_first_cached() consistently
  sched/deadline: Merge dl_task_can_attach() and dl_cpu_busy()
  sched/deadline: Move bandwidth mgmt and reclaim functions into sched class source file
  sched/deadline: Remove unused def_dl_bandwidth
  sched/tracing: Report TASK_RTLOCK_WAIT tasks as TASK_UNINTERRUPTIBLE
  sched/tracing: Don't re-read p->state when emitting sched_switch event
  sched/rt: Plug rt_mutex_setprio() vs push_rt_task() race
  sched/cpuacct: Remove redundant RCU read lock
  sched/cpuacct: Optimize away RCU read lock
  sched/cpuacct: Fix charge percpu cpuusage
  sched/headers: Reorganize, clean up and optimize kernel/sched/sched.h dependencies
  ...
2022-03-22 14:39:12 -07:00
Oleg Nesterov
bf9ad37dc8 signal, x86: Delay calling signals in atomic on RT enabled kernels
On x86_64 we must disable preemption before we enable interrupts
for stack faults, int3 and debugging, because the current task is using
a per CPU debug stack defined by the IST. If we schedule out, another task
can come in and use the same stack and cause the stack to be corrupted
and crash the kernel on return.

When CONFIG_PREEMPT_RT is enabled, spinlock_t locks become sleeping, and
one of these is the spin lock used in signal handling.

Some of the debug code (int3) causes do_trap() to send a signal.
This function calls a spinlock_t lock that has been converted to a
sleeping lock. If this happens, the above issues with the corrupted
stack is possible.

Instead of calling the signal right away, for PREEMPT_RT and x86,
the signal information is stored on the stacks task_struct and
TIF_NOTIFY_RESUME is set. Then on exit of the trap, the signal resume
code will send the signal when preemption is enabled.

[ rostedt: Switched from #ifdef CONFIG_PREEMPT_RT to
  ARCH_RT_DELAYS_SIGNAL_SEND and added comments to the code. ]
[bigeasy: Add on 32bit as per Yang Shi, minor rewording. ]
[ tglx: Use a config option ]

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/Ygq5aBB/qMQw6aP5@linutronix.de
2022-03-04 14:58:54 +01:00
Mark Rutland
99cf983cc8 sched/preempt: Add PREEMPT_DYNAMIC using static keys
Where an architecture selects HAVE_STATIC_CALL but not
HAVE_STATIC_CALL_INLINE, each static call has an out-of-line trampoline
which will either branch to a callee or return to the caller.

On such architectures, a number of constraints can conspire to make
those trampolines more complicated and potentially less useful than we'd
like. For example:

* Hardware and software control flow integrity schemes can require the
  addition of "landing pad" instructions (e.g. `BTI` for arm64), which
  will also be present at the "real" callee.

* Limited branch ranges can require that trampolines generate or load an
  address into a register and perform an indirect branch (or at least
  have a slow path that does so). This loses some of the benefits of
  having a direct branch.

* Interaction with SW CFI schemes can be complicated and fragile, e.g.
  requiring that we can recognise idiomatic codegen and remove
  indirections understand, at least until clang proves more helpful
  mechanisms for dealing with this.

For PREEMPT_DYNAMIC, we don't need the full power of static calls, as we
really only need to enable/disable specific preemption functions. We can
achieve the same effect without a number of the pain points above by
using static keys to fold early returns into the preemption functions
themselves rather than in an out-of-line trampoline, effectively
inlining the trampoline into the start of the function.

