1
Commit Graph

1399 Commits

Author SHA1 Message Date
Linus Torvalds
b5a24181e4 Ring buffer fixes for 6.12:
- Revert: "ring-buffer: Do not have boot mapped buffers hook to CPU hotplug"
 
   A crash that happened on cpu hotplug was actually caused by the incorrect
   ref counting that was fixed by commit 2cf9733891 ("ring-buffer: Fix
   refcount setting of boot mapped buffers"). The removal of calling cpu
   hotplug callbacks on memory mapped buffers was not an issue even though
   the tests at the time pointed toward it. But in fact, there's a check in
   that code that tests to see if the buffers are already allocated or not,
   and will not allocate them again if they are. Not calling the cpu hotplug
   callbacks ended up not initializing the non boot CPU buffers.
 
   Simply remove that change.
 
 - Clear all CPU buffers when starting tracing in a boot mapped buffer
 
   To properly process events from a previous boot, the address space needs to
   be accounted for due to KASLR and the events in the buffer are updated
   accordingly when read. This also requires that when the buffer has tracing
   enabled again in the current boot that the buffers are reset so that events
   from the previous boot do not interact with the events of the current boot
   and cause confusing due to not having the proper meta data.
 
   It was found that if a CPU is taken offline, that its per CPU buffer is not
   reset when tracing starts. This allows for events to be from both the
   previous boot and the current boot to be in the buffer at the same time.
   Clear all CPU buffers when tracing is started in a boot mapped buffer.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZzdr5hQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qq3gAQDsqNNld3D3wW72VMJ52d9zdBXFUdrV
 hbszve+PSj/wuAD/TeCp0BcI8Az+G7/enMXnlEugLo3XKLr/YvPQ3nlb8QA=
 =VR4z
 -----END PGP SIGNATURE-----

Merge tag 'trace-ringbuffer-v6.12-rc7-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull ring buffer fixes from Steven Rostedt:

 - Revert: "ring-buffer: Do not have boot mapped buffers hook to CPU
   hotplug"

   A crash that happened on cpu hotplug was actually caused by the
   incorrect ref counting that was fixed by commit 2cf9733891
   ("ring-buffer: Fix refcount setting of boot mapped buffers"). The
   removal of calling cpu hotplug callbacks on memory mapped buffers was
   not an issue even though the tests at the time pointed toward it. But
   in fact, there's a check in that code that tests to see if the
   buffers are already allocated or not, and will not allocate them
   again if they are. Not calling the cpu hotplug callbacks ended up not
   initializing the non boot CPU buffers.

   Simply remove that change.

 - Clear all CPU buffers when starting tracing in a boot mapped buffer

   To properly process events from a previous boot, the address space
   needs to be accounted for due to KASLR and the events in the buffer
   are updated accordingly when read. This also requires that when the
   buffer has tracing enabled again in the current boot that the buffers
   are reset so that events from the previous boot do not interact with
   the events of the current boot and cause confusing due to not having
   the proper meta data.

   It was found that if a CPU is taken offline, that its per CPU buffer
   is not reset when tracing starts. This allows for events to be from
   both the previous boot and the current boot to be in the buffer at
   the same time. Clear all CPU buffers when tracing is started in a
   boot mapped buffer.

* tag 'trace-ringbuffer-v6.12-rc7-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  tracing/ring-buffer: Clear all memory mapped CPU ring buffers on first recording
  Revert: "ring-buffer: Do not have boot mapped buffers hook to CPU hotplug"
2024-11-16 08:12:43 -08:00
Steven Rostedt
09663753bb tracing/ring-buffer: Clear all memory mapped CPU ring buffers on first recording
The events of a memory mapped ring buffer from the previous boot should
not be mixed in with events from the current boot. There's meta data that
is used to handle KASLR so that function names can be shown properly.

Also, since the timestamps of the previous boot have no meaning to the
timestamps of the current boot, having them intermingled in a buffer can
also cause confusion because there could possibly be events in the future.

When a trace is activated the meta data is reset so that the pointers of
are now processed for the new address space. The trace buffers are reset
when tracing starts for the first time. The problem here is that the reset
only happens on online CPUs. If a CPU is offline, it does not get reset.

To demonstrate the issue, a previous boot had tracing enabled in the boot
mapped ring buffer on reboot. On the following boot, tracing has not been
started yet so the function trace from the previous boot is still visible.

 # trace-cmd show -B boot_mapped -c 3 | tail
          <idle>-0       [003] d.h2.   156.462395: __rcu_read_lock <-cpu_emergency_disable_virtualization
          <idle>-0       [003] d.h2.   156.462396: vmx_emergency_disable_virtualization_cpu <-cpu_emergency_disable_virtualization
          <idle>-0       [003] d.h2.   156.462396: __rcu_read_unlock <-__sysvec_reboot
          <idle>-0       [003] d.h2.   156.462397: stop_this_cpu <-__sysvec_reboot
          <idle>-0       [003] d.h2.   156.462397: set_cpu_online <-stop_this_cpu
          <idle>-0       [003] d.h2.   156.462397: disable_local_APIC <-stop_this_cpu
          <idle>-0       [003] d.h2.   156.462398: clear_local_APIC <-disable_local_APIC
          <idle>-0       [003] d.h2.   156.462574: mcheck_cpu_clear <-stop_this_cpu
          <idle>-0       [003] d.h2.   156.462575: mce_intel_feature_clear <-stop_this_cpu
          <idle>-0       [003] d.h2.   156.462575: lmce_supported <-mce_intel_feature_clear

Now, if CPU 3 is taken offline, and tracing is started on the memory
mapped ring buffer, the events from the previous boot in the CPU 3 ring
buffer is not reset. Now those events are using the meta data from the
current boot and produces just hex values.

 # echo 0 > /sys/devices/system/cpu/cpu3/online
 # trace-cmd start -B boot_mapped -p function
 # trace-cmd show -B boot_mapped -c 3 | tail
          <idle>-0       [003] d.h2.   156.462395: 0xffffffff9a1e3194 <-0xffffffff9a0f655e
          <idle>-0       [003] d.h2.   156.462396: 0xffffffff9a0a1d24 <-0xffffffff9a0f656f
          <idle>-0       [003] d.h2.   156.462396: 0xffffffff9a1e6bc4 <-0xffffffff9a0f7323
          <idle>-0       [003] d.h2.   156.462397: 0xffffffff9a0d12b4 <-0xffffffff9a0f732a
          <idle>-0       [003] d.h2.   156.462397: 0xffffffff9a1458d4 <-0xffffffff9a0d12e2
          <idle>-0       [003] d.h2.   156.462397: 0xffffffff9a0faed4 <-0xffffffff9a0d12e7
          <idle>-0       [003] d.h2.   156.462398: 0xffffffff9a0faaf4 <-0xffffffff9a0faef2
          <idle>-0       [003] d.h2.   156.462574: 0xffffffff9a0e3444 <-0xffffffff9a0d12ef
          <idle>-0       [003] d.h2.   156.462575: 0xffffffff9a0e4964 <-0xffffffff9a0d12ef
          <idle>-0       [003] d.h2.   156.462575: 0xffffffff9a0e3fb0 <-0xffffffff9a0e496f

Reset all CPUs when starting a boot mapped ring buffer for the first time,
and not just the online CPUs.

Fixes: 7a1d1e4b96 ("tracing/ring-buffer: Add last_boot_info file to boot instance")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-11-14 11:54:34 -05:00
Kalesh Singh
fa17cb4b3b tracing: Document tracefs gid mount option
Commit ee7f366699 ("tracefs: Have new files inherit the ownership of
their parent") and commit 48b27b6b51 ("tracefs: Set all files to the
same group ownership as the mount option") introduced a new gid mount
option that allows specifying a group to apply to all entries in tracefs.

Document this in the tracing readme.

Cc: Eric Sandeen <sandeen@redhat.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Ali Zahraee <ahzahraee@gmail.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lore.kernel.org/20241030171928.4168869-3-kaleshsingh@google.com
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-11-01 08:57:17 -04:00
Steven Rostedt
2cf9733891 ring-buffer: Fix refcount setting of boot mapped buffers
A ring buffer which has its buffered mapped at boot up to fixed memory
should not be freed. Other buffers can be. The ref counting setup was
wrong for both. It made the not mapped buffers ref count have zero, and the
boot mapped buffer a ref count of 1. But an normally allocated buffer
should be 1, where it can be removed.

Keep the ref count of a normal boot buffer with its setup ref count (do
not decrement it), and increment the fixed memory boot mapped buffer's ref
count.

Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241011165224.33dd2624@gandalf.local.home
Fixes: e645535a95 ("tracing: Add option to use memmapped memory for trace boot instance")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-14 14:30:59 -04:00
Steven Rostedt
50a3242d84 tracing: Fix trace_check_vprintf() when tp_printk is used
When the tp_printk kernel command line is used, the trace events go
directly to printk(). It is still checked via the trace_check_vprintf()
function to make sure the pointers of the trace event are legit.

The addition of reading buffers from previous boots required adding a
delta between the addresses of the previous boot and the current boot so
that the pointers in the old buffer can still be used. But this required
adding a trace_array pointer to acquire the delta offsets.

The tp_printk code does not provide a trace_array (tr) pointer, so when
the offsets were examined, a NULL pointer dereference happened and the
kernel crashed.

If the trace_array does not exist, just default the delta offsets to zero,
as that also means the trace event is not being read from a previous boot.

Link: https://lore.kernel.org/all/Zv3z5UsG_jsO9_Tb@aschofie-mobl2.lan/

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241003104925.4e1b1fd9@gandalf.local.home
Fixes: 07714b4bb3 ("tracing: Handle old buffer mappings for event strings and functions")
Reported-by: Alison Schofield <alison.schofield@intel.com>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-03 16:43:22 -04:00
Al Viro
cb787f4ac0 [tree-wide] finally take no_llseek out
no_llseek had been defined to NULL two years ago, in commit 868941b144
("fs: remove no_llseek")

To quote that commit,

  At -rc1 we'll need do a mechanical removal of no_llseek -

  git grep -l -w no_llseek | grep -v porting.rst | while read i; do
	sed -i '/\<no_llseek\>/d' $i
  done

  would do it.

