1

kmsan: add KMSAN runtime core

For each memory location KernelMemorySanitizer maintains two types of
metadata:

1. The so-called shadow of that location - а byte:byte mapping describing
   whether or not individual bits of memory are initialized (shadow is 0)
   or not (shadow is 1).
2. The origins of that location - а 4-byte:4-byte mapping containing
   4-byte IDs of the stack traces where uninitialized values were
   created.

Each struct page now contains pointers to two struct pages holding KMSAN
metadata (shadow and origins) for the original struct page.  Utility
routines in mm/kmsan/core.c and mm/kmsan/shadow.c handle the metadata
creation, addressing, copying and checking.  mm/kmsan/report.c performs
error reporting in the cases an uninitialized value is used in a way that
leads to undefined behavior.

KMSAN compiler instrumentation is responsible for tracking the metadata
along with the kernel memory.  mm/kmsan/instrumentation.c provides the
implementation for instrumentation hooks that are called from files
compiled with -fsanitize=kernel-memory.

To aid parameter passing (also done at instrumentation level), each
task_struct now contains a struct kmsan_task_state used to track the
metadata of function parameters and return values for that task.

Finally, this patch provides CONFIG_KMSAN that enables KMSAN, and declares
CFLAGS_KMSAN, which are applied to files compiled with KMSAN.  The
KMSAN_SANITIZE:=n Makefile directive can be used to completely disable
KMSAN instrumentation for certain files.

Similarly, KMSAN_ENABLE_CHECKS:=n disables KMSAN checks and makes newly
created stack memory initialized.

Users can also use functions from include/linux/kmsan-checks.h to mark
certain memory regions as uninitialized or initialized (this is called
"poisoning" and "unpoisoning") or check that a particular region is
initialized.

Link: https://lkml.kernel.org/r/20220915150417.722975-12-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This commit is contained in:
Alexander Potapenko 2022-09-15 17:03:45 +02:00 committed by Andrew Morton
parent 6e9f05dc66
commit f80be4571b
17 changed files with 1592 additions and 0 deletions

View File

@ -1015,6 +1015,7 @@ include-y := scripts/Makefile.extrawarn
include-$(CONFIG_DEBUG_INFO) += scripts/Makefile.debug
include-$(CONFIG_KASAN) += scripts/Makefile.kasan
include-$(CONFIG_KCSAN) += scripts/Makefile.kcsan
include-$(CONFIG_KMSAN) += scripts/Makefile.kmsan
include-$(CONFIG_UBSAN) += scripts/Makefile.ubsan
include-$(CONFIG_KCOV) += scripts/Makefile.kcov
include-$(CONFIG_RANDSTRUCT) += scripts/Makefile.randstruct

View File

@ -0,0 +1,64 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* KMSAN checks to be used for one-off annotations in subsystems.
*
* Copyright (C) 2017-2022 Google LLC
* Author: Alexander Potapenko <glider@google.com>
*
*/
#ifndef _LINUX_KMSAN_CHECKS_H
#define _LINUX_KMSAN_CHECKS_H
#include <linux/types.h>
#ifdef CONFIG_KMSAN
/**
* kmsan_poison_memory() - Mark the memory range as uninitialized.
* @address: address to start with.
* @size: size of buffer to poison.
* @flags: GFP flags for allocations done by this function.
*
* Until other data is written to this range, KMSAN will treat it as
* uninitialized. Error reports for this memory will reference the call site of
* kmsan_poison_memory() as origin.
*/
void kmsan_poison_memory(const void *address, size_t size, gfp_t flags);
/**
* kmsan_unpoison_memory() - Mark the memory range as initialized.
* @address: address to start with.
* @size: size of buffer to unpoison.
*
* Until other data is written to this range, KMSAN will treat it as
* initialized.
*/
void kmsan_unpoison_memory(const void *address, size_t size);
/**
* kmsan_check_memory() - Check the memory range for being initialized.
* @address: address to start with.
* @size: size of buffer to check.
*
* If any piece of the given range is marked as uninitialized, KMSAN will report
* an error.
*/
void kmsan_check_memory(const void *address, size_t size);
#else
static inline void kmsan_poison_memory(const void *address, size_t size,
gfp_t flags)
{
}
static inline void kmsan_unpoison_memory(const void *address, size_t size)
{
}
static inline void kmsan_check_memory(const void *address, size_t size)
{
}
#endif
#endif /* _LINUX_KMSAN_CHECKS_H */

View File

@ -0,0 +1,35 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* A minimal header declaring types added by KMSAN to existing kernel structs.
*
* Copyright (C) 2017-2022 Google LLC
* Author: Alexander Potapenko <glider@google.com>
*
*/
#ifndef _LINUX_KMSAN_TYPES_H
#define _LINUX_KMSAN_TYPES_H
/* These constants are defined in the MSan LLVM instrumentation pass. */
#define KMSAN_RETVAL_SIZE 800
#define KMSAN_PARAM_SIZE 800
struct kmsan_context_state {
char param_tls[KMSAN_PARAM_SIZE];
char retval_tls[KMSAN_RETVAL_SIZE];
char va_arg_tls[KMSAN_PARAM_SIZE];
char va_arg_origin_tls[KMSAN_PARAM_SIZE];
u64 va_arg_overflow_size_tls;
char param_origin_tls[KMSAN_PARAM_SIZE];
u32 retval_origin_tls;
};
#undef KMSAN_PARAM_SIZE
#undef KMSAN_RETVAL_SIZE
struct kmsan_ctx {
struct kmsan_context_state cstate;
int kmsan_in_runtime;
bool allow_reporting;
};
#endif /* _LINUX_KMSAN_TYPES_H */

View File

@ -224,6 +224,18 @@ struct page {
not kmapped, ie. highmem) */
#endif /* WANT_PAGE_VIRTUAL */
#ifdef CONFIG_KMSAN
/*
* KMSAN metadata for this page:
* - shadow page: every bit indicates whether the corresponding
* bit of the original page is initialized (0) or not (1);
* - origin page: every 4 bytes contain an id of the stack trace
* where the uninitialized value was created.
*/
struct page *kmsan_shadow;
struct page *kmsan_origin;
#endif
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
int _last_cpupid;
#endif

View File

@ -14,6 +14,7 @@
#include <linux/pid.h>
#include <linux/sem.h>
#include <linux/shm.h>
#include <linux/kmsan_types.h>
#include <linux/mutex.h>
#include <linux/plist.h>
#include <linux/hrtimer.h>
@ -1362,6 +1363,10 @@ struct task_struct {
#endif
#endif
#ifdef CONFIG_KMSAN
struct kmsan_ctx kmsan_ctx;
#endif
#if IS_ENABLED(CONFIG_KUNIT)
struct kunit *kunit_test;
#endif

View File

@ -970,6 +970,7 @@ config DEBUG_STACKOVERFLOW
source "lib/Kconfig.kasan"
source "lib/Kconfig.kfence"
source "lib/Kconfig.kmsan"
endmenu # "Memory Debugging"