For arm64, this results in good code generation. For example, the
dynamic_cond_resched() wrapper looks as follows when enabled. When
disabled, the first `B` is replaced with a `NOP`, resulting in an early
return.

| <dynamic_cond_resched>:
|        bti     c
|        b       <dynamic_cond_resched+0x10>     // or `nop`
|        mov     w0, #0x0
|        ret
|        mrs     x0, sp_el0
|        ldr     x0, [x0, #8]
|        cbnz    x0, <dynamic_cond_resched+0x8>
|        paciasp
|        stp     x29, x30, [sp, #-16]!
|        mov     x29, sp
|        bl      <preempt_schedule_common>
|        mov     w0, #0x1
|        ldp     x29, x30, [sp], #16
|        autiasp
|        ret

... compared to the regular form of the function:

| <__cond_resched>:
|        bti     c
|        mrs     x0, sp_el0
|        ldr     x1, [x0, #8]
|        cbz     x1, <__cond_resched+0x18>
|        mov     w0, #0x0
|        ret
|        paciasp
|        stp     x29, x30, [sp, #-16]!
|        mov     x29, sp
|        bl      <preempt_schedule_common>
|        mov     w0, #0x1
|        ldp     x29, x30, [sp], #16
|        autiasp
|        ret

Any architecture which implements static keys should be able to use this
to implement PREEMPT_DYNAMIC with similar cost to non-inlined static
calls. Since this is likely to have greater overhead than (inlined)
static calls, PREEMPT_DYNAMIC is only defaulted to enabled when
HAVE_PREEMPT_DYNAMIC_CALL is selected.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20220214165216.2231574-6-mark.rutland@arm.com
2022-02-19 11:11:08 +01:00
Valentin Schneider
a8b76910e4 preempt: Restore preemption model selection configs
Commit c597bfddc9 ("sched: Provide Kconfig support for default dynamic
preempt mode") changed the selectable config names for the preemption
model. This means a config file must now select

  CONFIG_PREEMPT_BEHAVIOUR=y

rather than

  CONFIG_PREEMPT=y

to get a preemptible kernel. This means all arch config files would need to
be updated - right now they'll all end up with the default
CONFIG_PREEMPT_NONE_BEHAVIOUR.

Rather than touch a good hundred of config files, restore usage of
CONFIG_PREEMPT{_NONE, _VOLUNTARY}. Make them configure:
o The build-time preemption model when !PREEMPT_DYNAMIC
o The default boot-time preemption model when PREEMPT_DYNAMIC

Add siblings of those configs with the _BUILD suffix to unconditionally
designate the build-time preemption model (PREEMPT_DYNAMIC is built with
the "highest" preemption model it supports, aka PREEMPT). Downstream
configs should by now all be depending / selected by CONFIG_PREEMPTION
rather than CONFIG_PREEMPT, so only a few sites need patching up.

Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Marco Elver <elver@google.com>
Link: https://lore.kernel.org/r/20211110202448.4054153-2-valentin.schneider@arm.com
2021-11-11 13:09:33 +01:00
Frederic Weisbecker
c597bfddc9 sched: Provide Kconfig support for default dynamic preempt mode
Currently the boot defined preempt behaviour (aka dynamic preempt)
selects full preemption by default when the "preempt=" boot parameter
is omitted. However distros may rather want to default to either
no preemption or voluntary preemption.

To provide with this flexibility, make dynamic preemption a visible
Kconfig option and adapt the preemption behaviour selected by the user
to either static or dynamic preemption.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210914103134.11309-1-frederic@kernel.org
2021-10-05 15:51:56 +02:00
Ingo Molnar
d2343cb8d1 sched/core: Disable CONFIG_SCHED_CORE by default
This option at minimum adds extra code to the scheduler - even if
it's default unused - and most users wouldn't want it.

Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2021-06-28 22:43:05 +02:00
Peter Zijlstra
7b419f47fa sched: Add CONFIG_SCHED_CORE help text
Hugh noted that the SCHED_CORE Kconfig option could do with a help
text.

Requested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Acked-by: Hugh Dickins <hughd@google.com>
Link: https://lkml.kernel.org/r/YKyhtwhEgvtUDOyl@hirez.programming.kicks-ass.net
2021-06-01 16:00:10 +02:00
Peter Zijlstra
9edeaea1bc sched: Core-wide rq->lock
Introduce the basic infrastructure to have a core wide rq->lock.