Unfortunately, that hadn't been done.  Linus, could you do that now, so
that we could finally put that thing to rest? All instances are of the
form
	.llseek = no_llseek,
so it's obviously safe.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-09-27 08:18:43 -07:00
Linus Torvalds
af9c191ac2 ring-buffer: Updates for v6.12:
- Merged v6.11-rc3 into trace/ring-buffer/core
 
   The v6.10 ring buffer pull request was not made due to Mathieu Desnoyers
   making a comment to the pull request. Mathieu and I resolved it on IRC,
   but we did not let Linus know that it was resolved. Linus did not do the
   pull thinking it still had some unresolved issues.
 
   The ring buffer work for 6.12 was dependent on both this pull request as
   well as the reserve_mem kernel command line option that was going upstream
   through the memory management tree. The ring buffer repo was being used by
   others so it could not be rebased. In order to continue the work, the
   v6.11-rc3 branch was pulled in to get access to the reserve_mem work.
 
 This has the 6.11 pull request that did not make it into 6.11, which was:
 
   tracing/ring-buffer: Have persistent buffer across reboots
 
   This allows for the tracing instance ring buffer to stay persistent across
   reboots. The way this is done is by adding to the kernel command line:
 
     trace_instance=boot_map@0x285400000:12M
 
   This will reserve 12 megabytes at the address 0x285400000, and then map
   the tracing instance "boot_map" ring buffer to that memory. This will
   appear as a normal instance in the tracefs system:
 
     /sys/kernel/tracing/instances/boot_map
 
   A user could enable tracing in that instance, and on reboot or kernel
   crash, if the memory is not wiped by the firmware, it will recreate the
   trace in that instance. For example, if one was debugging a shutdown of a
   kernel reboot:
 
    # cd /sys/kernel/tracing
    # echo function > instances/boot_map/current_tracer
    # reboot
   [..]
    # cd /sys/kernel/tracing
    # tail instances/boot_map/trace
          swapper/0-1       [000] d..1.   164.549800: restore_boot_irq_mode <-native_machine_shutdown
          swapper/0-1       [000] d..1.   164.549801: native_restore_boot_irq_mode <-native_machine_shutdown
          swapper/0-1       [000] d..1.   164.549802: disconnect_bsp_APIC <-native_machine_shutdown
          swapper/0-1       [000] d..1.   164.549811: hpet_disable <-native_machine_shutdown
          swapper/0-1       [000] d..1.   164.549812: iommu_shutdown_noop <-native_machine_restart
          swapper/0-1       [000] d..1.   164.549813: native_machine_emergency_restart <-__do_sys_reboot
          swapper/0-1       [000] d..1.   164.549813: tboot_shutdown <-native_machine_emergency_restart
          swapper/0-1       [000] d..1.   164.549820: acpi_reboot <-native_machine_emergency_restart
          swapper/0-1       [000] d..1.   164.549821: acpi_reset <-acpi_reboot
          swapper/0-1       [000] d..1.   164.549822: acpi_os_write_port <-acpi_reboot
 
   On reboot, the buffer is examined to make sure it is valid. The validation
   check even steps through every event to make sure the meta data of the
   event is correct. If any test fails, it will simply reset the buffer, and
   the buffer will be empty on boot.
 
 The new changes for 6.12 are:
 
 - Allow the tracing persistent boot buffer to use the "reserve_mem" option
 
   Instead of having the admin find a physical address to store the persistent
   buffer, which can be very tedious if they have to administrate several
   different machines, allow them to use the "reserve_mem" option that will
   find a location for them. It is not as reliable because of KASLR, as the
   loading of the kernel in different locations can cause the memory
   allocated to be inconsistent. Booting with "nokaslr" can make reserve_mem
   more reliable.
 
 - Have function graph tracer handle offsets from a previous boot.
 
   The ring buffer output from a previous boot may have different addresses
   due to kaslr. Have the function graph tracer handle these by using the
   delta from the previous boot to the new boot address space.
 
 - Only reset the saved meta offset when the buffer is started or reset
 
   In the persistent memory meta data, it holds the previous address space
   information, so that it can calculate the delta to have function tracing
   work. But this gets updated after being read to hold the new address
   space. But if the buffer isn't used for that boot, on reboot, the delta is
   now calculated from the previous boot and not the boot that holds the data
   in the ring buffer. This causes the functions not to be shown. Do not save
   the address space information of the current kernel until it is being
   recorded.
 
 - Add a magic variable to test the valid meta data
 
   Add a magic variable in the meta data that can also be used for
   validation. The validator of the previous buffer doesn't need this magic
   data, but it can be used if the meta data is changed by a new kernel, which
   may have the same format that passes the validator but is used
   differently. This magic number can also be used as a "versioning" of the
   meta data.
 
 - Align user space mapped ring buffer sub buffers to improve TLB entries
 
   Linus mentioned that the mapped ring buffer sub buffers were misaligned
   between the meta page and the sub-buffers, so that if the sub-buffers were
   bigger than PAGE_SIZE, it wouldn't allow the TLB to use bigger entries.
 
 - Add new kernel command line "traceoff" to disable tracing on boot for instances
 
   If tracing is enabled for a boot instance, there needs a way to be able to
   disable it on boot so that new events do not get entered into the ring
   buffer and be mixed with events from a previous boot, as that can be
   confusing.
 
 - Allow trace_printk() to go to other instances
 
   Currently, trace_printk() can only go to the top level instance. When
   debugging with a persistent buffer, it is really useful to be able to add
   trace_printk() to go to that buffer, so that you have access to them after
   a crash.
 
 - Do not use "bin_printk()" for traces to a boot instance
 
   The bin_printk() saves only a pointer to the printk format in the ring
   buffer, as the reader of the buffer can still have access to it. But this
   is not the case if the buffer is from a previous boot. If the
   trace_printk() is going to a "persistent" buffer, it will use the slower
   version that writes the printk format into the buffer.
 
 - Add command line option to allow trace_printk() to go to an instance
 
   Allow the kernel command line to define which instance the trace_printk()
   goes to, instead of forcing the admin to set it for every boot via the
   tracefs options.
 
 - Start a document that explains how to use tracefs to debug the kernel
 
 - Add some more kernel selftests to test user mapped ring buffer
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZu/PxxQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qowiAQCx86Nm48aCACjrvGWCFb+jgQZn8QdO
 MeK15Fcc5C3b5gEAkJkDKqtul7ybI9+vq+3yNzdl7pO7Y7+pCNzz3PfVaQA=
 =Ce81
 -----END PGP SIGNATURE-----

Merge tag 'trace-ring-buffer-v6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull ring-buffer updates from Steven Rostedt:

 - tracing/ring-buffer: persistent buffer across reboots

   This allows for the tracing instance ring buffer to stay persistent
   across reboots. The way this is done is by adding to the kernel
   command line:

     trace_instance=boot_map@0x285400000:12M

   This will reserve 12 megabytes at the address 0x285400000, and then
   map the tracing instance "boot_map" ring buffer to that memory. This
   will appear as a normal instance in the tracefs system:

     /sys/kernel/tracing/instances/boot_map

   A user could enable tracing in that instance, and on reboot or kernel
   crash, if the memory is not wiped by the firmware, it will recreate
   the trace in that instance. For example, if one was debugging a
   shutdown of a kernel reboot:

     # cd /sys/kernel/tracing
     # echo function > instances/boot_map/current_tracer
     # reboot
     [..]
     # cd /sys/kernel/tracing
     # tail instances/boot_map/trace
           swapper/0-1       [000] d..1.   164.549800: restore_boot_irq_mode <-native_machine_shutdown
           swapper/0-1       [000] d..1.   164.549801: native_restore_boot_irq_mode <-native_machine_shutdown
           swapper/0-1       [000] d..1.   164.549802: disconnect_bsp_APIC <-native_machine_shutdown
           swapper/0-1       [000] d..1.   164.549811: hpet_disable <-native_machine_shutdown
           swapper/0-1       [000] d..1.   164.549812: iommu_shutdown_noop <-native_machine_restart
           swapper/0-1       [000] d..1.   164.549813: native_machine_emergency_restart <-__do_sys_reboot
           swapper/0-1       [000] d..1.   164.549813: tboot_shutdown <-native_machine_emergency_restart
           swapper/0-1       [000] d..1.   164.549820: acpi_reboot <-native_machine_emergency_restart
           swapper/0-1       [000] d..1.   164.549821: acpi_reset <-acpi_reboot
           swapper/0-1       [000] d..1.   164.549822: acpi_os_write_port <-acpi_reboot

   On reboot, the buffer is examined to make sure it is valid. The
   validation check even steps through every event to make sure the meta
   data of the event is correct. If any test fails, it will simply reset
   the buffer, and the buffer will be empty on boot.

 - Allow the tracing persistent boot buffer to use the "reserve_mem"
   option

   Instead of having the admin find a physical address to store the
   persistent buffer, which can be very tedious if they have to
   administrate several different machines, allow them to use the
   "reserve_mem" option that will find a location for them. It is not as
   reliable because of KASLR, as the loading of the kernel in different
   locations can cause the memory allocated to be inconsistent. Booting
   with "nokaslr" can make reserve_mem more reliable.

 - Have function graph tracer handle offsets from a previous boot.

   The ring buffer output from a previous boot may have different
   addresses due to kaslr. Have the function graph tracer handle these
   by using the delta from the previous boot to the new boot address
   space.

 - Only reset the saved meta offset when the buffer is started or reset

   In the persistent memory meta data, it holds the previous address
   space information, so that it can calculate the delta to have
   function tracing work. But this gets updated after being read to hold
   the new address space. But if the buffer isn't used for that boot, on
   reboot, the delta is now calculated from the previous boot and not
   the boot that holds the data in the ring buffer. This causes the
   functions not to be shown. Do not save the address space information
   of the current kernel until it is being recorded.