50
lib/Kconfig.kmsan Normal file
View File

@ -0,0 +1,50 @@
# SPDX-License-Identifier: GPL-2.0-only
config HAVE_ARCH_KMSAN
bool
config HAVE_KMSAN_COMPILER
# Clang versions <14.0.0 also support -fsanitize=kernel-memory, but not
# all the features necessary to build the kernel with KMSAN.
depends on CC_IS_CLANG && CLANG_VERSION >= 140000
def_bool $(cc-option,-fsanitize=kernel-memory -mllvm -msan-disable-checks=1)
config KMSAN
bool "KMSAN: detector of uninitialized values use"
depends on HAVE_ARCH_KMSAN && HAVE_KMSAN_COMPILER
depends on SLUB && DEBUG_KERNEL && !KASAN && !KCSAN
select STACKDEPOT
select STACKDEPOT_ALWAYS_INIT
help
KernelMemorySanitizer (KMSAN) is a dynamic detector of uses of
uninitialized values in the kernel. It is based on compiler
instrumentation provided by Clang and thus requires Clang to build.
An important note is that KMSAN is not intended for production use,
because it drastically increases kernel memory footprint and slows
the whole system down.
See <file:Documentation/dev-tools/kmsan.rst> for more details.
if KMSAN
config HAVE_KMSAN_PARAM_RETVAL
# -fsanitize-memory-param-retval is supported only by Clang >= 14.
depends on HAVE_KMSAN_COMPILER
def_bool $(cc-option,-fsanitize=kernel-memory -fsanitize-memory-param-retval)
config KMSAN_CHECK_PARAM_RETVAL
bool "Check for uninitialized values passed to and returned from functions"
default y
depends on HAVE_KMSAN_PARAM_RETVAL
help
If the compiler supports -fsanitize-memory-param-retval, KMSAN will
eagerly check every function parameter passed by value and every
function return value.
Disabling KMSAN_CHECK_PARAM_RETVAL will result in tracking shadow for
function parameters and return values across function borders. This
is a more relaxed mode, but it generates more instrumentation code and
may potentially report errors in corner cases when non-instrumented
functions call instrumented ones.
endif

View File

@ -89,6 +89,7 @@ obj-$(CONFIG_SLAB) += slab.o
obj-$(CONFIG_SLUB) += slub.o
obj-$(CONFIG_KASAN) += kasan/
obj-$(CONFIG_KFENCE) += kfence/
obj-$(CONFIG_KMSAN) += kmsan/
obj-$(CONFIG_FAILSLAB) += failslab.o
obj-$(CONFIG_MEMTEST) += memtest.o
obj-$(CONFIG_MIGRATION) += migrate.o

23
mm/kmsan/Makefile Normal file
View File

@ -0,0 +1,23 @@
# SPDX-License-Identifier: GPL-2.0
#
# Makefile for KernelMemorySanitizer (KMSAN).
#
#
obj-y := core.o instrumentation.o hooks.o report.o shadow.o
KMSAN_SANITIZE := n
KCOV_INSTRUMENT := n
UBSAN_SANITIZE := n
# Disable instrumentation of KMSAN runtime with other tools.
CC_FLAGS_KMSAN_RUNTIME := -fno-stack-protector
CC_FLAGS_KMSAN_RUNTIME += $(call cc-option,-fno-conserve-stack)
CC_FLAGS_KMSAN_RUNTIME += -DDISABLE_BRANCH_PROFILING
CFLAGS_REMOVE.o = $(CC_FLAGS_FTRACE)
CFLAGS_core.o := $(CC_FLAGS_KMSAN_RUNTIME)
CFLAGS_hooks.o := $(CC_FLAGS_KMSAN_RUNTIME)
CFLAGS_instrumentation.o := $(CC_FLAGS_KMSAN_RUNTIME)
CFLAGS_report.o := $(CC_FLAGS_KMSAN_RUNTIME)
CFLAGS_shadow.o := $(CC_FLAGS_KMSAN_RUNTIME)