This relies on the rq->__lock order being in increasing CPU number
(inside a core). It is also constrained to SMT8 per lockdep (and
SMT256 per preempt_count).

Luckily SMT8 is the max supported SMT count for Linux (Mips, Sparc and
Power are known to have this).

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/YJUNfzSgptjX7tG6@hirez.programming.kicks-ass.net
2021-05-12 11:43:27 +02:00
Michal Hocko
6ef869e064 preempt: Introduce CONFIG_PREEMPT_DYNAMIC
Preemption mode selection is currently hardcoded on Kconfig choices.
Introduce a dedicated option to tune preemption flavour at boot time,

This will be only available on architectures efficiently supporting
static calls in order not to tempt with the feature against additional
overhead that might be prohibitive or undesirable.

CONFIG_PREEMPT_DYNAMIC is automatically selected by CONFIG_PREEMPT if
the architecture provides the necessary support (CONFIG_STATIC_CALL_INLINE,
CONFIG_GENERIC_ENTRY, and provide with __preempt_schedule_function() /
__preempt_schedule_notrace_function()).

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
[peterz: relax requirement to HAVE_STATIC_CALL]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210118141223.123667-5-frederic@kernel.org
2021-02-17 14:12:24 +01:00
Srivatsa S. Bhat (VMware)
d61ca3c25e sched/Kconfig: Fix spelling mistake in user-visible help text
Fix a spelling mistake in the help text for PREEMPT_RT.

Signed-off-by: Srivatsa S. Bhat (VMware) <srivatsa@csail.mit.edu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/157204450499.10518.4542293884417101528.stgit@srivatsa-ubuntu
2019-11-12 11:35:32 +01:00
Thomas Gleixner
b8d3349803 sched/rt, Kconfig: Unbreak def/oldconfig with CONFIG_PREEMPT=y
The merge of the CONFIG_PREEMPT_RT stub renamed CONFIG_PREEMPT to
CONFIG_PREEMPT_LL which causes all defconfigs which have CONFIG_PREEMPT=y
set to fall back to CONFIG_PREEMPT_NONE because CONFIG_PREEMPT depends on
the preemption mode choice wich defaults to NONE. This also affects
oldconfig builds.

So rather than changing 114 defconfig files and being an annoyance to
users, revert the rename and select a new config symbol PREEMPTION. That
keeps everything working smoothly and the revelant ifdef's are going to be
fixed up step by step.

Reported-by: Mark Rutland <mark.rutland@arm.com>
Fixes: a50a3f4b6a ("sched/rt, Kconfig: Introduce CONFIG_PREEMPT_RT")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-07-22 18:05:11 +02:00
Thomas Gleixner
a50a3f4b6a sched/rt, Kconfig: Introduce CONFIG_PREEMPT_RT
Add a new entry to the preemption menu which enables the real-time support
for the kernel. The choice is only enabled when an architecture supports
it.

It selects PREEMPT as the RT features depend on it. To achieve that the
existing PREEMPT choice is renamed to PREEMPT_LL which select PREEMPT as
well.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paul E. McKenney <paulmck@linux.ibm.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Clark Williams <williams@redhat.com>
Acked-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Daniel Wagner <wagi@monom.org>
Acked-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
Acked-by: Julia Cartwright <julia@ni.com>
Acked-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Acked-by: Gratian Crisan <gratian.crisan@ni.com>
Acked-by: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Andrew Morton <akpm@linuxfoundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.21.1907172200190.1778@nanos.tec.linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-18 23:10:57 +02:00
Thomas Gleixner
ec8f24b7fa treewide: Add SPDX license identifier - Makefile/Kconfig
Add SPDX license identifiers to all Make/Kconfig files which:

 - Have no license information of any form

These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:

  GPL-2.0-only

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-21 10:50:46 +02:00
Masahiro Yamada
723679339d kconfig: warn no new line at end of file
It would be nice to warn if a new line is missing at end of file.