 - Add a magic variable to test the valid meta data

   Add a magic variable in the meta data that can also be used for
   validation. The validator of the previous buffer doesn't need this
   magic data, but it can be used if the meta data is changed by a new
   kernel, which may have the same format that passes the validator but
   is used differently. This magic number can also be used as a
   "versioning" of the meta data.

 - Align user space mapped ring buffer sub buffers to improve TLB
   entries

   Linus mentioned that the mapped ring buffer sub buffers were
   misaligned between the meta page and the sub-buffers, so that if the
   sub-buffers were bigger than PAGE_SIZE, it wouldn't allow the TLB to
   use bigger entries.

 - Add new kernel command line "traceoff" to disable tracing on boot for
   instances

   If tracing is enabled for a boot instance, there needs a way to be
   able to disable it on boot so that new events do not get entered into
   the ring buffer and be mixed with events from a previous boot, as
   that can be confusing.

 - Allow trace_printk() to go to other instances

   Currently, trace_printk() can only go to the top level instance. When
   debugging with a persistent buffer, it is really useful to be able to
   add trace_printk() to go to that buffer, so that you have access to
   them after a crash.

 - Do not use "bin_printk()" for traces to a boot instance

   The bin_printk() saves only a pointer to the printk format in the
   ring buffer, as the reader of the buffer can still have access to it.
   But this is not the case if the buffer is from a previous boot. If
   the trace_printk() is going to a "persistent" buffer, it will use the
   slower version that writes the printk format into the buffer.

 - Add command line option to allow trace_printk() to go to an instance

   Allow the kernel command line to define which instance the
   trace_printk() goes to, instead of forcing the admin to set it for
   every boot via the tracefs options.

 - Start a document that explains how to use tracefs to debug the kernel

 - Add some more kernel selftests to test user mapped ring buffer

* tag 'trace-ring-buffer-v6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (28 commits)
  selftests/ring-buffer: Handle meta-page bigger than the system
  selftests/ring-buffer: Verify the entire meta-page padding
  tracing/Documentation: Start a document on how to debug with tracing
  tracing: Add option to set an instance to be the trace_printk destination
  tracing: Have trace_printk not use binary prints if boot buffer
  tracing: Allow trace_printk() to go to other instance buffers
  tracing: Add "traceoff" flag to boot time tracing instances
  ring-buffer: Align meta-page to sub-buffers for improved TLB usage
  ring-buffer: Add magic and struct size to boot up meta data
  ring-buffer: Don't reset persistent ring-buffer meta saved addresses
  tracing/fgraph: Have fgraph handle previous boot function addresses
  tracing: Allow boot instances to use reserve_mem boot memory
  tracing: Fix ifdef of snapshots to not prevent last_boot_info file
  ring-buffer: Use vma_pages() helper function
  tracing: Fix NULL vs IS_ERR() check in enable_instances()
  tracing: Add last boot delta offset for stack traces
  tracing: Update function tracing output for previous boot buffer
  tracing: Handle old buffer mappings for event strings and functions
  tracing/ring-buffer: Add last_boot_info file to boot instance
  ring-buffer: Save text and data locations in mapped meta data
  ...
2024-09-22 09:47:16 -07:00
Andy Shevchenko
4e378158e5 tracing: Drop unused helper function to fix the build
A helper function defined but not used. This, in particular,
prevents kernel builds with clang, `make W=1` and CONFIG_WERROR=y:

kernel/trace/trace.c:2229:19: error: unused function 'run_tracer_selftest' [-Werror,-Wunused-function]
 2229 | static inline int run_tracer_selftest(struct tracer *type)
      |                   ^~~~~~~~~~~~~~~~~~~

Fix this by dropping unused functions.

See also commit 6863f5643d ("kbuild: allow Clang to find unused static
inline functions for W=1 build").

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Bill Wendling <morbo@google.com>
Cc: Justin Stitt <justinstitt@google.com>
Link: https://lore.kernel.org/20240909105314.928302-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-09-09 16:04:25 -04:00
Zheng Yejian
49aa8a1f4d tracing: Avoid possible softlockup in tracing_iter_reset()
In __tracing_open(), when max latency tracers took place on the cpu,
the time start of its buffer would be updated, then event entries with
timestamps being earlier than start of the buffer would be skipped
(see tracing_iter_reset()).

Softlockup will occur if the kernel is non-preemptible and too many
entries were skipped in the loop that reset every cpu buffer, so add
cond_resched() to avoid it.

Cc: stable@vger.kernel.org
Fixes: 2f26ebd549 ("tracing: use timestamp to determine start of latency traces")
Link: https://lore.kernel.org/20240827124654.3817443-1-zhengyejian@huaweicloud.com
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Zheng Yejian <zhengyejian@huaweicloud.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-09-05 10:18:48 -04:00
Steven Rostedt
ef2bd81d0c tracing: Add option to set an instance to be the trace_printk destination
Add a option "trace_printk_dest" that will make the tracing instance the
location that trace_printk() will go to. This is useful if the
trace_printk or one of the top level tracers is too noisy and there's a
need to separate the two. Then an instance can be created, the
trace_printk can be set to go there instead, where it will not be lost in
the noise of the top level tracer.

Note, only one instance can be the destination of trace_printk at a time.
If an instance sets this flag, the instance that had it set will have it
cleared. There is always one instance that has this set. By default, that
is the top instance. This flag cannot be cleared from the top instance.
Doing so will result in an -EINVAL. The only way this flag can be cleared
from the top instance is by another instance setting it.

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Alexander Aring <aahringo@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lgoncalv@redhat.com>
Cc: Tomas Glozar <tglozar@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "Jonathan Corbet" <corbet@lwn.net>
Link: https://lore.kernel.org/20240823014019.545459018@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-08-26 13:54:08 -04:00
Steven Rostedt
9b7bdf6f6e tracing: Have trace_printk not use binary prints if boot buffer
If the persistent boot mapped ring buffer is used for trace_printk(),
force it to not use the binary versions. trace_printk() by default uses
bin_printf() that only saves the pointer to the format and not the format
itself inside the ring buffer. But for a persistent buffer that is read
after reboot, the pointers to the format strings may not be the same, or
worse, not even exist! Instead, just force the more robust, but slower,
version that does the formatting before saving into the ring buffer.

The boot mapped buffer can now be used for trace_printk and friends!

Using the trace_printk() and the persistent buffer was used to debug the
issue with the osnoise tracer:

Link: https://lore.kernel.org/all/20240822103443.6a6ae051@gandalf.local.home/

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Alexander Aring <aahringo@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lgoncalv@redhat.com>
Cc: Tomas Glozar <tglozar@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "Jonathan Corbet" <corbet@lwn.net>
Link: https://lore.kernel.org/20240823014019.386925800@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-08-26 13:54:08 -04:00
Steven Rostedt
ddb8ea9e5a tracing: Allow trace_printk() to go to other instance buffers
Currently, trace_printk() just goes to the top level ring buffer. But
there may be times that it should go to one of the instances created by
the kernel command line.

Add a new trace_instance flag: traceprintk (also can use "printk" or
"trace_printk" as people tend to forget the actual flag name).

  trace_instance=foo^traceprintk

Will assign the trace_printk to this buffer at boot up.

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Alexander Aring <aahringo@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lgoncalv@redhat.com>
Cc: Tomas Glozar <tglozar@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "Jonathan Corbet" <corbet@lwn.net>
Link: https://lore.kernel.org/20240823014019.226694946@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-08-26 13:54:08 -04:00
Steven Rostedt
b6fc31b687 tracing: Add "traceoff" flag to boot time tracing instances
Add a "flags" delimiter (^) to the "trace_instance" kernel command line
parameter, and add the "traceoff" flag. The format is:

   trace_instance=<name>[^<flag1>[^<flag2>]][@<memory>][,<events>]

The code allows for more than one flag to be added, but currently only
"traceoff" is done so.

The motivation for this change came from debugging with the persistent
ring buffer and having trace_printk() writing to it. The trace_printk
calls are always enabled, and the boot after the crash was having the
unwanted trace_printks from the current boot inject into the ring buffer
with the trace_printks of the crash kernel, making the output very
confusing.

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Alexander Aring <aahringo@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lgoncalv@redhat.com>
Cc: Tomas Glozar <tglozar@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "Jonathan Corbet" <corbet@lwn.net>
Link: https://lore.kernel.org/20240823014019.053229958@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-08-26 13:54:08 -04:00
Steven Rostedt (Google)
29a02ec665 tracing: Allow boot instances to use reserve_mem boot memory
Allow boot instances to use memory reserved by the reserve_mem boot
option.

  reserve_mem=12M:4096:trace  trace_instance=boot_mapped@trace

The above will allocate 12 megs with 4096 alignment and label it "trace".
The second parameter will create a "boot_mapped" instance and use the
memory reserved and labeled as "trace" as the memory for the ring buffer.

That will create an instance called "boot_mapped":

  /sys/kernel/tracing/instances/boot_mapped

Note, because the ring buffer is using a defined memory ranged, it will
act just like a memory mapped ring buffer. It will not have a snapshot
buffer, as it can't swap out the buffer. The snapshot files as well as any
tracers that uses a snapshot will not be present in the boot_mapped
instance.

Also note that reserve_mem is not reliable in acquiring the same physical
memory at each soft reboot. It is possible that KALSR could map the kernel
at the previous boot memory location forcing the reserve_mem to return a
different memory location. In this case, the previous ring buffer will be
lost.

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Link: https://lore.kernel.org/20240815082811.669f7d8c@gandalf.local.home
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-08-15 08:34:48 -04:00
Steven Rostedt
6d02eefecc tracing: Fix ifdef of snapshots to not prevent last_boot_info file
The mapping of the ring buffer to memory allocated at boot up will also
expose a "last_boot_info" to help tooling to read the raw data from the
last boot. As instances that have their ring buffer mapped to fixed
memory cannot perform snapshots, they can either have the "snapshot" file
or the "last_boot_info" file, but not both.