440
mm/kmsan/core.c Normal file
View File

@ -0,0 +1,440 @@
// SPDX-License-Identifier: GPL-2.0
/*
* KMSAN runtime library.
*
* Copyright (C) 2017-2022 Google LLC
* Author: Alexander Potapenko <glider@google.com>
*
*/
#include <asm/page.h>
#include <linux/compiler.h>
#include <linux/export.h>
#include <linux/highmem.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmsan_types.h>
#include <linux/memory.h>
#include <linux/mm.h>
#include <linux/mm_types.h>
#include <linux/mmzone.h>
#include <linux/percpu-defs.h>
#include <linux/preempt.h>
#include <linux/slab.h>
#include <linux/stackdepot.h>
#include <linux/stacktrace.h>
#include <linux/types.h>
#include <linux/vmalloc.h>
#include "../slab.h"
#include "kmsan.h"
bool kmsan_enabled __read_mostly;
/*
* Per-CPU KMSAN context to be used in interrupts, where current->kmsan is
* unavaliable.
*/
DEFINE_PER_CPU(struct kmsan_ctx, kmsan_percpu_ctx);
void kmsan_internal_poison_memory(void *address, size_t size, gfp_t flags,
unsigned int poison_flags)
{
u32 extra_bits =
kmsan_extra_bits(/*depth*/ 0, poison_flags & KMSAN_POISON_FREE);
bool checked = poison_flags & KMSAN_POISON_CHECK;
depot_stack_handle_t handle;
handle = kmsan_save_stack_with_flags(flags, extra_bits);
kmsan_internal_set_shadow_origin(address, size, -1, handle, checked);
}
void kmsan_internal_unpoison_memory(void *address, size_t size, bool checked)
{
kmsan_internal_set_shadow_origin(address, size, 0, 0, checked);
}
depot_stack_handle_t kmsan_save_stack_with_flags(gfp_t flags,
unsigned int extra)
{
unsigned long entries[KMSAN_STACK_DEPTH];
unsigned int nr_entries;
nr_entries = stack_trace_save(entries, KMSAN_STACK_DEPTH, 0);
/* Don't sleep (see might_sleep_if() in __alloc_pages_nodemask()). */
flags &= ~__GFP_DIRECT_RECLAIM;
return __stack_depot_save(entries, nr_entries, extra, flags, true);
}
/* Copy the metadata following the memmove() behavior. */
void kmsan_internal_memmove_metadata(void *dst, void *src, size_t n)
{
depot_stack_handle_t old_origin = 0, new_origin = 0;
int src_slots, dst_slots, i, iter, step, skip_bits;
depot_stack_handle_t *origin_src, *origin_dst;
void *shadow_src, *shadow_dst;
u32 *align_shadow_src, shadow;
bool backwards;
shadow_dst = kmsan_get_metadata(dst, KMSAN_META_SHADOW);
if (!shadow_dst)
return;
KMSAN_WARN_ON(!kmsan_metadata_is_contiguous(dst, n));
shadow_src = kmsan_get_metadata(src, KMSAN_META_SHADOW);
if (!shadow_src) {
/*
* @src is untracked: zero out destination shadow, ignore the
* origins, we're done.
*/
__memset(shadow_dst, 0, n);
return;
}
KMSAN_WARN_ON(!kmsan_metadata_is_contiguous(src, n));
__memmove(shadow_dst, shadow_src, n);
origin_dst = kmsan_get_metadata(dst, KMSAN_META_ORIGIN);
origin_src = kmsan_get_metadata(src, KMSAN_META_ORIGIN);
KMSAN_WARN_ON(!origin_dst || !origin_src);
src_slots = (ALIGN((u64)src + n, KMSAN_ORIGIN_SIZE) -
ALIGN_DOWN((u64)src, KMSAN_ORIGIN_SIZE)) /
KMSAN_ORIGIN_SIZE;
dst_slots = (ALIGN((u64)dst + n, KMSAN_ORIGIN_SIZE) -
ALIGN_DOWN((u64)dst, KMSAN_ORIGIN_SIZE)) /
KMSAN_ORIGIN_SIZE;
KMSAN_WARN_ON((src_slots < 1) || (dst_slots < 1));
KMSAN_WARN_ON((src_slots - dst_slots > 1) ||
(dst_slots - src_slots < -1));
backwards = dst > src;
i = backwards ? min(src_slots, dst_slots) - 1 : 0;
iter = backwards ? -1 : 1;
align_shadow_src =
(u32 *)ALIGN_DOWN((u64)shadow_src, KMSAN_ORIGIN_SIZE);
for (step = 0; step < min(src_slots, dst_slots); step++, i += iter) {
KMSAN_WARN_ON(i < 0);
shadow = align_shadow_src[i];
if (i == 0) {
/*
* If @src isn't aligned on KMSAN_ORIGIN_SIZE, don't
* look at the first @src % KMSAN_ORIGIN_SIZE bytes
* of the first shadow slot.
*/
skip_bits = ((u64)src % KMSAN_ORIGIN_SIZE) * 8;
shadow = (shadow >> skip_bits) << skip_bits;
}
if (i == src_slots - 1) {
/*
* If @src + n isn't aligned on
* KMSAN_ORIGIN_SIZE, don't look at the last
* (@src + n) % KMSAN_ORIGIN_SIZE bytes of the
* last shadow slot.
*/
skip_bits = (((u64)src + n) % KMSAN_ORIGIN_SIZE) * 8;
shadow = (shadow << skip_bits) >> skip_bits;
}
/*
* Overwrite the origin only if the corresponding
* shadow is nonempty.
*/
if (origin_src[i] && (origin_src[i] != old_origin) && shadow) {
old_origin = origin_src[i];
new_origin = kmsan_internal_chain_origin(old_origin);
/*
* kmsan_internal_chain_origin() may return
* NULL, but we don't want to lose the previous
* origin value.
*/
if (!new_origin)
new_origin = old_origin;
}
if (shadow)
origin_dst[i] = new_origin;
else
origin_dst[i] = 0;
}
/*
* If dst_slots is greater than src_slots (i.e.
* dst_slots == src_slots + 1), there is an extra origin slot at the
* beginning or end of the destination buffer, for which we take the
* origin from the previous slot.
* This is only done if the part of the source shadow corresponding to
* slot is non-zero.
*
* E.g. if we copy 8 aligned bytes that are marked as uninitialized
* and have origins o111 and o222, to an unaligned buffer with offset 1,
* these two origins are copied to three origin slots, so one of then
* needs to be duplicated, depending on the copy direction (@backwards)
*
* src shadow: |uuuu|uuuu|....|
* src origin: |o111|o222|....|
*
* backwards = 0:
* dst shadow: |.uuu|uuuu|u...|
* dst origin: |....|o111|o222| - fill the empty slot with o111
* backwards = 1:
* dst shadow: |.uuu|uuuu|u...|
* dst origin: |o111|o222|....| - fill the empty slot with o222
*/
if (src_slots < dst_slots) {
if (backwards) {
shadow = align_shadow_src[src_slots - 1];
skip_bits = (((u64)dst + n) % KMSAN_ORIGIN_SIZE) * 8;
shadow = (shadow << skip_bits) >> skip_bits;
if (shadow)
/* src_slots > 0, therefore dst_slots is at least 2 */
origin_dst[dst_slots - 1] =
origin_dst[dst_slots - 2];
} else {
shadow = align_shadow_src[0];
skip_bits = ((u64)dst % KMSAN_ORIGIN_SIZE) * 8;
shadow = (shadow >> skip_bits) << skip_bits;
if (shadow)
origin_dst[0] = origin_dst[1];
}
}
}
depot_stack_handle_t kmsan_internal_chain_origin(depot_stack_handle_t id)
{
unsigned long entries[3];
u32 extra_bits;
int depth;
bool uaf;
if (!id)
return id;
/*
* Make sure we have enough spare bits in @id to hold the UAF bit and
* the chain depth.
*/
BUILD_BUG_ON(
(1 << STACK_DEPOT_EXTRA_BITS) <= (KMSAN_MAX_ORIGIN_DEPTH << 1));
extra_bits = stack_depot_get_extra_bits(id);
depth = kmsan_depth_from_eb(extra_bits);
uaf = kmsan_uaf_from_eb(extra_bits);
/*
* Stop chaining origins once the depth reached KMSAN_MAX_ORIGIN_DEPTH.
* This mostly happens in the case structures with uninitialized padding
* are copied around many times. Origin chains for such structures are
* usually periodic, and it does not make sense to fully store them.
*/
if (depth == KMSAN_MAX_ORIGIN_DEPTH)
return id;
depth++;
extra_bits = kmsan_extra_bits(depth, uaf);
entries[0] = KMSAN_CHAIN_MAGIC_ORIGIN;
entries[1] = kmsan_save_stack_with_flags(GFP_ATOMIC, 0);
entries[2] = id;
/*
* @entries is a local var in non-instrumented code, so KMSAN does not
* know it is initialized. Explicitly unpoison it to avoid false
* positives when __stack_depot_save() passes it to instrumented code.
*/
kmsan_internal_unpoison_memory(entries, sizeof(entries), false);
return __stack_depot_save(entries, ARRAY_SIZE(entries), extra_bits,
GFP_ATOMIC, true);
}
void kmsan_internal_set_shadow_origin(void *addr, size_t size, int b,
u32 origin, bool checked)
{
u64 address = (u64)addr;
void *shadow_start;
u32 *origin_start;
size_t pad = 0;
KMSAN_WARN_ON(!kmsan_metadata_is_contiguous(addr, size));
shadow_start = kmsan_get_metadata(addr, KMSAN_META_SHADOW);
if (!shadow_start) {
/*
* kmsan_metadata_is_contiguous() is true, so either all shadow
* and origin pages are NULL, or all are non-NULL.
*/
if (checked) {
pr_err("%s: not memsetting %ld bytes starting at %px, because the shadow is NULL\n",
__func__, size, addr);
KMSAN_WARN_ON(true);
}
return;
}
__memset(shadow_start, b, size);
if (!IS_ALIGNED(address, KMSAN_ORIGIN_SIZE)) {
pad = address % KMSAN_ORIGIN_SIZE;
address -= pad;
size += pad;
}
size = ALIGN(size, KMSAN_ORIGIN_SIZE);
origin_start =
(u32 *)kmsan_get_metadata((void *)address, KMSAN_META_ORIGIN);
for (int i = 0; i < size / KMSAN_ORIGIN_SIZE; i++)
origin_start[i] = origin;
}
struct page *kmsan_vmalloc_to_page_or_null(void *vaddr)
{
struct page *page;
if (!kmsan_internal_is_vmalloc_addr(vaddr) &&
!kmsan_internal_is_module_addr(vaddr))
return NULL;
page = vmalloc_to_page(vaddr);
if (pfn_valid(page_to_pfn(page)))
return page;
else
return NULL;
}
void kmsan_internal_check_memory(void *addr, size_t size, const void *user_addr,
int reason)
{
depot_stack_handle_t cur_origin = 0, new_origin = 0;
unsigned long addr64 = (unsigned long)addr;
depot_stack_handle_t *origin = NULL;
unsigned char *shadow = NULL;
int cur_off_start = -1;
int chunk_size;
size_t pos = 0;
if (!size)
return;
KMSAN_WARN_ON(!kmsan_metadata_is_contiguous(addr, size));
while (pos < size) {
chunk_size = min(size - pos,
PAGE_SIZE - ((addr64 + pos) % PAGE_SIZE));
shadow = kmsan_get_metadata((void *)(addr64 + pos),
KMSAN_META_SHADOW);
if (!shadow) {
/*
* This page is untracked. If there were uninitialized
* bytes before, report them.
*/
if (cur_origin) {
kmsan_enter_runtime();
kmsan_report(cur_origin, addr, size,
cur_off_start, pos - 1, user_addr,
reason);
kmsan_leave_runtime();
}
cur_origin = 0;
cur_off_start = -1;
pos += chunk_size;
continue;
}
for (int i = 0; i < chunk_size; i++) {
if (!shadow[i]) {
/*
* This byte is unpoisoned. If there were
* poisoned bytes before, report them.
*/
if (cur_origin) {
kmsan_enter_runtime();
kmsan_report(cur_origin, addr, size,
cur_off_start, pos + i - 1,
user_addr, reason);
kmsan_leave_runtime();
}
cur_origin = 0;
cur_off_start = -1;
continue;
}
origin = kmsan_get_metadata((void *)(addr64 + pos + i),
KMSAN_META_ORIGIN);
KMSAN_WARN_ON(!origin);
new_origin = *origin;
/*
* Encountered new origin - report the previous
* uninitialized range.
*/
if (cur_origin != new_origin) {
if (cur_origin) {
kmsan_enter_runtime();
kmsan_report(cur_origin, addr, size,
cur_off_start, pos + i - 1,
user_addr, reason);
kmsan_leave_runtime();
}
cur_origin = new_origin;
cur_off_start = pos + i;
}
}
pos += chunk_size;
}
KMSAN_WARN_ON(pos != size);
if (cur_origin) {
kmsan_enter_runtime();
kmsan_report(cur_origin, addr, size, cur_off_start, pos - 1,
user_addr, reason);
kmsan_leave_runtime();
}
}
bool kmsan_metadata_is_contiguous(void *addr, size_t size)
{
char *cur_shadow = NULL, *next_shadow = NULL, *cur_origin = NULL,
*next_origin = NULL;
u64 cur_addr = (u64)addr, next_addr = cur_addr + PAGE_SIZE;
depot_stack_handle_t *origin_p;
bool all_untracked = false;
if (!size)
return true;
/* The whole range belongs to the same page. */
if (ALIGN_DOWN(cur_addr + size - 1, PAGE_SIZE) ==
ALIGN_DOWN(cur_addr, PAGE_SIZE))
return true;
cur_shadow = kmsan_get_metadata((void *)cur_addr, /*is_origin*/ false);
if (!cur_shadow)
all_untracked = true;
cur_origin = kmsan_get_metadata((void *)cur_addr, /*is_origin*/ true);
if (all_untracked && cur_origin)
goto report;
for (; next_addr < (u64)addr + size;
cur_addr = next_addr, cur_shadow = next_shadow,
cur_origin = next_origin, next_addr += PAGE_SIZE) {
next_shadow = kmsan_get_metadata((void *)next_addr, false);
next_origin = kmsan_get_metadata((void *)next_addr, true);
if (all_untracked) {
if (next_shadow || next_origin)
goto report;
if (!next_shadow && !next_origin)
continue;
}
if (((u64)cur_shadow == ((u64)next_shadow - PAGE_SIZE)) &&
((u64)cur_origin == ((u64)next_origin - PAGE_SIZE)))
continue;
goto report;
}
return true;
report:
pr_err("%s: attempting to access two shadow page ranges.\n", __func__);
pr_err("Access of size %ld at %px.\n", size, addr);
pr_err("Addresses belonging to different ranges: %px and %px\n",
(void *)cur_addr, (void *)next_addr);
pr_err("page[0].shadow: %px, page[1].shadow: %px\n", cur_shadow,
next_shadow);
pr_err("page[0].origin: %px, page[1].origin: %px\n", cur_origin,
next_origin);
origin_p = kmsan_get_metadata(addr, KMSAN_META_ORIGIN);
if (origin_p) {
pr_err("Origin: %08x\n", *origin_p);
kmsan_print_origin(*origin_p);
} else {
pr_err("Origin: unavailable\n");
}
return false;
}

