1

for-6.12/block-20240913

-----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmbkZhQQHGF4Ym9lQGtl
 cm5lbC5kawAKCRD301j7KXHgpjOKD/0fzd4yOcqxSI9W3OLGd04VrOTJIQa4CRbV
 GmoTq39pOeIDVGug5ekkTpqqHHnuGk+nQhCzD9vsN/eTmC7yZOIr847O2aWzvYEn
 PzFRgmJpoo2E9sr/IsTR5LnJjbaIZhQVkqLH6ZOj9tpKlVwN2SK0nIRVNrAi5zgT
 MaDrto/2OUld+vmA99Rgb23jxM6UBdCPIjuiVa+11Vg9Z3D1tWbBmrsG7OMysyIf
 FbASBeKHqFSO61/ipFCZv6VV1X8zoWEVyT8n4A1yUbbN5rLzPgoQJVbfSqQRXIdr
 cdrKeCbKxl+joSgKS6LKpvnfwRgGF+hgAfpZg4c0vrbZGTQcRhhLFECyh/aVI08F
 p5TOMArhVaX59664gHgSPq4KnGTXOO29dot9N3Jya/ZQnxinjY9r+GVOfLuduPPy
 1B04vab8oAsk4zK7fZbkDxgYUyifwzK/vQ6OqYq2mYdpdIS/AE7T2ou61Bz5mI7I
 /BuucNV0Z96OKlyLEXwXXZjZgNu1TFcq6ARIBJ8L08PY64Fesj5BXabRyXkeNH26
 0exyz9heeJs6OwRGfngXmS24tDSS0k74CeZX3KoePNj69u6KCn346KiU1qgntwwD
 E5F7AEHqCl5FjUEIWB4M1EPlfA8U0MzOL+tkx2xKJAjsU60wAy7jRSyOIcqodpMs
 6UlPcJzgYg==
 =uuLl
 -----END PGP SIGNATURE-----

Merge tag 'for-6.12/block-20240913' of git://git.kernel.dk/linux

Pull block updates from Jens Axboe:

 - MD changes via Song:
      - md-bitmap refactoring (Yu Kuai)
      - raid5 performance optimization (Artur Paszkiewicz)
      - Other small fixes (Yu Kuai, Chen Ni)
      - Add a sysfs entry 'new_level' (Xiao Ni)
      - Improve information reported in /proc/mdstat (Mateusz Kusiak)

 - NVMe changes via Keith:
      - Asynchronous namespace scanning (Stuart)
      - TCP TLS updates (Hannes)
      - RDMA queue controller validation (Niklas)
      - Align field names to the spec (Anuj)
      - Metadata support validation (Puranjay)
      - A syntax cleanup (Shen)
      - Fix a Kconfig linking error (Arnd)
      - New queue-depth quirk (Keith)

 - Add missing unplug trace event (Keith)

 - blk-iocost fixes (Colin, Konstantin)

 - t10-pi modular removal and fixes (Alexey)

 - Fix for potential BLKSECDISCARD overflow (Alexey)

 - bio splitting cleanups and fixes (Christoph)

 - Deal with folios rather than rather than pages, speeding up how the
   block layer handles bigger IOs (Kundan)

 - Use spinlocks rather than bit spinlocks in zram (Sebastian, Mike)

 - Reduce zoned device overhead in ublk (Ming)

 - Add and use sendpages_ok() for drbd and nvme-tcp (Ofir)

 - Fix regression in partition error pointer checking (Riyan)

 - Add support for write zeroes and rotational status in nbd (Wouter)

 - Add Yu Kuai as new BFQ maintainer. The scheduler has been
   unmaintained for quite a while.