The code that added the "last_boot_info" file failed to notice that the
"snapshot" creation was inside a "#ifdef CONFIG_TRACER_SNAPSHOT" and
incorrectly placed the creation of the "last_boot_info" file within the
ifdef block. Not only does it cause a warning when CONFIG_TRACER_SNAPSHOT
is not enabled, it also incorrectly prevents the file from appearing.

Link: https://lore.kernel.org/all/20240719102640.718554-1-arnd@kernel.org/

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reported-by: Arnd Bergmann <arnd@kernel.org>
Link: https://lore.kernel.org/20240719101312.3d4ac707@rorschach.local.home
Fixes: 7a1d1e4b96 ("tracing/ring-buffer: Add last_boot_info file to boot instance")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-08-14 17:01:03 -04:00
Steven Rostedt
ee057c8c19 Linux 6.11-rc3
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAma5LLIeHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGwUAIAJNwbkdgTIqEsyBU
 wsFcXGaFSsGJNbTulINJb34jl2gD2yr4pmnnrA0NePW1TUKOnx169hNMF8NWbr/A
 0cHIREV9cyfnm/kzAcnHn7cWLSmsKd+x3TnCbCyodDZQDJzdLmw3LQG+4dTNJbw1
 WtJO/EoaU4qaydW2VxtApw54sirq5bopZz7rpcRapA1afzbA2TUDbnnuEWjm9KCF
 5K+RZTJZA/xI9gqEwJB+/p5FglW4n/T3xcDwaQp5uFsDskgV5e1AUrRLM+icTsem
 0Egrs8Ca2Vp4oBM+r9miCSwjRu04jLKyuu20p7AN8zXLyN7WGAjduS15Dv+aHRZ/
 9XABZs0=
 =/T17
 -----END PGP SIGNATURE-----

Merge tag 'v6.11-rc3' into trace/ring-buffer/core

The "reserve_mem" kernel command line parameter has been pulled into
v6.11. Merge the latest -rc3 to allow the persistent ring buffer memory to
be able to be mapped at the address specified by the "reserve_mem" command
line parameter.

Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-08-14 16:59:28 -04:00
Steven Rostedt
d0949cd44a tracing: Return from tracing_buffers_read() if the file has been closed
When running the following:

 # cd /sys/kernel/tracing/
 # echo 1 > events/sched/sched_waking/enable
 # echo 1 > events/sched/sched_switch/enable
 # echo 0 > tracing_on
 # dd if=per_cpu/cpu0/trace_pipe_raw of=/tmp/raw0.dat

The dd task would get stuck in an infinite loop in the kernel. What would
happen is the following:

When ring_buffer_read_page() returns -1 (no data) then a check is made to
see if the buffer is empty (as happens when the page is not full), it will
call wait_on_pipe() to wait until the ring buffer has data. When it is it
will try again to read data (unless O_NONBLOCK is set).

The issue happens when there's a reader and the file descriptor is closed.
The wait_on_pipe() will return when that is the case. But this loop will
continue to try again and wait_on_pipe() will again return immediately and
the loop will continue and never stop.

Simply check if the file was closed before looping and exit out if it is.

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20240808235730.78bf63e5@rorschach.local.home
Fixes: 2aa043a55b ("tracing/ring-buffer: Fix wait_on_pipe() race")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-08-09 12:59:35 -04:00
Joel Granados
78eb4ea25c sysctl: treewide: constify the ctl_table argument of proc_handlers
const qualify the struct ctl_table argument in the proc_handler function
signatures. This is a prerequisite to moving the static ctl_table
structs into .rodata data which will ensure that proc_handler function
pointers cannot be modified.

This patch has been generated by the following coccinelle script:

```
  virtual patch

  @r1@
  identifier ctl, write, buffer, lenp, ppos;
  identifier func !~ "appldata_(timer|interval)_handler|sched_(rt|rr)_handler|rds_tcp_skbuf_handler|proc_sctp_do_(hmac_alg|rto_min|rto_max|udp_port|alpha_beta|auth|probe_interval)";
  @@

  int func(
  - struct ctl_table *ctl
  + const struct ctl_table *ctl
    ,int write, void *buffer, size_t *lenp, loff_t *ppos);

  @r2@
  identifier func, ctl, write, buffer, lenp, ppos;
  @@

  int func(
  - struct ctl_table *ctl
  + const struct ctl_table *ctl
    ,int write, void *buffer, size_t *lenp, loff_t *ppos)
  { ... }

  @r3@
  identifier func;
  @@

  int func(
  - struct ctl_table *
  + const struct ctl_table *
    ,int , void *, size_t *, loff_t *);

  @r4@
  identifier func, ctl;
  @@

  int func(
  - struct ctl_table *ctl
  + const struct ctl_table *ctl
    ,int , void *, size_t *, loff_t *);

  @r5@
  identifier func, write, buffer, lenp, ppos;
  @@

  int func(
  - struct ctl_table *
  + const struct ctl_table *
    ,int write, void *buffer, size_t *lenp, loff_t *ppos);

```

* Code formatting was adjusted in xfs_sysctl.c to comply with code
  conventions. The xfs_stats_clear_proc_handler,
  xfs_panic_mask_proc_handler and xfs_deprecated_dointvec_minmax where
  adjusted.

* The ctl_table argument in proc_watchdog_common was const qualified.
  This is called from a proc_handler itself and is calling back into
  another proc_handler, making it necessary to change it as part of the
  proc_handler migration.

Co-developed-by: Thomas Weißschuh <linux@weissschuh.net>
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Co-developed-by: Joel Granados <j.granados@samsung.com>
Signed-off-by: Joel Granados <j.granados@samsung.com>
2024-07-24 20:59:29 +02:00
Dan Carpenter
94dfa500e7 tracing: Fix NULL vs IS_ERR() check in enable_instances()
The trace_array_create_systems() function returns error pointers, not
NULL.  Fix the check to match.

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: e645535a95 ("tracing: Add option to use memmapped memory for trace boot instance")
Link: https://lore.kernel.org/9b23ea03-d709-435f-a309-461c3d747457@moroto.mountain
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-07-15 14:55:02 -04:00
Steven Rostedt (Google)
07714b4bb3 tracing: Handle old buffer mappings for event strings and functions
Use the saved text_delta and data_delta of a persistent memory mapped ring
buffer that was saved from a previous boot, and use the delta in the trace
event print output so that strings and functions show up normally.

That is, for an event like trace_kmalloc() that prints the callsite via
"%pS", if it used the address saved in the ring buffer it will not match
the function that was saved in the previous boot if the kernel remaps
itself between boots.

For RCU events that point to saved static strings where only the address
of the string is saved in the ring buffer, it too will be adjusted to
point to where the string is on the current boot.

Link: https://lkml.kernel.org/r/20240612232026.821020753@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Youssef Esmat <youssefesmat@google.com>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-06-14 12:28:22 -04:00
Steven Rostedt (Google)
7a1d1e4b96 tracing/ring-buffer: Add last_boot_info file to boot instance
If an instance is mapped to memory on boot up, create a new file called
"last_boot_info" that will hold information that can be used to properly
parse the raw data in the ring buffer.

It will export the delta of the addresses for text and data from what it
was from the last boot. It does not expose actually addresses (unless you
knew what the actual address was from the last boot).

The output will look like:

 # cat last_boot_info
 text delta:	-268435456
 data delta:	-268435456

The text and data are kept separate in case they are ever made different.

Link: https://lkml.kernel.org/r/20240612232026.658680738@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Youssef Esmat <youssefesmat@google.com>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-06-14 12:28:22 -04:00
Steven Rostedt (Google)
e645535a95 tracing: Add option to use memmapped memory for trace boot instance
Add an option to the trace_instance kernel command line parameter that
allows it to use the reserved memory from memmap boot parameter.

  memmap=12M$0x284500000 trace_instance=boot_mapped@0x284500000:12M

The above will reserves 12 megs at the physical address 0x284500000.
The second parameter will create a "boot_mapped" instance and use the
memory reserved as the memory for the ring buffer.

That will create an instance called "boot_mapped":

  /sys/kernel/tracing/instances/boot_mapped

Note, because the ring buffer is using a defined memory ranged, it will
act just like a memory mapped ring buffer. It will not have a snapshot
buffer, as it can't swap out the buffer. The snapshot files as well as any
tracers that uses a snapshot will not be present in the boot_mapped
instance.

Link: https://lkml.kernel.org/r/20240612232026.329660169@goodmis.org

Cc: linux-mm@kvack.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Youssef Esmat <youssefesmat@google.com>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-06-14 12:28:21 -04:00
Steven Rostedt (Google)
950032ffce ring-buffer: Add output of ring buffer meta page
Add a buffer_meta per-cpu file for the trace instance that is mapped to
boot memory. This shows the current meta-data and can be used by user
space tools to record off the current mappings to help reconstruct the
ring buffer after a reboot.

It does not expose any virtual addresses, just indexes into the sub-buffer
pages.

Link: https://lkml.kernel.org/r/20240612232025.854471446@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Youssef Esmat <youssefesmat@google.com>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-06-14 12:28:21 -04:00
Steven Rostedt (Google)
2124de79ad tracing: Implement creating an instance based on a given memory region
Allow for creating a new instance by passing in an address and size to map
the ring buffer for the instance to.

This will allow features like a pstore memory mapped region to be used for
an tracing instance ring buffer that can be retrieved from one boot to the
next.

Link: https://lkml.kernel.org/r/20240612232025.692086240@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Youssef Esmat <youssefesmat@google.com>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-06-14 12:28:21 -04:00
Linus Torvalds
53683e4080 tracing ring buffer updates for v6.10:
- Add ring_buffer memory mappings
 
   The tracing ring buffer was created based on being mostly used with the
   splice system call. It is broken up into page ordered sub-buffers and the
   reader swaps a new sub-buffer with an existing sub-buffer that's part
   of the write buffer. It then has total access to the swapped out
   sub-buffer and can do copyless movements of the memory into other mediums
   (file system, network, etc).
 
   The buffer is great for passing around the ring buffer contents in the
   kernel, but is not so good for when the consumer is the user space task
   itself.
 