66
mm/kmsan/hooks.c Normal file
View File

@ -0,0 +1,66 @@
// SPDX-License-Identifier: GPL-2.0
/*
* KMSAN hooks for kernel subsystems.
*
* These functions handle creation of KMSAN metadata for memory allocations.
*
* Copyright (C) 2018-2022 Google LLC
* Author: Alexander Potapenko <glider@google.com>
*
*/
#include <linux/cacheflush.h>
#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/mm_types.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include "../internal.h"
#include "../slab.h"
#include "kmsan.h"
/*
* Instrumented functions shouldn't be called under
* kmsan_enter_runtime()/kmsan_leave_runtime(), because this will lead to
* skipping effects of functions like memset() inside instrumented code.
*/
/* Functions from kmsan-checks.h follow. */
void kmsan_poison_memory(const void *address, size_t size, gfp_t flags)
{
if (!kmsan_enabled || kmsan_in_runtime())
return;
kmsan_enter_runtime();
/* The users may want to poison/unpoison random memory. */
kmsan_internal_poison_memory((void *)address, size, flags,
KMSAN_POISON_NOCHECK);
kmsan_leave_runtime();
}
EXPORT_SYMBOL(kmsan_poison_memory);
void kmsan_unpoison_memory(const void *address, size_t size)
{
unsigned long ua_flags;
if (!kmsan_enabled || kmsan_in_runtime())
return;
ua_flags = user_access_save();
kmsan_enter_runtime();
/* The users may want to poison/unpoison random memory. */
kmsan_internal_unpoison_memory((void *)address, size,
KMSAN_POISON_NOCHECK);
kmsan_leave_runtime();
user_access_restore(ua_flags);
}
EXPORT_SYMBOL(kmsan_unpoison_memory);
void kmsan_check_memory(const void *addr, size_t size)
{
if (!kmsan_enabled)
return;
return kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
REASON_ANY);
}
EXPORT_SYMBOL(kmsan_check_memory);