 - Various sets of fixes for BFQ (Yu Kuai)

 - Misc fixes and cleanups (Alvaro, Christophe, Li, Md Haris, Mikhail,
   Yang)

* tag 'for-6.12/block-20240913' of git://git.kernel.dk/linux: (120 commits)
  nvme-pci: qdepth 1 quirk
  block: fix potential invalid pointer dereference in blk_add_partition
  blk_iocost: make read-only static array vrate_adj_pct const
  block: unpin user pages belonging to a folio at once
  mm: release number of pages of a folio
  block: introduce folio awareness and add a bigger size from folio
  block: Added folio-ized version of bio_add_hw_page()
  block, bfq: factor out a helper to split bfqq in bfq_init_rq()
  block, bfq: remove local variable 'bfqq_already_existing' in bfq_init_rq()
  block, bfq: remove local variable 'split' in bfq_init_rq()
  block, bfq: remove bfq_log_bfqg()
  block, bfq: merge bfq_release_process_ref() into bfq_put_cooperator()
  block, bfq: fix procress reference leakage for bfqq in merge chain
  block, bfq: fix uaf for accessing waker_bfqq after splitting
  blk-throttle: support prioritized processing of metadata
  blk-throttle: remove last_low_overflow_time
  drbd: Add NULL check for net_conf to prevent dereference in state validation
  nvme-tcp: fix link failure for TCP auth
  blk-mq: add missing unplug trace event
  mtip32xx: Remove redundant null pointer checks in mtip_hw_debugfs_init()
  ...
This commit is contained in:
Linus Torvalds 2024-09-16 13:33:06 +02:00
commit 26bb0d3f38
64 changed files with 1721 additions and 1311 deletions

View File

@ -3813,10 +3813,9 @@ F: Documentation/filesystems/befs.rst
F: fs/befs/
BFQ I/O SCHEDULER
M: Paolo Valente <paolo.valente@unimore.it>
M: Jens Axboe <axboe@kernel.dk>
M: Yu Kuai <yukuai3@huawei.com>
L: linux-block@vger.kernel.org
S: Maintained
S: Odd Fixes
F: Documentation/block/bfq-iosched.rst
F: block/bfq-*

View File

@ -679,12 +679,7 @@ void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
bfq_put_idle_entity(bfq_entity_service_tree(entity), entity);
bfqg_and_blkg_put(old_parent);
if (entity->parent &&
entity->parent->last_bfqq_created == bfqq)
entity->parent->last_bfqq_created = NULL;
else if (bfqd->last_bfqq_created == bfqq)
bfqd->last_bfqq_created = NULL;
bfq_reassign_last_bfqq(bfqq, NULL);
entity->parent = bfqg->my_entity;
entity->sched_data = &bfqg->sched_data;
/* pin down bfqg and its associated blkg */
@ -741,7 +736,6 @@ static void bfq_sync_bfqq_move(struct bfq_data *bfqd,
*/
bfq_put_cooperator(sync_bfqq);
bic_set_bfqq(bic, NULL, true, act_idx);
bfq_release_process_ref(bfqd, sync_bfqq);
}
}