We could do this by checkpatch.pl for arbitrary files, but new line
is rather essential as a statement terminator in Kconfig.

The warning message looks like this:

  kernel/Kconfig.preempt:60:warning: no new line at end of file

Currently, kernel/Kconfig.preempt is the only file with no new line
at end of file. Fix it.

I know there are some false negative cases. For example, no warning
is displayed when the last line contains some whitespaces/comments,
but no new line. Yet, this commit works well for most cases.

Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-12-15 17:44:35 +09:00
Christoph Hellwig
87a4c37599 kconfig: include kernel/Kconfig.preempt from init/Kconfig
Almost all architectures include it.  Add a ARCH_NO_PREEMPT symbol to
disable preempt support for alpha, hexagon, non-coldfire m68k and
user mode Linux.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-08-02 08:06:54 +09:00
Raghavendra K T
e335e3eb82 locking/kconfig: Simplify INLINE_SPIN_UNLOCK usage
Get rid of INLINE_SPIN_UNLOCK entirely replacing it with
UNINLINE_SPIN_UNLOCK instead of the reverse meaning.

Whoever wants to change the default spinlock inlining
behavior and uninline the spinlocks for some weird reason,
such as spinlock debugging, paravirt etc. can now all just
select UNINLINE_SPIN_UNLOCK

Original discussion at: https://lkml.org/lkml/2012/3/21/357

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: linux-mips@linux-mips.org
Link: http://lkml.kernel.org/r/20120322095502.30866.75756.sendpatchset@codeblue
[ tidied up the changelog a bit ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-03-23 13:18:57 +01:00
Frederic Weisbecker
bdd4e85dc3 sched: Isolate preempt counting in its own config option
Create a new CONFIG_PREEMPT_COUNT that handles the inc/dec
of preempt count offset independently. So that the offset
can be updated by preempt_disable() and preempt_enable()
even without the need for CONFIG_PREEMPT beeing set.

This prepares to make CONFIG_DEBUG_SPINLOCK_SLEEP working
with !CONFIG_PREEMPT where it currently doesn't detect
code that sleeps inside explicit preemption disabled
sections.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
2011-06-10 15:15:40 +02:00
Ingo Molnar
12d79bafb7 rcu: provide RCU options on non-preempt architectures too
Impact: build fix

Some old architectures still do not use kernel/Kconfig.preempt, so the
moving of the RCU options there broke their build:

 In file included from /home/mingo/tip/include/linux/sem.h:81,
                 from /home/mingo/tip/include/linux/sched.h:69,
                 from /home/mingo/tip/arch/alpha/kernel/asm-offsets.c:9:
 /home/mingo/tip/include/linux/rcupdate.h:62:2: error: #error "Unknown RCU implementation specified to kernel configuration"

Move these options back to init/Kconfig, which every architecture
includes.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-25 09:31:28 +01:00
Paul E. McKenney
64db4cfff9 "Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs.  Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.

This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion.  This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.

Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.

Updates from v9 (http://lkml.org/lkml/2008/12/2/334):

o	Fixes from remainder of line-by-line code walkthrough,
	including comment spelling, initialization, undesirable
	narrowing due to type conversion, removing redundant memory
	barriers, removing redundant local-variable initialization,
	and removing redundant local variables.

	I do not believe that any of these fixes address the CPU-hotplug
	issues that Andi Kleen was seeing, but please do give it a whirl
	in case the machine is smarter than I am.

	A writeup from the walkthrough may be found at the following
	URL, in case you are suffering from terminal insomnia or
	masochism:

	http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf

o	Made rcutree tracing use seq_file, as suggested some time
	ago by Lai Jiangshan.

o	Added a .csv variant of the rcudata debugfs trace file, to allow
	people having thousands of CPUs to drop the data into
	a spreadsheet.	Tested with oocalc and gnumeric.  Updated
	documentation to suit.