307
mm/kmsan/instrumentation.c Normal file
View File

@ -0,0 +1,307 @@
// SPDX-License-Identifier: GPL-2.0
/*
* KMSAN compiler API.
*
* This file implements __msan_XXX hooks that Clang inserts into the code
* compiled with -fsanitize=kernel-memory.
* See Documentation/dev-tools/kmsan.rst for more information on how KMSAN
* instrumentation works.
*
* Copyright (C) 2017-2022 Google LLC
* Author: Alexander Potapenko <glider@google.com>
*
*/
#include "kmsan.h"
#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/uaccess.h>
static inline bool is_bad_asm_addr(void *addr, uintptr_t size, bool is_store)
{
if ((u64)addr < TASK_SIZE)
return true;
if (!kmsan_get_metadata(addr, KMSAN_META_SHADOW))
return true;
return false;
}
static inline struct shadow_origin_ptr
get_shadow_origin_ptr(void *addr, u64 size, bool store)
{
unsigned long ua_flags = user_access_save();
struct shadow_origin_ptr ret;
ret = kmsan_get_shadow_origin_ptr(addr, size, store);
user_access_restore(ua_flags);
return ret;
}
/* Get shadow and origin pointers for a memory load with non-standard size. */
struct shadow_origin_ptr __msan_metadata_ptr_for_load_n(void *addr,
uintptr_t size)
{
return get_shadow_origin_ptr(addr, size, /*store*/ false);
}
EXPORT_SYMBOL(__msan_metadata_ptr_for_load_n);
/* Get shadow and origin pointers for a memory store with non-standard size. */
struct shadow_origin_ptr __msan_metadata_ptr_for_store_n(void *addr,
uintptr_t size)
{
return get_shadow_origin_ptr(addr, size, /*store*/ true);
}
EXPORT_SYMBOL(__msan_metadata_ptr_for_store_n);
/*
* Declare functions that obtain shadow/origin pointers for loads and stores
* with fixed size.
*/
#define DECLARE_METADATA_PTR_GETTER(size) \
struct shadow_origin_ptr __msan_metadata_ptr_for_load_##size( \
void *addr) \
{ \
return get_shadow_origin_ptr(addr, size, /*store*/ false); \
} \
EXPORT_SYMBOL(__msan_metadata_ptr_for_load_##size); \
struct shadow_origin_ptr __msan_metadata_ptr_for_store_##size( \
void *addr) \
{ \
return get_shadow_origin_ptr(addr, size, /*store*/ true); \
} \
EXPORT_SYMBOL(__msan_metadata_ptr_for_store_##size)
DECLARE_METADATA_PTR_GETTER(1);
DECLARE_METADATA_PTR_GETTER(2);
DECLARE_METADATA_PTR_GETTER(4);
DECLARE_METADATA_PTR_GETTER(8);
/*
* Handle a memory store performed by inline assembly. KMSAN conservatively
* attempts to unpoison the outputs of asm() directives to prevent false
* positives caused by missed stores.
*/
void __msan_instrument_asm_store(void *addr, uintptr_t size)
{
unsigned long ua_flags;
if (!kmsan_enabled || kmsan_in_runtime())
return;
ua_flags = user_access_save();
/*
* Most of the accesses are below 32 bytes. The two exceptions so far
* are clwb() (64 bytes) and FPU state (512 bytes).
* It's unlikely that the assembly will touch more than 512 bytes.
*/
if (size > 512) {
WARN_ONCE(1, "assembly store size too big: %ld\n", size);
size = 8;
}
if (is_bad_asm_addr(addr, size, /*is_store*/ true)) {
user_access_restore(ua_flags);
return;
}
kmsan_enter_runtime();
/* Unpoisoning the memory on best effort. */
kmsan_internal_unpoison_memory(addr, size, /*checked*/ false);
kmsan_leave_runtime();
user_access_restore(ua_flags);
}
EXPORT_SYMBOL(__msan_instrument_asm_store);
/*
* KMSAN instrumentation pass replaces LLVM memcpy, memmove and memset
* intrinsics with calls to respective __msan_ functions. We use
* get_param0_metadata() and set_retval_metadata() to store the shadow/origin
* values for the destination argument of these functions and use them for the
* functions' return values.
*/
static inline void get_param0_metadata(u64 *shadow,
depot_stack_handle_t *origin)
{
struct kmsan_ctx *ctx = kmsan_get_context();
*shadow = *(u64 *)(ctx->cstate.param_tls);
*origin = ctx->cstate.param_origin_tls[0];
}
static inline void set_retval_metadata(u64 shadow, depot_stack_handle_t origin)
{
struct kmsan_ctx *ctx = kmsan_get_context();
*(u64 *)(ctx->cstate.retval_tls) = shadow;
ctx->cstate.retval_origin_tls = origin;
}
/* Handle llvm.memmove intrinsic. */
void *__msan_memmove(void *dst, const void *src, uintptr_t n)
{
depot_stack_handle_t origin;
void *result;
u64 shadow;
get_param0_metadata(&shadow, &origin);
result = __memmove(dst, src, n);
if (!n)
/* Some people call memmove() with zero length. */
return result;
if (!kmsan_enabled || kmsan_in_runtime())
return result;
kmsan_enter_runtime();
kmsan_internal_memmove_metadata(dst, (void *)src, n);
kmsan_leave_runtime();
set_retval_metadata(shadow, origin);
return result;
}
EXPORT_SYMBOL(__msan_memmove);
/* Handle llvm.memcpy intrinsic. */
void *__msan_memcpy(void *dst, const void *src, uintptr_t n)
{
depot_stack_handle_t origin;
void *result;
u64 shadow;
get_param0_metadata(&shadow, &origin);
result = __memcpy(dst, src, n);
if (!n)
/* Some people call memcpy() with zero length. */
return result;
if (!kmsan_enabled || kmsan_in_runtime())
return result;
kmsan_enter_runtime();
/* Using memmove instead of memcpy doesn't affect correctness. */
kmsan_internal_memmove_metadata(dst, (void *)src, n);
kmsan_leave_runtime();
set_retval_metadata(shadow, origin);
return result;
}
EXPORT_SYMBOL(__msan_memcpy);
/* Handle llvm.memset intrinsic. */
void *__msan_memset(void *dst, int c, uintptr_t n)
{
depot_stack_handle_t origin;
void *result;
u64 shadow;
get_param0_metadata(&shadow, &origin);
result = __memset(dst, c, n);
if (!kmsan_enabled || kmsan_in_runtime())
return result;
kmsan_enter_runtime();
/*
* Clang doesn't pass parameter metadata here, so it is impossible to
* use shadow of @c to set up the shadow for @dst.
*/
kmsan_internal_unpoison_memory(dst, n, /*checked*/ false);
kmsan_leave_runtime();
set_retval_metadata(shadow, origin);
return result;
}
EXPORT_SYMBOL(__msan_memset);
/*
* Create a new origin from an old one. This is done when storing an
* uninitialized value to memory. When reporting an error, KMSAN unrolls and
* prints the whole chain of stores that preceded the use of this value.
*/
depot_stack_handle_t __msan_chain_origin(depot_stack_handle_t origin)
{
depot_stack_handle_t ret = 0;
unsigned long ua_flags;
if (!kmsan_enabled || kmsan_in_runtime())
return ret;
ua_flags = user_access_save();
/* Creating new origins may allocate memory. */
kmsan_enter_runtime();
ret = kmsan_internal_chain_origin(origin);
kmsan_leave_runtime();
user_access_restore(ua_flags);
return ret;
}
EXPORT_SYMBOL(__msan_chain_origin);
/* Poison a local variable when entering a function. */
void __msan_poison_alloca(void *address, uintptr_t size, char *descr)
{
depot_stack_handle_t handle;
unsigned long entries[4];
unsigned long ua_flags;
if (!kmsan_enabled || kmsan_in_runtime())
return;
ua_flags = user_access_save();
entries[0] = KMSAN_ALLOCA_MAGIC_ORIGIN;
entries[1] = (u64)descr;
entries[2] = (u64)__builtin_return_address(0);
/*
* With frame pointers enabled, it is possible to quickly fetch the
* second frame of the caller stack without calling the unwinder.
* Without them, simply do not bother.
*/
if (IS_ENABLED(CONFIG_UNWINDER_FRAME_POINTER))
entries[3] = (u64)__builtin_return_address(1);
else
entries[3] = 0;
/* stack_depot_save() may allocate memory. */
kmsan_enter_runtime();
handle = stack_depot_save(entries, ARRAY_SIZE(entries), GFP_ATOMIC);
kmsan_leave_runtime();
kmsan_internal_set_shadow_origin(address, size, -1, handle,
/*checked*/ true);
user_access_restore(ua_flags);
}
EXPORT_SYMBOL(__msan_poison_alloca);
/* Unpoison a local variable. */
void __msan_unpoison_alloca(void *address, uintptr_t size)
{
if (!kmsan_enabled || kmsan_in_runtime())
return;
kmsan_enter_runtime();
kmsan_internal_unpoison_memory(address, size, /*checked*/ true);
kmsan_leave_runtime();
}
EXPORT_SYMBOL(__msan_unpoison_alloca);
/*
* Report that an uninitialized value with the given origin was used in a way
* that constituted undefined behavior.
*/
void __msan_warning(u32 origin)
{
if (!kmsan_enabled || kmsan_in_runtime())
return;
kmsan_enter_runtime();
kmsan_report(origin, /*address*/ 0, /*size*/ 0,
/*off_first*/ 0, /*off_last*/ 0, /*user_addr*/ 0,
REASON_ANY);
kmsan_leave_runtime();
}
EXPORT_SYMBOL(__msan_warning);
/*
* At the beginning of an instrumented function, obtain the pointer to
* `struct kmsan_context_state` holding the metadata for function parameters.
*/
struct kmsan_context_state *__msan_get_context_state(void)
{
return &kmsan_get_context()->cstate;
}
EXPORT_SYMBOL(__msan_get_context_state);