   A new interface is added that allows user space to memory map the ring
   buffer. It will get all the write sub-buffers as well as reader sub-buffer
   (that is not written to). It can send an ioctl to change which sub-buffer
   is the new reader sub-buffer.
 
   The ring buffer is read only to user space. It only needs to call the
   ioctl when it is finished with a sub-buffer and needs a new sub-buffer
   that the writer will not write over.
 
   A self test program was also created for testing and can be used as
   an example for the interface to user space. The libtracefs (external
   to the kernel) also has code that interacts with this, although it is
   disabled until the interface is in a official release. It can be enabled
   by compiling the library with a special flag. This was used for testing
   applications that perform better with the buffer being mapped.
 
   Memory mapped buffers have limitations. The main one is that it can not be
   used with the snapshot logic. If the buffer is mapped, snapshots will be
   disabled. If any logic is set to trigger snapshots on a buffer, that
   buffer will not be allowed to be mapped.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZkYzDRQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qttNAQCj3I0OpeI1vms85ShIa7Eha2qes5uC
 Yml2fnapkmRSwAEAp5UTGxtDctycWOk9B9PA7/oJmLgATaQwRKoEeTUwfAA=
 =TyEB
 -----END PGP SIGNATURE-----

Merge tag 'trace-ringbuffer-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull tracing ring buffer updates from Steven Rostedt:
 "Add ring_buffer memory mappings.

  The tracing ring buffer was created based on being mostly used with
  the splice system call. It is broken up into page ordered sub-buffers
  and the reader swaps a new sub-buffer with an existing sub-buffer
  that's part of the write buffer. It then has total access to the
  swapped out sub-buffer and can do copyless movements of the memory
  into other mediums (file system, network, etc).

  The buffer is great for passing around the ring buffer contents in the
  kernel, but is not so good for when the consumer is the user space
  task itself.

  A new interface is added that allows user space to memory map the ring
  buffer. It will get all the write sub-buffers as well as reader
  sub-buffer (that is not written to). It can send an ioctl to change
  which sub-buffer is the new reader sub-buffer.

  The ring buffer is read only to user space. It only needs to call the
  ioctl when it is finished with a sub-buffer and needs a new sub-buffer
  that the writer will not write over.

  A self test program was also created for testing and can be used as an
  example for the interface to user space. The libtracefs (external to
  the kernel) also has code that interacts with this, although it is
  disabled until the interface is in a official release. It can be
  enabled by compiling the library with a special flag. This was used
  for testing applications that perform better with the buffer being
  mapped.

  Memory mapped buffers have limitations. The main one is that it can
  not be used with the snapshot logic. If the buffer is mapped,
  snapshots will be disabled. If any logic is set to trigger snapshots
  on a buffer, that buffer will not be allowed to be mapped"

* tag 'trace-ringbuffer-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  ring-buffer: Add cast to unsigned long addr passed to virt_to_page()
  ring-buffer: Have mmapped ring buffer keep track of missed events
  ring-buffer/selftest: Add ring-buffer mapping test
  Documentation: tracing: Add ring-buffer mapping
  tracing: Allow user-space mapping of the ring-buffer
  ring-buffer: Introducing ring-buffer mapping functions
  ring-buffer: Allocate sub-buffers with __GFP_COMP
2024-05-17 18:40:37 -07:00
Vincent Donnefort
cf9f0f7c4c tracing: Allow user-space mapping of the ring-buffer
Currently, user-space extracts data from the ring-buffer via splice,
which is handy for storage or network sharing. However, due to splice
limitations, it is imposible to do real-time analysis without a copy.

A solution for that problem is to let the user-space map the ring-buffer
directly.

The mapping is exposed via the per-CPU file trace_pipe_raw. The first
element of the mapping is the meta-page. It is followed by each
subbuffer constituting the ring-buffer, ordered by their unique page ID:

  * Meta-page -- include/uapi/linux/trace_mmap.h for a description
  * Subbuf ID 0
  * Subbuf ID 1
     ...

It is therefore easy to translate a subbuf ID into an offset in the
mapping:

  reader_id = meta->reader->id;
  reader_offset = meta->meta_page_size + reader_id * meta->subbuf_size;

When new data is available, the mapper must call a newly introduced ioctl:
TRACE_MMAP_IOCTL_GET_READER. This will update the Meta-page reader ID to
point to the next reader containing unread data.

Mapping will prevent snapshot and buffer size modifications.

Link: https://lore.kernel.org/linux-trace-kernel/20240510140435.3550353-4-vdonnefort@google.com

CC: <linux-mm@kvack.org>
Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-05-13 18:09:56 -04:00
Ye Bin
20fe4d07bd tracing/probes: support '%pD' type for print struct file's name
As like '%pd' type, this patch supports print type '%pD' for print file's
name. For example "name=$arg1:%pD" casts the `$arg1` as (struct file*),
dereferences the "file.f_path.dentry.d_name.name" field and stores it to
"name" argument as a kernel string.
Here is an example:
[tracing]# echo 'p:testprobe vfs_read name=$arg1:%pD' > kprobe_event
[tracing]# echo 1 > events/kprobes/testprobe/enable
[tracing]# grep -q "1" events/kprobes/testprobe/enable
[tracing]# echo 0 > events/kprobes/testprobe/enable
[tracing]# grep "vfs_read" trace | grep "enable"
            grep-15108   [003] .....  5228.328609: testprobe: (vfs_read+0x4/0xbb0) name="enable"

Note that this expects the given argument (e.g. $arg1) is an address of struct
file. User must ensure it.

Link: https://lore.kernel.org/all/20240322064308.284457-3-yebin10@huawei.com/
[Masami: replaced "previous patch" with '%pd' type]

Signed-off-by: Ye Bin <yebin10@huawei.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2024-05-01 23:18:47 +09:00
Ye Bin
d9b15224dd tracing/probes: support '%pd' type for print struct dentry's name
During fault locating, the file name needs to be printed based on the
dentry  address. The offset needs to be calculated each time, which
is troublesome. Similar to printk, kprobe support print type '%pd' for
print dentry's name. For example "name=$arg1:%pd" casts the `$arg1`
as (struct dentry *), dereferences the "d_name.name" field and stores
it to "name" argument as a kernel string.
Here is an example:
[tracing]# echo 'p:testprobe dput name=$arg1:%pd' > kprobe_events
[tracing]# echo 1 > events/kprobes/testprobe/enable
[tracing]# grep -q "1" events/kprobes/testprobe/enable
[tracing]# echo 0 > events/kprobes/testprobe/enable
[tracing]# cat trace | grep "enable"
	    bash-14844   [002] ..... 16912.889543: testprobe: (dput+0x4/0x30) name="enable"
            grep-15389   [003] ..... 16922.834182: testprobe: (dput+0x4/0x30) name="enable"
            grep-15389   [003] ..... 16922.836103: testprobe: (dput+0x4/0x30) name="enable"
            bash-14844   [001] ..... 16931.820909: testprobe: (dput+0x4/0x30) name="enable"

Note that this expects the given argument (e.g. $arg1) is an address of struct
dentry. User must ensure it.

Link: https://lore.kernel.org/all/20240322064308.284457-2-yebin10@huawei.com/

Signed-off-by: Ye Bin <yebin10@huawei.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2024-05-01 23:18:47 +09:00
Huang Yiwei
19f0423fd5 tracing: Support to dump instance traces by ftrace_dump_on_oops
Currently ftrace only dumps the global trace buffer on an OOPs. For
debugging a production usecase, instance trace will be helpful to
check specific problems since global trace buffer may be used for
other purposes.

This patch extend the ftrace_dump_on_oops parameter to dump a specific
or multiple trace instances:

  - ftrace_dump_on_oops=0: as before -- don't dump
  - ftrace_dump_on_oops[=1]: as before -- dump the global trace buffer
  on all CPUs
  - ftrace_dump_on_oops=2 or =orig_cpu: as before -- dump the global
  trace buffer on CPU that triggered the oops
  - ftrace_dump_on_oops=<instance_name>: new behavior -- dump the
  tracing instance matching <instance_name>
  - ftrace_dump_on_oops[=2/orig_cpu],<instance1_name>[=2/orig_cpu],
  <instrance2_name>[=2/orig_cpu]: new behavior -- dump the global trace
  buffer and multiple instance buffer on all CPUs, or only dump on CPU
  that triggered the oops if =2 or =orig_cpu is given

Also, the sysctl node can handle the input accordingly.

Link: https://lore.kernel.org/linux-trace-kernel/20240223083126.1817731-1-quic_hyiwei@quicinc.com

Cc: Ross Zwisler <zwisler@google.com>
Cc: <mhiramat@kernel.org>
Cc: <mark.rutland@arm.com>
Cc: <mcgrof@kernel.org>
Cc: <keescook@chromium.org>
Cc: <j.granados@samsung.com>
Cc: <mathieu.desnoyers@efficios.com>
Cc: <corbet@lwn.net>
Signed-off-by: Huang Yiwei <quic_hyiwei@quicinc.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-18 10:33:06 -04:00
Steven Rostedt (Google)
cca990c7b5 tracing: Fix snapshot counter going between two tracers that use it
Running the ftrace selftests caused the ring buffer mapping test to fail.
Investigating, I found that the snapshot counter would be incremented
every time a tracer that uses the snapshot is enabled even if the snapshot
was used by the previous tracer.

That is:

 # cd /sys/kernel/tracing
 # echo wakeup_rt > current_tracer
 # echo wakeup_dl > current_tracer
 # echo nop > current_tracer

would leave the snapshot counter at 1 and not zero. That's because the
enabling of wakeup_dl would increment the counter again but the setting
the tracer to nop would only decrement it once.

Do not arm the snapshot for a tracer if the previous tracer already had it
armed.

Link: https://lore.kernel.org/linux-trace-kernel/20240223013344.570525723@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Fixes: 16f7e48ffc53a ("tracing: Add snapshot refcount")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-18 10:33:05 -04:00
John Garry
ed89683763 tracing: Use init_utsname()->release
Instead of using UTS_RELEASE, use init_utsname()->release, which means that
we don't need to rebuild the code just for the git head commit changing.