Updates from v8 (http://lkml.org/lkml/2008/11/15/139):

o	Fix a theoretical race between grace-period initialization and
	force_quiescent_state() that could occur if more than three
	jiffies were required to carry out the grace-period
	initialization.  Which it might, if you had enough CPUs.

o	Apply Ingo's printk-standardization patch.

o	Substitute local variables for repeated accesses to global
	variables.

o	Fix comment misspellings and redundant (but harmless) increments
	of ->n_rcu_pending (this latter after having explicitly added it).

o	Apply checkpatch fixes.

Updates from v7 (http://lkml.org/lkml/2008/10/10/291):

o	Fixed a number of problems noted by Gautham Shenoy, including
	the cpu-stall-detection bug that he was having difficulty
	convincing me was real.  ;-)

o	Changed cpu-stall detection to wait for ten seconds rather than
	three in order to reduce false positive, as suggested by Ingo
	Molnar.

o	Produced a design document (http://lwn.net/Articles/305782/).
	The act of writing this document uncovered a number of both
	theoretical and "here and now" bugs as noted below.

o	Fix dynticks_nesting accounting confusion, simplify WARN_ON()
	condition, fix kerneldoc comments, and add memory barriers
	in dynticks interface functions.

o	Add more data to tracing.

o	Remove unused "rcu_barrier" field from rcu_data structure.

o	Count calls to rcu_pending() from scheduling-clock interrupt
	to use as a surrogate timebase should jiffies stop counting.

o	Fix a theoretical race between force_quiescent_state() and
	grace-period initialization.  Yes, initialization does have to
	go on for some jiffies for this race to occur, but given enough
	CPUs...

Updates from v6 (http://lkml.org/lkml/2008/9/23/448):

o	Fix a number of checkpatch.pl complaints.

o	Apply review comments from Ingo Molnar and Lai Jiangshan
	on the stall-detection code.

o	Fix several bugs in !CONFIG_SMP builds.

o	Fix a misspelled config-parameter name so that RCU now announces
	at boot time if stall detection is configured.

o	Run tests on numerous combinations of configurations parameters,
	which after the fixes above, now build and run correctly.

Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):

o	Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
	changeset some time ago, and finally got around to retesting
	this option).

o	Fix some tracing bugs in rcupreempt that caused incorrect
	totals to be printed.

o	I now test with a more brutal random-selection online/offline
	script (attached).  Probably more brutal than it needs to be
	on the people reading it as well, but so it goes.

o	A number of optimizations and usability improvements:

	o	Make rcu_pending() ignore the grace-period timeout when
		there is no grace period in progress.

	o	Make force_quiescent_state() avoid going for a global
		lock in the case where there is no grace period in
		progress.

	o	Rearrange struct fields to improve struct layout.

	o	Make call_rcu() initiate a grace period if RCU was
		idle, rather than waiting for the next scheduling
		clock interrupt.

	o	Invoke rcu_irq_enter() and rcu_irq_exit() only when
		idle, as suggested by Andi Kleen.  I still don't
		completely trust this change, and might back it out.

	o	Make CONFIG_RCU_TRACE be the single config variable
		manipulated for all forms of RCU, instead of the prior
		confusion.

	o	Document tracing files and formats for both rcupreempt
		and rcutree.

Updates from v4 for those missing v5 given its bad subject line:

o	Separated dynticks interface so that NMIs and irqs call separate
	functions, greatly simplifying it.  In particular, this code
	no longer requires a proof of correctness.  ;-)

o	Separated dynticks state out into its own per-CPU structure,
	avoiding the duplicated accounting.

o	The case where a dynticks-idle CPU runs an irq handler that
	invokes call_rcu() is now correctly handled, forcing that CPU
	out of dynticks-idle mode.

o	Review comments have been applied (thank you all!!!).
	For but one example, fixed the dynticks-ordering issue that
	Manfred pointed out, saving me much debugging.  ;-)

o	Adjusted rcuclassic and rcupreempt to handle dynticks changes.

Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel.  It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space.  That said,
I have already gratefully stolen quite a few of Manfred's ideas.

This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy.  Defaults to 32 on 32-bit machines and 64 on
64-bit machines.  If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy.  By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware.  Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems.  I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future.  (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)

In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors.  This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.

Some shortcomings:

o	More bugs will probably surface as a result of an ongoing
	line-by-line code inspection.

	Patches will be provided as required.

o	There are probably hangs, rcutorture failures, &c.  Seems
	quite stable on a 128-CPU machine, but that is kind of small
	compared to 4096 CPUs.  However, seems to do better than
	mainline.

	Patches will be provided as required.

o	The memory footprint of this version is several KB larger
	than rcuclassic.

	A separate UP-only rcutiny patch will be provided, which will
	reduce the memory footprint significantly, even compared
	to the old rcuclassic.  One such patch passes light testing,
	and has a memory footprint smaller even than rcuclassic.
	Initial reaction from various embedded guys was "it is not
	worth it", so am putting it aside.

Credits:

o	Manfred Spraul for ideas, review comments, and bugs spotted,
	as well as some good friendly competition.  ;-)

o	Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
	Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
	for reviews and comments.

o	Thomas Gleixner for much-needed help with some timer issues
	(see patches below).

o	Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
	Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
	Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
	alive despite my heavy abuse^Wtesting.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-18 21:56:04 +01:00
Paul E. McKenney
21bbb39c37 rcu: move PREEMPT_RCU config option back under PREEMPT
The original preemptible-RCU patch put the choice between classic and
preemptible RCU into kernel/Kconfig.preempt, which resulted in build failures
on machines not supporting CONFIG_PREEMPT.  This choice was therefore moved to
init/Kconfig, which worked, but placed the choice between classic and
preemptible RCU at the top level, a very obtuse choice indeed.

This patch changes from the Kconfig "choice" mechanism to a pair of booleans,
only one of which (CONFIG_PREEMPT_RCU) is user-visible, and is located in
kernel/Kconfig.preempt, where one would expect it to be.  The other
(CONFIG_CLASSIC_RCU) is in init/Kconfig so that it is available to all
architectures, hopefully avoiding build breakage.  Thanks to Roman Zippel for
suggesting this approach.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Dipankar Sarma <dipankar@in.ibm.com>
Cc: Josh Triplett <josh@freedesktop.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-10 18:01:20 -07:00
Ingo Molnar
6478d8800b sched: remove the !PREEMPT_BKL code
remove the !PREEMPT_BKL code.

this removes 160 lines of legacy code.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:33 +01:00
Ingo Molnar
58b8a73ab8 sched: make PREEMPT_BKL the default
make PREEMPT_BKL the default.

precursor to removal of the !PREEMPT_BKL code.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:33 +01:00
Paul E. McKenney
e260be673a Preempt-RCU: implementation
This patch implements a new version of RCU which allows its read-side
critical sections to be preempted. It uses a set of counter pairs
to keep track of the read-side critical sections and flips them
when all tasks exit read-side critical section. The details
of this implementation can be found in this paper -

	http://www.rdrop.com/users/paulmck/RCU/OLSrtRCU.2006.08.11a.pdf

and the article-

	http://lwn.net/Articles/253651/

This patch was developed as a part of the -rt kernel development and
meant to provide better latencies when read-side critical sections of
RCU don't disable preemption.  As a consequence of keeping track of RCU
readers, the readers have a slight overhead (optimizations in the paper).
This implementation co-exists with the "classic" RCU implementations
and can be switched to at compiler.

Also includes RCU tracing summarized in debugfs.