204
mm/kmsan/kmsan.h Normal file
View File

@ -0,0 +1,204 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Functions used by the KMSAN runtime.
*
* Copyright (C) 2017-2022 Google LLC
* Author: Alexander Potapenko <glider@google.com>
*
*/
#ifndef __MM_KMSAN_KMSAN_H
#define __MM_KMSAN_KMSAN_H
#include <asm/pgtable_64_types.h>
#include <linux/irqflags.h>
#include <linux/sched.h>
#include <linux/stackdepot.h>
#include <linux/stacktrace.h>
#include <linux/nmi.h>
#include <linux/mm.h>
#include <linux/printk.h>
#define KMSAN_ALLOCA_MAGIC_ORIGIN 0xabcd0100
#define KMSAN_CHAIN_MAGIC_ORIGIN 0xabcd0200
#define KMSAN_POISON_NOCHECK 0x0
#define KMSAN_POISON_CHECK 0x1
#define KMSAN_POISON_FREE 0x2
#define KMSAN_ORIGIN_SIZE 4
#define KMSAN_MAX_ORIGIN_DEPTH 7
#define KMSAN_STACK_DEPTH 64
#define KMSAN_META_SHADOW (false)
#define KMSAN_META_ORIGIN (true)
extern bool kmsan_enabled;
extern int panic_on_kmsan;
/*
* KMSAN performs a lot of consistency checks that are currently enabled by
* default. BUG_ON is normally discouraged in the kernel, unless used for
* debugging, but KMSAN itself is a debugging tool, so it makes little sense to
* recover if something goes wrong.
*/
#define KMSAN_WARN_ON(cond) \
({ \
const bool __cond = WARN_ON(cond); \
if (unlikely(__cond)) { \
WRITE_ONCE(kmsan_enabled, false); \
if (panic_on_kmsan) { \
/* Can't call panic() here because */ \
/* of uaccess checks. */ \
BUG(); \
} \
} \
__cond; \
})
/*
* A pair of metadata pointers to be returned by the instrumentation functions.
*/
struct shadow_origin_ptr {
void *shadow, *origin;
};
struct shadow_origin_ptr kmsan_get_shadow_origin_ptr(void *addr, u64 size,
bool store);
void *kmsan_get_metadata(void *addr, bool is_origin);
enum kmsan_bug_reason {
REASON_ANY,
REASON_COPY_TO_USER,
REASON_SUBMIT_URB,
};
void kmsan_print_origin(depot_stack_handle_t origin);
/**
* kmsan_report() - Report a use of uninitialized value.
* @origin: Stack ID of the uninitialized value.
* @address: Address at which the memory access happens.
* @size: Memory access size.
* @off_first: Offset (from @address) of the first byte to be reported.
* @off_last: Offset (from @address) of the last byte to be reported.
* @user_addr: When non-NULL, denotes the userspace address to which the kernel
* is leaking data.
* @reason: Error type from enum kmsan_bug_reason.
*
* kmsan_report() prints an error message for a consequent group of bytes
* sharing the same origin. If an uninitialized value is used in a comparison,
* this function is called once without specifying the addresses. When checking
* a memory range, KMSAN may call kmsan_report() multiple times with the same
* @address, @size, @user_addr and @reason, but different @off_first and
* @off_last corresponding to different @origin values.
*/
void kmsan_report(depot_stack_handle_t origin, void *address, int size,
int off_first, int off_last, const void *user_addr,
enum kmsan_bug_reason reason);
DECLARE_PER_CPU(struct kmsan_ctx, kmsan_percpu_ctx);
static __always_inline struct kmsan_ctx *kmsan_get_context(void)
{
return in_task() ? &current->kmsan_ctx : raw_cpu_ptr(&kmsan_percpu_ctx);
}
/*
* When a compiler hook or KMSAN runtime function is invoked, it may make a
* call to instrumented code and eventually call itself recursively. To avoid
* that, we guard the runtime entry regions with
* kmsan_enter_runtime()/kmsan_leave_runtime() and exit the hook if
* kmsan_in_runtime() is true.
*
* Non-runtime code may occasionally get executed in nested IRQs from the
* runtime code (e.g. when called via smp_call_function_single()). Because some
* KMSAN routines may take locks (e.g. for memory allocation), we conservatively
* bail out instead of calling them. To minimize the effect of this (potentially
* missing initialization events) kmsan_in_runtime() is not checked in
* non-blocking runtime functions.
*/
static __always_inline bool kmsan_in_runtime(void)
{
if ((hardirq_count() >> HARDIRQ_SHIFT) > 1)
return true;
return kmsan_get_context()->kmsan_in_runtime;
}
static __always_inline void kmsan_enter_runtime(void)
{
struct kmsan_ctx *ctx;
ctx = kmsan_get_context();
KMSAN_WARN_ON(ctx->kmsan_in_runtime++);
}
static __always_inline void kmsan_leave_runtime(void)
{
struct kmsan_ctx *ctx = kmsan_get_context();
KMSAN_WARN_ON(--ctx->kmsan_in_runtime);
}
depot_stack_handle_t kmsan_save_stack(void);
depot_stack_handle_t kmsan_save_stack_with_flags(gfp_t flags,
unsigned int extra_bits);
/*
* Pack and unpack the origin chain depth and UAF flag to/from the extra bits
* provided by the stack depot.
* The UAF flag is stored in the lowest bit, followed by the depth in the upper
* bits.
* set_dsh_extra_bits() is responsible for clamping the value.
*/
static __always_inline unsigned int kmsan_extra_bits(unsigned int depth,
bool uaf)
{
return (depth << 1) | uaf;
}
static __always_inline bool kmsan_uaf_from_eb(unsigned int extra_bits)
{
return extra_bits & 1;
}
static __always_inline unsigned int kmsan_depth_from_eb(unsigned int extra_bits)
{
return extra_bits >> 1;
}
/*
* kmsan_internal_ functions are supposed to be very simple and not require the
* kmsan_in_runtime() checks.
*/
void kmsan_internal_memmove_metadata(void *dst, void *src, size_t n);
void kmsan_internal_poison_memory(void *address, size_t size, gfp_t flags,
unsigned int poison_flags);
void kmsan_internal_unpoison_memory(void *address, size_t size, bool checked);
void kmsan_internal_set_shadow_origin(void *address, size_t size, int b,
u32 origin, bool checked);
depot_stack_handle_t kmsan_internal_chain_origin(depot_stack_handle_t id);
bool kmsan_metadata_is_contiguous(void *addr, size_t size);
void kmsan_internal_check_memory(void *addr, size_t size, const void *user_addr,
int reason);
struct page *kmsan_vmalloc_to_page_or_null(void *vaddr);
/*
* kmsan_internal_is_module_addr() and kmsan_internal_is_vmalloc_addr() are
* non-instrumented versions of is_module_address() and is_vmalloc_addr() that
* are safe to call from KMSAN runtime without recursion.
*/
static inline bool kmsan_internal_is_module_addr(void *vaddr)
{
return ((u64)vaddr >= MODULES_VADDR) && ((u64)vaddr < MODULES_END);
}
static inline bool kmsan_internal_is_vmalloc_addr(void *addr)
{
return ((u64)addr >= VMALLOC_START) && ((u64)addr < VMALLOC_END);
}
#endif /* __MM_KMSAN_KMSAN_H */