Link: https://lore.kernel.org/linux-trace-kernel/20240222124639.65629-1-john.g.garry@oracle.com

Signed-off-by: John Garry <john.g.garry@oracle.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-18 10:13:21 -04:00
Vincent Donnefort
180e4e3909 tracing: Add snapshot refcount
When a ring-buffer is memory mapped by user-space, no trace or
ring-buffer swap is possible. This means the snapshot feature is
mutually exclusive with the memory mapping. Having a refcount on
snapshot users will help to know if a mapping is possible or not.

Instead of relying on the global trace_types_lock, a new spinlock is
introduced to serialize accesses to trace_array->snapshot. This intends
to allow access to that variable in a context where the mmap lock is
already held.

Link: https://lore.kernel.org/linux-trace-kernel/20240220202310.2489614-4-vdonnefort@google.com

Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-18 10:12:47 -04:00
Steven Rostedt (Google)
2cc621fd2e tracing: Move saved_cmdline code into trace_sched_switch.c
The code that handles saved_cmdlines is split between the trace.c file and
the trace_sched_switch.c. There's some history to this. The
trace_sched_switch.c was originally created to handle the sched_switch
tracer that was deprecated due to sched_switch trace event making it
obsolete. But that file did not get deleted as it had some code to help
with saved_cmdlines. But trace.c has grown tremendously since then. Just
move all the saved_cmdlines code into trace_sched_switch.c as that's the
only reason that file still exists, and trace.c has gotten too big.

No functional changes.

Link: https://lore.kernel.org/linux-trace-kernel/20240220140703.497966629@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-17 07:58:53 -04:00
Steven Rostedt (Google)
e85d471c2b tracing: Move open coded processing of tgid_map into helper function
In preparation of moving the saved_cmdlines logic out of trace.c and into
trace_sched_switch.c, replace the open coded manipulation of tgid_map in
set_tracer_flag() into a helper function trace_alloc_tgid_map() so that it
can be easily moved into trace_sched_switch.c without changing existing
functions in trace.c.

No functional changes.

Link: https://lore.kernel.org/linux-trace-kernel/20240220140703.338116216@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-17 07:58:52 -04:00
Steven Rostedt (Google)
0b18c852cc tracing: Have saved_cmdlines arrays all in one allocation
The saved_cmdlines have three arrays for mapping PIDs to COMMs:

 - map_pid_to_cmdline[]
 - map_cmdline_to_pid[]
 - saved_cmdlines

The map_pid_to_cmdline[] is PID_MAX_DEFAULT in size and holds the index
into the other arrays. The map_cmdline_to_pid[] is a mapping back to the
full pid as it can be larger than PID_MAX_DEFAULT. And the
saved_cmdlines[] just holds the COMMs associated to the pids.

Currently the map_pid_to_cmdline[] and saved_cmdlines[] are allocated
together (in reality the saved_cmdlines is just in the memory of the
rounding of the allocation of the structure as it is always allocated in
powers of two). The map_cmdline_to_pid[] array is allocated separately.

Since the rounding to a power of two is rather large (it allows for 8000
elements in saved_cmdlines), also include the map_cmdline_to_pid[] array.
(This drops it to 6000 by default, which is still plenty for most use
cases). This saves even more memory as the map_cmdline_to_pid[] array
doesn't need to be allocated.

Link: https://lore.kernel.org/linux-trace-kernel/20240212174011.068211d9@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20240220140703.182330529@goodmis.org

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Fixes: 44dc5c41b5 ("tracing: Fix wasted memory in saved_cmdlines logic")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-17 07:58:52 -04:00
Linus Torvalds
63bd30f249 Tracing/ring-buffer fixes for 6.8 (to be applied in 6.9-rc):
- Do not update shortest_full in rb_watermark_hit() if the watermark
   is hit. The shortest_full field was being updated regardless if
   the task was going to wait or not. If the watermark is hit, then
   the task is not going to wait, so do not update the shortest_full
   field (used by the waker).
 
 - Update shortest_full field before setting the full_waiters_pending flag
 
   In the poll logic, the full_waiters_pending flag was being set
   before the shortest_full field was set. If the full_waiters_pending
   flag is set, writers will check the shortest_full field which has
   the least percentage of data that the ring buffer needs to be
   filled before waking up. The writer will check shortest_full if
   full_waiters_pending is set, and if the ring buffer percentage filled
   is greater than shortest full, then it will call the irq_work to
   wake up the waiters.
 
   The problem was that the poll logic set the full_waiters_pending flag
   before updating shortest_full, which when zero will always trigger
   the writer to call the irq_work to wake up the waiters. The irq_work
   will reset the shortest_full field back to zero as the woken waiters
   is suppose to reset it.
 
 - There's some optimized logic in the rb_watermark_hit() that is used
   in ring_buffer_wait(). Use that helper function in the poll logic
   as well.
 
 - Restructure ring_buffer_wait() to use wait_event_interruptible()
 
   The logic to wake up pending readers when the file descriptor is
   closed is racy. Restructure ring_buffer_wait() to allow callers
   to pass in conditions besides the ring buffer having enough data
   in it by using wait_event_interruptible().
 
 - Update the tracing_wait_on_pipe() to call ring_buffer_wait() with
   its own conditions to exit the wait loop.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZfH6MRQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qtlwAP9ZoSIkvw2MVu7FclgAguaX2CaylGEw
 sv0wZaCy1kgAPgD8CFhezZcHrt/RwJibpMxVnUs+DDqYnGdJsHYLihlbWgg=
 =99FG
 -----END PGP SIGNATURE-----

Merge tag 'trace-ring-buffer-v6.8-rc7-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull tracing updates from Steven Rostedt:

 - Do not update shortest_full in rb_watermark_hit() if the watermark is
   hit. The shortest_full field was being updated regardless if the task
   was going to wait or not. If the watermark is hit, then the task is
   not going to wait, so do not update the shortest_full field (used by
   the waker).

 - Update shortest_full field before setting the full_waiters_pending
   flag

   In the poll logic, the full_waiters_pending flag was being set before
   the shortest_full field was set. If the full_waiters_pending flag is
   set, writers will check the shortest_full field which has the least
   percentage of data that the ring buffer needs to be filled before
   waking up. The writer will check shortest_full if
   full_waiters_pending is set, and if the ring buffer percentage filled
   is greater than shortest full, then it will call the irq_work to wake
   up the waiters.

   The problem was that the poll logic set the full_waiters_pending flag
   before updating shortest_full, which when zero will always trigger
   the writer to call the irq_work to wake up the waiters. The irq_work
   will reset the shortest_full field back to zero as the woken waiters
   is suppose to reset it.

 - There's some optimized logic in the rb_watermark_hit() that is used
   in ring_buffer_wait(). Use that helper function in the poll logic as
   well.

 - Restructure ring_buffer_wait() to use wait_event_interruptible()

   The logic to wake up pending readers when the file descriptor is
   closed is racy. Restructure ring_buffer_wait() to allow callers to
   pass in conditions besides the ring buffer having enough data in it
   by using wait_event_interruptible().

 - Update the tracing_wait_on_pipe() to call ring_buffer_wait() with its
   own conditions to exit the wait loop.

* tag 'trace-ring-buffer-v6.8-rc7-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  tracing/ring-buffer: Fix wait_on_pipe() race
  ring-buffer: Use wait_event_interruptible() in ring_buffer_wait()
  ring-buffer: Reuse rb_watermark_hit() for the poll logic
  ring-buffer: Fix full_waiters_pending in poll
  ring-buffer: Do not set shortest_full when full target is hit
2024-03-14 16:25:01 -07:00
Linus Torvalds
01732755ee Probes updates for v6.9:
- x96/kprobes: Use boolean for some function return instead of 0 and 1.
  - x86/kprobes: Prohibit probing on INT/UD. This prevents user to put kprobe on
     INTn/INT1/INT3/INTO and UD0/UD1/UD2 because these are used for a special
     purpose in the kernel.
  - x86/kprobes: Boost Grp instructions. Because a few percent of kernel
     instructions are Grp 2/3/4/5 and those are safe to be executed without
     ip register fixup, allow those to be boosted (direct execution on the
     trampoline buffer with a JMP).
 
  - tracing/probes: Add function argument access from return events (kretprobe
     and fprobe). This allows user to compare how a data structure field is
     changed after executing a function. With BTF, return event also accepts
     function argument access by name. This also includes below patches;
   . Fix a wrong comment (using "Kretprobe" in fprobe)
   . Cleanup a big probe argument parser function into three parts, type
      parser, post-processing function, and main parser.
   . Cleanup to set nr_args field when initializing trace_probe instead of
      counting up it while parsing.
   . Cleanup a redundant #else block from tracefs/README source code.
   . Update selftests to check entry argument access from return probes.
   . Documentation update about entry argument access from return probes.
 -----BEGIN PGP SIGNATURE-----
 
 iQFPBAABCgA5FiEEh7BulGwFlgAOi5DV2/sHvwUrPxsFAmXwW4kbHG1hc2FtaS5o
 aXJhbWF0c3VAZ21haWwuY29tAAoJENv7B78FKz8bH80H/3H6JENlDAjaSLi4vYrP
 Qyw/cOGIuGu8cDEzkkOaFMol3TY23M7tQZH1lFefvV92gebZ0ttXnrQhSsKeO5XT
 PCZ6Eoift5rwJCY967W4V6O0DrAkOGHlPtlKs47APJnTXwn8RcFTqWlQmhWg1AfD
 g/FCWV7cs3eewZgV9iQcLydOoLLgRMr3G3rtPYQbCXhPzze0WTu4dSOXxCTjFe04
 riHQy7R+ut6Cur8njpoqZl6bCMkQqAylByXf6wK96HjcS0+ZI7Ivi8Ey3l2aAFen
 EeIViMU2Bl02XzBszj7Xq2cT/ebYAgDonFW3/5ZKD1YMO6F7wPoVH5OHrQ518Xuw
 hQ8=
 =O6l5
 -----END PGP SIGNATURE-----

Merge tag 'probes-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull probes updates from Masami Hiramatsu:
 "x86 kprobes:

   - Use boolean for some function return instead of 0 and 1

   - Prohibit probing on INT/UD. This prevents user to put kprobe on
     INTn/INT1/INT3/INTO and UD0/UD1/UD2 because these are used for a
     special purpose in the kernel

   - Boost Grp instructions. Because a few percent of kernel
     instructions are Grp 2/3/4/5 and those are safe to be executed
     without ip register fixup, allow those to be boosted (direct
     execution on the trampoline buffer with a JMP)

  tracing:

   - Add function argument access from return events (kretprobe and
     fprobe). This allows user to compare how a data structure field is
     changed after executing a function. With BTF, return event also
     accepts function argument access by name.