View File

@ -2911,8 +2911,12 @@ bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
struct bfq_iocq_bfqq_data *bfqq_data = &bic->bfqq_data[a_idx];
/* if a merge has already been setup, then proceed with that first */
if (bfqq->new_bfqq)
return bfqq->new_bfqq;
new_bfqq = bfqq->new_bfqq;
if (new_bfqq) {
while (new_bfqq->new_bfqq)
new_bfqq = new_bfqq->new_bfqq;
return new_bfqq;
}
/*
* Check delayed stable merge for rotational or non-queueing
@ -3093,8 +3097,8 @@ static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
}
static void
bfq_reassign_last_bfqq(struct bfq_queue *cur_bfqq, struct bfq_queue *new_bfqq)
void bfq_reassign_last_bfqq(struct bfq_queue *cur_bfqq,
struct bfq_queue *new_bfqq)
{
if (cur_bfqq->entity.parent &&
cur_bfqq->entity.parent->last_bfqq_created == cur_bfqq)
@ -3125,10 +3129,12 @@ void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
bfq_put_queue(bfqq);
}
static void
bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
static struct bfq_queue *bfq_merge_bfqqs(struct bfq_data *bfqd,
struct bfq_io_cq *bic,
struct bfq_queue *bfqq)
{
struct bfq_queue *new_bfqq = bfqq->new_bfqq;
bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
(unsigned long)new_bfqq->pid);
/* Save weight raising and idle window of the merged queues */
@ -3222,6 +3228,8 @@ bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
bfq_reassign_last_bfqq(bfqq, new_bfqq);
bfq_release_process_ref(bfqd, bfqq);
return new_bfqq;
}
static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
@ -3257,14 +3265,8 @@ static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
* fulfilled, i.e., bic can be redirected to new_bfqq
* and bfqq can be put.
*/
bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
new_bfqq);
/*
* If we get here, bio will be queued into new_queue,
* so use new_bfqq to decide whether bio and rq can be
* merged.
*/
bfqq = new_bfqq;
while (bfqq != new_bfqq)
bfqq = bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq);
/*
* Change also bqfd->bio_bfqq, as
@ -5432,6 +5434,8 @@ void bfq_put_cooperator(struct bfq_queue *bfqq)
bfq_put_queue(__bfqq);
__bfqq = next;
}
bfq_release_process_ref(bfqq->bfqd, bfqq);
}
static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
@ -5444,8 +5448,6 @@ static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
bfq_put_cooperator(bfqq);
bfq_release_process_ref(bfqd, bfqq);
}
static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync,
@ -5701,9 +5703,7 @@ bfq_do_early_stable_merge(struct bfq_data *bfqd, struct bfq_queue *bfqq,
* state before killing it.
*/
bfqq->bic = bic;
bfq_merge_bfqqs(bfqd, bic, bfqq, new_bfqq);
return new_bfqq;
return bfq_merge_bfqqs(bfqd, bic, bfqq);
}
/*
@ -6158,6 +6158,7 @@ static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
bool waiting, idle_timer_disabled = false;
if (new_bfqq) {
struct bfq_queue *old_bfqq = bfqq;
/*
* Release the request's reference to the old bfqq
* and make sure one is taken to the shared queue.
@ -6174,18 +6175,18 @@ static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
* new_bfqq.
*/
if (bic_to_bfqq(RQ_BIC(rq), true,
bfq_actuator_index(bfqd, rq->bio)) == bfqq)
bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
bfqq, new_bfqq);
bfq_actuator_index(bfqd, rq->bio)) == bfqq) {
while (bfqq != new_bfqq)
bfqq = bfq_merge_bfqqs(bfqd, RQ_BIC(rq), bfqq);
}
bfq_clear_bfqq_just_created(bfqq);
bfq_clear_bfqq_just_created(old_bfqq);
/*
* rq is about to be enqueued into new_bfqq,
* release rq reference on bfqq
*/
bfq_put_queue(bfqq);
bfq_put_queue(old_bfqq);
rq->elv.priv[1] = new_bfqq;
bfqq = new_bfqq;
}
bfq_update_io_thinktime(bfqd, bfqq);
@ -6723,7 +6724,7 @@ bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
{
bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
if (bfqq_process_refs(bfqq) == 1) {
if (bfqq_process_refs(bfqq) == 1 && !bfqq->new_bfqq) {
bfqq->pid = current->pid;
bfq_clear_bfqq_coop(bfqq);
bfq_clear_bfqq_split_coop(bfqq);
@ -6733,16 +6734,13 @@ bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
bic_set_bfqq(bic, NULL, true, bfqq->actuator_idx);
bfq_put_cooperator(bfqq);
bfq_release_process_ref(bfqq->bfqd, bfqq);