219
mm/kmsan/report.c Normal file
View File

@ -0,0 +1,219 @@
// SPDX-License-Identifier: GPL-2.0
/*
* KMSAN error reporting routines.
*
* Copyright (C) 2019-2022 Google LLC
* Author: Alexander Potapenko <glider@google.com>
*
*/
#include <linux/console.h>
#include <linux/moduleparam.h>
#include <linux/stackdepot.h>
#include <linux/stacktrace.h>
#include <linux/uaccess.h>
#include "kmsan.h"
static DEFINE_RAW_SPINLOCK(kmsan_report_lock);
#define DESCR_SIZE 128
/* Protected by kmsan_report_lock */
static char report_local_descr[DESCR_SIZE];
int panic_on_kmsan __read_mostly;
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "kmsan."
module_param_named(panic, panic_on_kmsan, int, 0);
/*
* Skip internal KMSAN frames.
*/
static int get_stack_skipnr(const unsigned long stack_entries[],
int num_entries)
{
int len, skip;
char buf[64];
for (skip = 0; skip < num_entries; ++skip) {
len = scnprintf(buf, sizeof(buf), "%ps",
(void *)stack_entries[skip]);
/* Never show __msan_* or kmsan_* functions. */
if ((strnstr(buf, "__msan_", len) == buf) ||
(strnstr(buf, "kmsan_", len) == buf))
continue;
/*
* No match for runtime functions -- @skip entries to skip to
* get to first frame of interest.
*/
break;
}
return skip;
}
/*
* Currently the descriptions of locals generated by Clang look as follows:
* ----local_name@function_name
* We want to print only the name of the local, as other information in that
* description can be confusing.
* The meaningful part of the description is copied to a global buffer to avoid
* allocating memory.
*/
static char *pretty_descr(char *descr)
{
int pos = 0, len = strlen(descr);
for (int i = 0; i < len; i++) {
if (descr[i] == '@')
break;
if (descr[i] == '-')
continue;
report_local_descr[pos] = descr[i];
if (pos + 1 == DESCR_SIZE)
break;
pos++;
}
report_local_descr[pos] = 0;
return report_local_descr;
}
void kmsan_print_origin(depot_stack_handle_t origin)
{
unsigned long *entries = NULL, *chained_entries = NULL;
unsigned int nr_entries, chained_nr_entries, skipnr;
void *pc1 = NULL, *pc2 = NULL;
depot_stack_handle_t head;
unsigned long magic;
char *descr = NULL;
unsigned int depth;
if (!origin)
return;
while (true) {
nr_entries = stack_depot_fetch(origin, &entries);
depth = kmsan_depth_from_eb(stack_depot_get_extra_bits(origin));
magic = nr_entries ? entries[0] : 0;
if ((nr_entries == 4) && (magic == KMSAN_ALLOCA_MAGIC_ORIGIN)) {
descr = (char *)entries[1];
pc1 = (void *)entries[2];
pc2 = (void *)entries[3];
pr_err("Local variable %s created at:\n",
pretty_descr(descr));
if (pc1)
pr_err(" %pSb\n", pc1);
if (pc2)
pr_err(" %pSb\n", pc2);
break;
}
if ((nr_entries == 3) && (magic == KMSAN_CHAIN_MAGIC_ORIGIN)) {
/*
* Origin chains deeper than KMSAN_MAX_ORIGIN_DEPTH are
* not stored, so the output may be incomplete.
*/
if (depth == KMSAN_MAX_ORIGIN_DEPTH)
pr_err("<Zero or more stacks not recorded to save memory>\n\n");
head = entries[1];
origin = entries[2];
pr_err("Uninit was stored to memory at:\n");
chained_nr_entries =
stack_depot_fetch(head, &chained_entries);
kmsan_internal_unpoison_memory(
chained_entries,
chained_nr_entries * sizeof(*chained_entries),
/*checked*/ false);
skipnr = get_stack_skipnr(chained_entries,
chained_nr_entries);
stack_trace_print(chained_entries + skipnr,
chained_nr_entries - skipnr, 0);
pr_err("\n");
continue;
}
pr_err("Uninit was created at:\n");
if (nr_entries) {
skipnr = get_stack_skipnr(entries, nr_entries);
stack_trace_print(entries + skipnr, nr_entries - skipnr,
0);
} else {
pr_err("(stack is not available)\n");
}
break;
}
}
void kmsan_report(depot_stack_handle_t origin, void *address, int size,
int off_first, int off_last, const void *user_addr,
enum kmsan_bug_reason reason)
{
unsigned long stack_entries[KMSAN_STACK_DEPTH];
int num_stack_entries, skipnr;
char *bug_type = NULL;
unsigned long ua_flags;
bool is_uaf;
if (!kmsan_enabled)
return;
if (!current->kmsan_ctx.allow_reporting)
return;
if (!origin)
return;
current->kmsan_ctx.allow_reporting = false;
ua_flags = user_access_save();
raw_spin_lock(&kmsan_report_lock);
pr_err("=====================================================\n");
is_uaf = kmsan_uaf_from_eb(stack_depot_get_extra_bits(origin));
switch (reason) {
case REASON_ANY:
bug_type = is_uaf ? "use-after-free" : "uninit-value";
break;
case REASON_COPY_TO_USER:
bug_type = is_uaf ? "kernel-infoleak-after-free" :
"kernel-infoleak";
break;
case REASON_SUBMIT_URB:
bug_type = is_uaf ? "kernel-usb-infoleak-after-free" :
"kernel-usb-infoleak";
break;
}
num_stack_entries =
stack_trace_save(stack_entries, KMSAN_STACK_DEPTH, 1);
skipnr = get_stack_skipnr(stack_entries, num_stack_entries);
pr_err("BUG: KMSAN: %s in %pSb\n", bug_type,
(void *)stack_entries[skipnr]);
stack_trace_print(stack_entries + skipnr, num_stack_entries - skipnr,
0);
pr_err("\n");
kmsan_print_origin(origin);
if (size) {
pr_err("\n");
if (off_first == off_last)
pr_err("Byte %d of %d is uninitialized\n", off_first,
size);
else
pr_err("Bytes %d-%d of %d are uninitialized\n",
off_first, off_last, size);
}
if (address)
pr_err("Memory access of size %d starts at %px\n", size,
address);
if (user_addr && reason == REASON_COPY_TO_USER)
pr_err("Data copied to user address %px\n", user_addr);
pr_err("\n");
dump_stack_print_info(KERN_ERR);
pr_err("=====================================================\n");
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
raw_spin_unlock(&kmsan_report_lock);
if (panic_on_kmsan)
panic("kmsan.panic set ...\n");
user_access_restore(ua_flags);
current->kmsan_ctx.allow_reporting = true;
}