   - Fix a wrong comment (using "Kretprobe" in fprobe)

   - Cleanup a big probe argument parser function into three parts, type
     parser, post-processing function, and main parser

   - Cleanup to set nr_args field when initializing trace_probe instead
     of counting up it while parsing

   - Cleanup a redundant #else block from tracefs/README source code

   - Update selftests to check entry argument access from return probes

   - Documentation update about entry argument access from return
     probes"

* tag 'probes-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  Documentation: tracing: Add entry argument access at function exit
  selftests/ftrace: Add test cases for entry args at function exit
  tracing/probes: Support $argN in return probe (kprobe and fprobe)
  tracing: Remove redundant #else block for BTF args from README
  tracing/probes: cleanup: Set trace_probe::nr_args at trace_probe_init
  tracing/probes: Cleanup probe argument parser
  tracing/fprobe-event: cleanup: Fix a wrong comment in fprobe event
  x86/kprobes: Boost more instructions from grp2/3/4/5
  x86/kprobes: Prohibit kprobing on INT and UD
  x86/kprobes: Refactor can_{probe,boost} return type to bool
2024-03-14 16:16:33 -07:00
Steven Rostedt (Google)
2aa043a55b tracing/ring-buffer: Fix wait_on_pipe() race
When the trace_pipe_raw file is closed, there should be no new readers on
the file descriptor. This is mostly handled with the waking and wait_index
fields of the iterator. But there's still a slight race.

     CPU 0                              CPU 1
     -----                              -----
                                   wait_index++;
   index = wait_index;
                                   ring_buffer_wake_waiters();
   wait_on_pipe()
     ring_buffer_wait();

The ring_buffer_wait() will miss the wakeup from CPU 1. The problem is
that the ring_buffer_wait() needs the logic of:

        prepare_to_wait();
        if (!condition)
                schedule();

Where the missing condition check is the iter->wait_index update.

Have the ring_buffer_wait() take a conditional callback function and a
data parameter that can be used within the wait_event_interruptible() of
the ring_buffer_wait() function.

In wait_on_pipe(), pass a condition function that will check if the
wait_index has been updated, if it has, it will return true to break out
of the wait_event_interruptible() loop.

Create a new field "closed" in the trace_iterator and set it in the
.flush() callback before calling ring_buffer_wake_waiters().
This will keep any new readers from waiting on a closed file descriptor.

Have the wait_on_pipe() condition callback also check the closed field.

Change the wait_index field of the trace_iterator to atomic_t. There's no
reason it needs to be 'long' and making it atomic and using
atomic_read_acquire() and atomic_fetch_inc_release() will provide the
necessary memory barriers.

Add a "woken" flag to tracing_buffers_splice_read() to exit the loop after
one more try to fetch data. That is, if it waited for data and something
woke it up, it should try to collect any new data and then exit back to
user space.

Link: https://lore.kernel.org/linux-trace-kernel/CAHk-=wgsNgewHFxZAJiAQznwPMqEtQmi1waeS2O1v6L4c_Um5A@mail.gmail.com/
Link: https://lore.kernel.org/linux-trace-kernel/20240312121703.557950713@goodmis.org

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: f3ddb74ad0 ("tracing: Wake up ring buffer waiters on closing of the file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-12 12:44:48 -04:00
Steven Rostedt (Google)
e5d7c19165 tracing: Use .flush() call to wake up readers
The .release() function does not get called until all readers of a file
descriptor are finished.

If a thread is blocked on reading a file descriptor in ring_buffer_wait(),
and another thread closes the file descriptor, it will not wake up the
other thread as ring_buffer_wake_waiters() is called by .release(), and
that will not get called until the .read() is finished.

The issue originally showed up in trace-cmd, but the readers are actually
other processes with their own file descriptors. So calling close() would wake
up the other tasks because they are blocked on another descriptor then the
one that was closed(). But there's other wake ups that solve that issue.

When a thread is blocked on a read, it can still hang even when another
thread closed its descriptor.

This is what the .flush() callback is for. Have the .flush() wake up the
readers.

Link: https://lore.kernel.org/linux-trace-kernel/20240308202432.107909457@goodmis.org

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: f3ddb74ad0 ("tracing: Wake up ring buffer waiters on closing of the file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-10 12:27:47 -04:00
Steven Rostedt (Google)
095fe48912 tracing: Limit trace_marker writes to just 4K
Limit the max print event of trace_marker to just 4K string size. This must
also be less than the amount that can be held by a trace_seq along with
the text that is before the output (like the task name, PID, CPU, state,
etc). As trace_seq is made to handle large events (some greater than 4K).
Make the max size of a trace_marker write event be 4K which is guaranteed
to fit in the trace_seq buffer.

Link: https://lore.kernel.org/linux-trace-kernel/20240304223433.4ba47dff@gandalf.local.home

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-06 13:27:26 -05:00
Masami Hiramatsu (Google)
25f00e40ce tracing/probes: Support $argN in return probe (kprobe and fprobe)
Support accessing $argN in the return probe events. This will help users to
record entry data in function return (exit) event for simplfing the function
entry/exit information in one event, and record the result values (e.g.
allocated object/initialized object) at function exit.

For example, if we have a function `int init_foo(struct foo *obj, int param)`
sometimes we want to check how `obj` is initialized. In such case, we can
define a new return event like below;

 # echo 'r init_foo retval=$retval param=$arg2 field1=+0($arg1)' >> kprobe_events

Thus it records the function parameter `param` and its result `obj->field1`
(the dereference will be done in the function exit timing) value at once.

This also support fprobe, BTF args and'$arg*'. So if CONFIG_DEBUG_INFO_BTF
is enabled, we can trace both function parameters and the return value
by following command.

 # echo 'f target_function%return $arg* $retval' >> dynamic_events

Link: https://lore.kernel.org/all/170952365552.229804.224112990211602895.stgit@devnote2/

Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2024-03-07 00:27:34 +09:00
Masami Hiramatsu (Google)
c18f9eabee tracing: Remove redundant #else block for BTF args from README
Remove redundant #else block for BTF args from README message.
This is a cleanup, so no change on the message.

Link: https://lore.kernel.org/all/170952364558.229804.17285528811097152410.stgit@devnote2/

Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-07 00:27:25 +09:00
Steven Rostedt (Google)
2394ac4145 tracing: Inform kmemleak of saved_cmdlines allocation
The allocation of the struct saved_cmdlines_buffer structure changed from:

        s = kmalloc(sizeof(*s), GFP_KERNEL);
	s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL);

to:

	orig_size = sizeof(*s) + val * TASK_COMM_LEN;
	order = get_order(orig_size);
	size = 1 << (order + PAGE_SHIFT);
	page = alloc_pages(GFP_KERNEL, order);
	if (!page)
		return NULL;

	s = page_address(page);
	memset(s, 0, sizeof(*s));

	s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL);

Where that s->saved_cmdlines allocation looks to be a dangling allocation
to kmemleak. That's because kmemleak only keeps track of kmalloc()
allocations. For allocations that use page_alloc() directly, the kmemleak
needs to be explicitly informed about it.

Add kmemleak_alloc() and kmemleak_free() around the page allocation so
that it doesn't give the following false positive:

unreferenced object 0xffff8881010c8000 (size 32760):
  comm "swapper", pid 0, jiffies 4294667296
  hex dump (first 32 bytes):
    ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff  ................
    ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff  ................
  backtrace (crc ae6ec1b9):
    [<ffffffff86722405>] kmemleak_alloc+0x45/0x80
    [<ffffffff8414028d>] __kmalloc_large_node+0x10d/0x190
    [<ffffffff84146ab1>] __kmalloc+0x3b1/0x4c0
    [<ffffffff83ed7103>] allocate_cmdlines_buffer+0x113/0x230
    [<ffffffff88649c34>] tracer_alloc_buffers.isra.0+0x124/0x460
    [<ffffffff8864a174>] early_trace_init+0x14/0xa0
    [<ffffffff885dd5ae>] start_kernel+0x12e/0x3c0
    [<ffffffff885f5758>] x86_64_start_reservations+0x18/0x30
    [<ffffffff885f582b>] x86_64_start_kernel+0x7b/0x80
    [<ffffffff83a001c3>] secondary_startup_64_no_verify+0x15e/0x16b

Link: https://lore.kernel.org/linux-trace-kernel/87r0hfnr9r.fsf@kernel.org/
Link: https://lore.kernel.org/linux-trace-kernel/20240214112046.09a322d6@gandalf.local.home

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Fixes: 44dc5c41b5 ("tracing: Fix wasted memory in saved_cmdlines logic")
Reported-by: Kalle Valo <kvalo@kernel.org>
Tested-by: Kalle Valo <kvalo@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-02-14 12:36:34 -05:00
Sven Schnelle
a6eaa24f1c tracing: Use ring_buffer_record_is_set_on() in tracer_tracing_is_on()
tracer_tracing_is_on() checks whether record_disabled is not zero. This
checks both the record_disabled counter and the RB_BUFFER_OFF flag.
Reading the source it looks like this function should only check for
the RB_BUFFER_OFF flag. Therefore use ring_buffer_record_is_set_on().
This fixes spurious fails in the 'test for function traceon/off triggers'
test from the ftrace testsuite when the system is under load.

