1

x86/efistub: Avoid placing the kernel below LOAD_PHYSICAL_ADDR

The EFI stub's kernel placement logic randomizes the physical placement
of the kernel by taking all available memory into account, and picking a
region at random, based on a random seed.

When KASLR is disabled, this seed is set to 0x0, and this results in the
lowest available region of memory to be selected for loading the kernel,
even if this is below LOAD_PHYSICAL_ADDR. Some of this memory is
typically reserved for the GFP_DMA region, to accommodate masters that
can only access the first 16 MiB of system memory.

Even if such devices are rare these days, we may still end up with a
warning in the kernel log, as reported by Tom:

 swapper/0: page allocation failure: order:10, mode:0xcc1(GFP_KERNEL|GFP_DMA), nodemask=(null),cpuset=/,mems_allowed=0

Fix this by tweaking the random allocation logic to accept a low bound
on the placement, and set it to LOAD_PHYSICAL_ADDR.

Fixes: a1b87d54f4 ("x86/efistub: Avoid legacy decompressor when doing EFI boot")
Reported-by: Tom Englund <tomenglund26@gmail.com>
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218404
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
This commit is contained in:
Ard Biesheuvel 2024-01-30 19:01:35 +01:00
parent a7a6a01f88
commit 2f77465b05
5 changed files with 12 additions and 8 deletions

View File

@ -956,7 +956,8 @@ efi_status_t efi_get_random_bytes(unsigned long size, u8 *out);
efi_status_t efi_random_alloc(unsigned long size, unsigned long align,
unsigned long *addr, unsigned long random_seed,
int memory_type, unsigned long alloc_limit);
int memory_type, unsigned long alloc_min,
unsigned long alloc_max);
efi_status_t efi_random_get_seed(void);

View File

@ -119,7 +119,7 @@ efi_status_t efi_kaslr_relocate_kernel(unsigned long *image_addr,
*/
status = efi_random_alloc(*reserve_size, min_kimg_align,
reserve_addr, phys_seed,
EFI_LOADER_CODE, EFI_ALLOC_LIMIT);
EFI_LOADER_CODE, 0, EFI_ALLOC_LIMIT);
if (status != EFI_SUCCESS)
efi_warn("efi_random_alloc() failed: 0x%lx\n", status);
} else {

View File

@ -17,7 +17,7 @@
static unsigned long get_entry_num_slots(efi_memory_desc_t *md,
unsigned long size,
unsigned long align_shift,
u64 alloc_limit)
u64 alloc_min, u64 alloc_max)
{
unsigned long align = 1UL << align_shift;
u64 first_slot, last_slot, region_end;
@ -30,11 +30,11 @@ static unsigned long get_entry_num_slots(efi_memory_desc_t *md,
return 0;
region_end = min(md->phys_addr + md->num_pages * EFI_PAGE_SIZE - 1,
alloc_limit);
alloc_max);
if (region_end < size)
return 0;
first_slot = round_up(md->phys_addr, align);
first_slot = round_up(max(md->phys_addr, alloc_min), align);
last_slot = round_down(region_end - size + 1, align);
if (first_slot > last_slot)
@ -56,7 +56,8 @@ efi_status_t efi_random_alloc(unsigned long size,
unsigned long *addr,
unsigned long random_seed,
int memory_type,
unsigned long alloc_limit)
unsigned long alloc_min,
unsigned long alloc_max)
{
unsigned long total_slots = 0, target_slot;
unsigned long total_mirrored_slots = 0;
@ -78,7 +79,8 @@ efi_status_t efi_random_alloc(unsigned long size,
efi_memory_desc_t *md = (void *)map->map + map_offset;
unsigned long slots;
slots = get_entry_num_slots(md, size, ilog2(align), alloc_limit);
slots = get_entry_num_slots(md, size, ilog2(align), alloc_min,
alloc_max);
MD_NUM_SLOTS(md) = slots;
total_slots += slots;
if (md->attribute & EFI_MEMORY_MORE_RELIABLE)

View File

@ -799,6 +799,7 @@ static efi_status_t efi_decompress_kernel(unsigned long *kernel_entry)
status = efi_random_alloc(alloc_size, CONFIG_PHYSICAL_ALIGN, &addr,
seed[0], EFI_LOADER_CODE,
LOAD_PHYSICAL_ADDR,
EFI_X86_KERNEL_ALLOC_LIMIT);
if (status != EFI_SUCCESS)
return status;

View File

@ -119,7 +119,7 @@ efi_zboot_entry(efi_handle_t handle, efi_system_table_t *systab)
}
status = efi_random_alloc(alloc_size, min_kimg_align, &image_base,
seed, EFI_LOADER_CODE, EFI_ALLOC_LIMIT);
seed, EFI_LOADER_CODE, 0, EFI_ALLOC_LIMIT);
if (status != EFI_SUCCESS) {
efi_err("Failed to allocate memory\n");
goto free_cmdline;