147
mm/kmsan/shadow.c Normal file
View File

@ -0,0 +1,147 @@
// SPDX-License-Identifier: GPL-2.0
/*
* KMSAN shadow implementation.
*
* Copyright (C) 2017-2022 Google LLC
* Author: Alexander Potapenko <glider@google.com>
*
*/
#include <asm/kmsan.h>
#include <asm/tlbflush.h>
#include <linux/cacheflush.h>
#include <linux/memblock.h>
#include <linux/mm_types.h>
#include <linux/percpu-defs.h>
#include <linux/slab.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include "../internal.h"
#include "kmsan.h"
#define shadow_page_for(page) ((page)->kmsan_shadow)
#define origin_page_for(page) ((page)->kmsan_origin)
static void *shadow_ptr_for(struct page *page)
{
return page_address(shadow_page_for(page));
}
static void *origin_ptr_for(struct page *page)
{
return page_address(origin_page_for(page));
}
static bool page_has_metadata(struct page *page)
{
return shadow_page_for(page) && origin_page_for(page);
}
static void set_no_shadow_origin_page(struct page *page)
{
shadow_page_for(page) = NULL;
origin_page_for(page) = NULL;
}
/*
* Dummy load and store pages to be used when the real metadata is unavailable.
* There are separate pages for loads and stores, so that every load returns a
* zero, and every store doesn't affect other loads.
*/
static char dummy_load_page[PAGE_SIZE] __aligned(PAGE_SIZE);
static char dummy_store_page[PAGE_SIZE] __aligned(PAGE_SIZE);
static unsigned long vmalloc_meta(void *addr, bool is_origin)
{
unsigned long addr64 = (unsigned long)addr, off;
KMSAN_WARN_ON(is_origin && !IS_ALIGNED(addr64, KMSAN_ORIGIN_SIZE));
if (kmsan_internal_is_vmalloc_addr(addr)) {
off = addr64 - VMALLOC_START;
return off + (is_origin ? KMSAN_VMALLOC_ORIGIN_START :
KMSAN_VMALLOC_SHADOW_START);
}
if (kmsan_internal_is_module_addr(addr)) {
off = addr64 - MODULES_VADDR;
return off + (is_origin ? KMSAN_MODULES_ORIGIN_START :
KMSAN_MODULES_SHADOW_START);
}
return 0;
}
static struct page *virt_to_page_or_null(void *vaddr)
{
if (kmsan_virt_addr_valid(vaddr))
return virt_to_page(vaddr);
else
return NULL;
}
struct shadow_origin_ptr kmsan_get_shadow_origin_ptr(void *address, u64 size,
bool store)
{
struct shadow_origin_ptr ret;
void *shadow;
/*
* Even if we redirect this memory access to the dummy page, it will
* go out of bounds.
*/
KMSAN_WARN_ON(size > PAGE_SIZE);
if (!kmsan_enabled)
goto return_dummy;
KMSAN_WARN_ON(!kmsan_metadata_is_contiguous(address, size));
shadow = kmsan_get_metadata(address, KMSAN_META_SHADOW);
if (!shadow)
goto return_dummy;
ret.shadow = shadow;
ret.origin = kmsan_get_metadata(address, KMSAN_META_ORIGIN);
return ret;
return_dummy:
if (store) {
/* Ignore this store. */
ret.shadow = dummy_store_page;
ret.origin = dummy_store_page;
} else {
/* This load will return zero. */
ret.shadow = dummy_load_page;
ret.origin = dummy_load_page;
}
return ret;
}
/*
* Obtain the shadow or origin pointer for the given address, or NULL if there's
* none. The caller must check the return value for being non-NULL if needed.
* The return value of this function should not depend on whether we're in the
* runtime or not.
*/
void *kmsan_get_metadata(void *address, bool is_origin)
{
u64 addr = (u64)address, pad, off;
struct page *page;
if (is_origin && !IS_ALIGNED(addr, KMSAN_ORIGIN_SIZE)) {
pad = addr % KMSAN_ORIGIN_SIZE;
addr -= pad;
}
address = (void *)addr;
if (kmsan_internal_is_vmalloc_addr(address) ||
kmsan_internal_is_module_addr(address))
return (void *)vmalloc_meta(address, is_origin);
page = virt_to_page_or_null(address);
if (!page)
return NULL;
if (!page_has_metadata(page))
return NULL;
off = addr % PAGE_SIZE;
return (is_origin ? origin_ptr_for(page) : shadow_ptr_for(page)) + off;
}

8
scripts/Makefile.kmsan Normal file
View File

@ -0,0 +1,8 @@
# SPDX-License-Identifier: GPL-2.0
kmsan-cflags := -fsanitize=kernel-memory
ifdef CONFIG_KMSAN_CHECK_PARAM_RETVAL
kmsan-cflags += -fsanitize-memory-param-retval
endif
export CFLAGS_KMSAN := $(kmsan-cflags)

View File

@ -157,6 +157,15 @@ _c_flags += $(if $(patsubst n%,, \
endif
endif
ifeq ($(CONFIG_KMSAN),y)
_c_flags += $(if $(patsubst n%,, \
$(KMSAN_SANITIZE_$(basetarget).o)$(KMSAN_SANITIZE)y), \
$(CFLAGS_KMSAN))
_c_flags += $(if $(patsubst n%,, \
$(KMSAN_ENABLE_CHECKS_$(basetarget).o)$(KMSAN_ENABLE_CHECKS)y), \
, -mllvm -msan-disable-checks=1)
endif
ifeq ($(CONFIG_UBSAN),y)
_c_flags += $(if $(patsubst n%,, \
$(UBSAN_SANITIZE_$(basetarget).o)$(UBSAN_SANITIZE)$(CONFIG_UBSAN_SANITIZE_ALL)), \