Link: https://lore.kernel.org/linux-trace-kernel/20240205065340.2848065-1-svens@linux.ibm.com

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Tested-By: Mete Durlu <meted@linux.ibm.com>
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-02-13 12:04:17 -05:00
Steven Rostedt (Google)
44dc5c41b5 tracing: Fix wasted memory in saved_cmdlines logic
While looking at improving the saved_cmdlines cache I found a huge amount
of wasted memory that should be used for the cmdlines.

The tracing data saves pids during the trace. At sched switch, if a trace
occurred, it will save the comm of the task that did the trace. This is
saved in a "cache" that maps pids to comms and exposed to user space via
the /sys/kernel/tracing/saved_cmdlines file. Currently it only caches by
default 128 comms.

The structure that uses this creates an array to store the pids using
PID_MAX_DEFAULT (which is usually set to 32768). This causes the structure
to be of the size of 131104 bytes on 64 bit machines.

In hex: 131104 = 0x20020, and since the kernel allocates generic memory in
powers of two, the kernel would allocate 0x40000 or 262144 bytes to store
this structure. That leaves 131040 bytes of wasted space.

Worse, the structure points to an allocated array to store the comm names,
which is 16 bytes times the amount of names to save (currently 128), which
is 2048 bytes. Instead of allocating a separate array, make the structure
end with a variable length string and use the extra space for that.

This is similar to a recommendation that Linus had made about eventfs_inode names:

  https://lore.kernel.org/all/20240130190355.11486-5-torvalds@linux-foundation.org/

Instead of allocating a separate string array to hold the saved comms,
have the structure end with: char saved_cmdlines[]; and round up to the
next power of two over sizeof(struct saved_cmdline_buffers) + num_cmdlines * TASK_COMM_LEN
It will use this extra space for the saved_cmdline portion.

Now, instead of saving only 128 comms by default, by using this wasted
space at the end of the structure it can save over 8000 comms and even
saves space by removing the need for allocating the other array.

Link: https://lore.kernel.org/linux-trace-kernel/20240209063622.1f7b6d5f@rorschach.local.home

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Fixes: 939c7a4f04 ("tracing: Introduce saved_cmdlines_size file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-02-09 06:43:21 -05:00
Linus Torvalds
a2ded784cd tracing updates for 6.8:
- Allow kernel trace instance creation to specify what events are created
   Inside the kernel, a subsystem may create a tracing instance that it can
   use to send events to user space. This sub-system may not care about the
   thousands of events that exist in eventfs. Allow the sub-system to specify
   what sub-systems of events it cares about, and only those events are exposed
   to this instance.
 
 - Allow the ring buffer to be broken up into bigger sub-buffers than just the
   architecture page size. A new tracefs file called "buffer_subbuf_size_kb"
   is created. The user can now specify a minimum size the sub-buffer may be
   in kilobytes. Note, that the implementation currently make the sub-buffer
   size a power of 2 pages (1, 2, 4, 8, 16, ...) but the user only writes in
   kilobyte size, and the sub-buffer will be updated to the next size that
   it will can accommodate it. If the user writes in 10, it will change the
   size to be 4 pages on x86 (16K), as that is the next available size that
   can hold 10K pages.
 
 - Update the debug output when a corrupt time is detected in the ring buffer.
   If the ring buffer detects inconsistent timestamps, there's a debug config
   options that will dump the contents of the meta data of the sub-buffer that
   is used for debugging. Add some more information to this dump that helps
   with debugging.
 
 - Add more timestamp debugging checks (only triggers when the config is enabled)
 
 - Increase the trace_seq iterator to 2 page sizes.
 
 - Allow strings written into tracefs_marker to be larger. Up to just under
   2 page sizes (based on what trace_seq can hold).
 
 - Increase the trace_maker_raw write to be as big as a sub-buffer can hold.
 
 - Remove 32 bit time stamp logic, now that the rb_time_cmpxchg() has been
   removed.
 
 - More selftests were added.
 
 - Some code clean ups as well.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZZ8p3BQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6ql2GAQDZg/zlFEiJHyTfWbCIE8pA3T5xbzKo
 26TNxIZAxJJZpQEAvGFU5Smy14pG6soEoVMp8B6ZOANbqU8VVamhOL+r+Qw=
 =0OYG
 -----END PGP SIGNATURE-----

Merge tag 'trace-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull tracing updates from Steven Rostedt:

 - Allow kernel trace instance creation to specify what events are
   created

   Inside the kernel, a subsystem may create a tracing instance that it
   can use to send events to user space. This sub-system may not care
   about the thousands of events that exist in eventfs. Allow the
   sub-system to specify what sub-systems of events it cares about, and
   only those events are exposed to this instance.

 - Allow the ring buffer to be broken up into bigger sub-buffers than
   just the architecture page size.

   A new tracefs file called "buffer_subbuf_size_kb" is created. The
   user can now specify a minimum size the sub-buffer may be in
   kilobytes. Note, that the implementation currently make the
   sub-buffer size a power of 2 pages (1, 2, 4, 8, 16, ...) but the user
   only writes in kilobyte size, and the sub-buffer will be updated to
   the next size that it will can accommodate it. If the user writes in
   10, it will change the size to be 4 pages on x86 (16K), as that is
   the next available size that can hold 10K pages.

 - Update the debug output when a corrupt time is detected in the ring
   buffer. If the ring buffer detects inconsistent timestamps, there's a
   debug config options that will dump the contents of the meta data of
   the sub-buffer that is used for debugging. Add some more information
   to this dump that helps with debugging.

 - Add more timestamp debugging checks (only triggers when the config is
   enabled)

 - Increase the trace_seq iterator to 2 page sizes.

 - Allow strings written into tracefs_marker to be larger. Up to just
   under 2 page sizes (based on what trace_seq can hold).

 - Increase the trace_maker_raw write to be as big as a sub-buffer can
   hold.

 - Remove 32 bit time stamp logic, now that the rb_time_cmpxchg() has
   been removed.

 - More selftests were added.

 - Some code clean ups as well.

* tag 'trace-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (29 commits)
  ring-buffer: Remove stale comment from ring_buffer_size()
  tracing histograms: Simplify parse_actions() function
  tracing/selftests: Remove exec permissions from trace_marker.tc test
  ring-buffer: Use subbuf_order for buffer page masking
  tracing: Update subbuffer with kilobytes not page order
  ringbuffer/selftest: Add basic selftest to test changing subbuf order
  ring-buffer: Add documentation on the buffer_subbuf_order file
  ring-buffer: Just update the subbuffers when changing their allocation order
  ring-buffer: Keep the same size when updating the order
  tracing: Stop the tracing while changing the ring buffer subbuf size
  tracing: Update snapshot order along with main buffer order
  ring-buffer: Make sure the spare sub buffer used for reads has same size
  ring-buffer: Do no swap cpu buffers if order is different
  ring-buffer: Clear pages on error in ring_buffer_subbuf_order_set() failure
  ring-buffer: Read and write to ring buffers with custom sub buffer size
  ring-buffer: Set new size of the ring buffer sub page
  ring-buffer: Add interface for configuring trace sub buffer size
  ring-buffer: Page size per ring buffer
  ring-buffer: Have ring_buffer_print_page_header() be able to access ring_buffer_iter
  ring-buffer: Check if absolute timestamp goes backwards
  ...
2024-01-18 14:35:29 -08:00
Steven Rostedt (Google)
39a7dc23a1 tracing: Fix blocked reader of snapshot buffer
If an application blocks on the snapshot or snapshot_raw files, expecting
to be woken up when a snapshot occurs, it will not happen. Or it may
happen with an unexpected result.

That result is that the application will be reading the main buffer
instead of the snapshot buffer. That is because when the snapshot occurs,
the main and snapshot buffers are swapped. But the reader has a descriptor
still pointing to the buffer that it originally connected to.

This is fine for the main buffer readers, as they may be blocked waiting
for a watermark to be hit, and when a snapshot occurs, the data that the
main readers want is now on the snapshot buffer.

But for waiters of the snapshot buffer, they are waiting for an event to
occur that will trigger the snapshot and they can then consume it quickly
to save the snapshot before the next snapshot occurs. But to do this, they
need to read the new snapshot buffer, not the old one that is now
receiving new data.

Also, it does not make sense to have a watermark "buffer_percent" on the
snapshot buffer, as the snapshot buffer is static and does not receive new
data except all at once.

Link: https://lore.kernel.org/linux-trace-kernel/20231228095149.77f5b45d@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Fixes: debdd57f51 ("tracing: Make a snapshot feature available from userspace")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-29 09:18:49 -05:00
Steven Rostedt (Google)
2f84b39f48 tracing: Update subbuffer with kilobytes not page order
Using page order for deciding what the size of the ring buffer sub buffers
are is exposing a bit too much of the implementation. Although the sub
buffers are only allocated in orders of pages, allow the user to specify
the minimum size of each sub-buffer via kilobytes like they can with the
buffer size itself.

If the user specifies 3 via:

  echo 3 > buffer_subbuf_size_kb

Then the sub-buffer size will round up to 4kb (on a 4kb page size system).

If they specify:

  echo 6 > buffer_subbuf_size_kb

The sub-buffer size will become 8kb.

and so on.

Link: https://lore.kernel.org/linux-trace-kernel/20231219185631.809766769@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-21 11:04:15 -05:00
Steven Rostedt (Google)
fa4b54af5b tracing: Stop the tracing while changing the ring buffer subbuf size
Because the main buffer and the snapshot buffer need to be the same for
some tracers, otherwise it will fail and disable all tracing, the tracers
need to be stopped while updating the sub buffer sizes so that the tracers
see the main and snapshot buffers with the same sub buffer size.

Link: https://lore.kernel.org/linux-trace-kernel/20231219185630.353222794@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Fixes: 2808e31ec1 ("ring-buffer: Add interface for configuring trace sub buffer size")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-21 11:00:56 -05:00
Steven Rostedt (Google)
aa067682ad tracing: Update snapshot order along with main buffer order
When updating the order of the sub buffers for the main buffer, make sure
that if the snapshot buffer exists, that it gets its order updated as
well.

Link: https://lore.kernel.org/linux-trace-kernel/20231219185630.054668186@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-21 10:55:57 -05:00