[ akpm@linux-foundation.org: build fixes on non-preempt architectures ]

Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Dipankar Sarma <dipankar@in.ibm.com>
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Reviewed-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:24 +01:00
Avi Kivity
e98c320291 Move PREEMPT_NOTIFIERS into an always-included Kconfig
Kconfig.preempt is not included on some archs (for example, m68k).  On those
archs, the Kconfig machinery complains that KVM selects an undefined symbol
PREEMPT_NOTIFIERS (which lives in Kconfig.preempt).

So move the offending symbol into a Kconfig file which is included by
everyone.

Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:42:55 -07:00
Avi Kivity
e107be36ef [PATCH] sched: arch preempt notifier mechanism
This adds a general mechanism whereby a task can request the scheduler to
notify it whenever it is preempted or scheduled back in.  This allows the
task to swap any special-purpose registers like the fpu or Intel's VT
registers.

Signed-off-by: Avi Kivity <avi@qumranet.com>
[ mingo@elte.hu: fixes, cleanups ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-07-26 13:40:43 +02:00
David Sterba
3dde6ad8fc Fix trivial typos in Kconfig* files
Fix several typos in help text in Kconfig* files.

Signed-off-by: David Sterba <dave@jikos.cz>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
2007-05-09 07:12:20 +02:00
Ingo Molnar
f8cbd99bd3 [PATCH] sched: voluntary kernel preemption
This patch adds a new preemption model: 'Voluntary Kernel Preemption'.  The
3 models can be selected from a new menu:

            (X) No Forced Preemption (Server)
            ( ) Voluntary Kernel Preemption (Desktop)
            ( ) Preemptible Kernel (Low-Latency Desktop)

we still default to the stock (Server) preemption model.

Voluntary preemption works by adding a cond_resched()
(reschedule-if-needed) call to every might_sleep() check.  It is lighter
than CONFIG_PREEMPT - at the cost of not having as tight latencies.  It
represents a different latency/complexity/overhead tradeoff.

It has no runtime impact at all if disabled.  Here are size stats that show
how the various preemption models impact the kernel's size:

    text    data     bss     dec     hex filename
 3618774  547184  179896 4345854  424ffe vmlinux.stock
 3626406  547184  179896 4353486  426dce vmlinux.voluntary   +0.2%
 3748414  548640  179896 4476950  445016 vmlinux.preempt     +3.5%

voluntary-preempt is +0.2% of .text, preempt is +3.5%.

This feature has been tested for many months by lots of people (and it's
also included in the RHEL4 distribution and earlier variants were in Fedora
as well), and it's intended for users and distributions who dont want to
use full-blown CONFIG_PREEMPT for one reason or another.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 16:24:45 -07:00
Ingo Molnar
f704f56af9 [PATCH] enable PREEMPT_BKL on !PREEMPT+SMP too
The only sane way to clean up the current 3 lock_kernel() variants seems to
be to remove the spinlock-based BKL implementations altogether, and to keep
the semaphore-based one only.  If we dont want to do that for whatever
reason then i'm afraid we have to live with the current complexity.  (but
i'm open for other cleanup suggestions as well.)

To explore this possibility we'll (at a minimum) have to know whether the
semaphore-based BKL works fine on plain SMP too.  The patch below enables
this.

The patch may make sense in isolation as well, as it might bring
performance benefits: code that would formerly spin on the BKL spinlock
will now schedule away and give up the CPU.  It might introduce performance
regressions as well, if any performance-critical code uses the BKL heavily
and gets overscheduled due to the semaphore.  I very much hope there is no
such performance-critical codepath left though.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 16:24:45 -07:00
Ingo Molnar
cc19ca86a0 [PATCH] consolidate PREEMPT options into kernel/Kconfig.preempt
This patch consolidates the CONFIG_PREEMPT and CONFIG_PREEMPT_BKL
preemption options into kernel/Kconfig.preempt.  This, besides reducing
source-code, also enables more centralized tweaking of preemption related
options.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 16:24:45 -07:00