return NULL;
}
static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
struct bfq_io_cq *bic,
struct bio *bio,
bool split, bool is_sync,
bool *new_queue)
static struct bfq_queue *
__bfq_get_bfqq_handle_split(struct bfq_data *bfqd, struct bfq_io_cq *bic,
struct bio *bio, bool split, bool is_sync,
bool *new_queue)
{
unsigned int act_idx = bfq_actuator_index(bfqd, bio);
struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync, act_idx);
@ -6821,6 +6819,84 @@ static void bfq_prepare_request(struct request *rq)
rq->elv.priv[0] = rq->elv.priv[1] = NULL;
}
static struct bfq_queue *bfq_waker_bfqq(struct bfq_queue *bfqq)
{
struct bfq_queue *new_bfqq = bfqq->new_bfqq;
struct bfq_queue *waker_bfqq = bfqq->waker_bfqq;
if (!waker_bfqq)
return NULL;
while (new_bfqq) {
if (new_bfqq == waker_bfqq) {
/*
* If waker_bfqq is in the merge chain, and current
* is the only procress.
*/
if (bfqq_process_refs(waker_bfqq) == 1)
return NULL;
break;
}
new_bfqq = new_bfqq->new_bfqq;
}
return waker_bfqq;
}
static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
struct bfq_io_cq *bic,
struct bio *bio,
unsigned int idx,
bool is_sync)
{
struct bfq_queue *waker_bfqq;
struct bfq_queue *bfqq;
bool new_queue = false;
bfqq = __bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
&new_queue);
if (unlikely(new_queue))
return bfqq;
/* If the queue was seeky for too long, break it apart. */
if (!bfq_bfqq_coop(bfqq) || !bfq_bfqq_split_coop(bfqq) ||
bic->bfqq_data[idx].stably_merged)
return bfqq;
waker_bfqq = bfq_waker_bfqq(bfqq);
/* Update bic before losing reference to bfqq */
if (bfq_bfqq_in_large_burst(bfqq))
bic->bfqq_data[idx].saved_in_large_burst = true;
bfqq = bfq_split_bfqq(bic, bfqq);
if (bfqq) {
bfq_bfqq_resume_state(bfqq, bfqd, bic, true);
return bfqq;
}
bfqq = __bfq_get_bfqq_handle_split(bfqd, bic, bio, true, is_sync, NULL);
if (unlikely(bfqq == &bfqd->oom_bfqq))
return bfqq;
bfq_bfqq_resume_state(bfqq, bfqd, bic, false);
bfqq->waker_bfqq = waker_bfqq;
bfqq->tentative_waker_bfqq = NULL;
/*
* If the waker queue disappears, then new_bfqq->waker_bfqq must be
* reset. So insert new_bfqq into the
* woken_list of the waker. See
* bfq_check_waker for details.
*/
if (waker_bfqq)
hlist_add_head(&bfqq->woken_list_node,
&bfqq->waker_bfqq->woken_list);
return bfqq;
}
/*
* If needed, init rq, allocate bfq data structures associated with
* rq, and increment reference counters in the destination bfq_queue
@ -6852,8 +6928,6 @@ static struct bfq_queue *bfq_init_rq(struct request *rq)
struct bfq_io_cq *bic;
const int is_sync = rq_is_sync(rq);
struct bfq_queue *bfqq;
bool new_queue = false;
bool bfqq_already_existing = false, split = false;
unsigned int a_idx = bfq_actuator_index(bfqd, bio);
if (unlikely(!rq->elv.icq))
@ -6870,54 +6944,9 @@ static struct bfq_queue *bfq_init_rq(struct request *rq)
return RQ_BFQQ(rq);
bic = icq_to_bic(rq->elv.icq);
bfq_check_ioprio_change(bic, bio);
bfq_bic_update_cgroup(bic, bio);
bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
&new_queue);
if (likely(!new_queue)) {
/* If the queue was seeky for too long, break it apart. */
if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq) &&
!bic->bfqq_data[a_idx].stably_merged) {
struct bfq_queue *old_bfqq = bfqq;
/* Update bic before losing reference to bfqq */
if (bfq_bfqq_in_large_burst(bfqq))
bic->bfqq_data[a_idx].saved_in_large_burst =
true;
bfqq = bfq_split_bfqq(bic, bfqq);
split = true;
if (!bfqq) {
bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
true, is_sync,
NULL);
if (unlikely(bfqq == &bfqd->oom_bfqq))
bfqq_already_existing = true;
} else
bfqq_already_existing = true;
if (!bfqq_already_existing) {
bfqq->waker_bfqq = old_bfqq->waker_bfqq;
bfqq->tentative_waker_bfqq = NULL;
/*
* If the waker queue disappears, then
* new_bfqq->waker_bfqq must be
* reset. So insert new_bfqq into the
* woken_list of the waker. See
* bfq_check_waker for details.
*/
if (bfqq->waker_bfqq)
hlist_add_head(&bfqq->woken_list_node,
&bfqq->waker_bfqq->woken_list);
}
}
}
bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, a_idx, is_sync);
bfqq_request_allocated(bfqq);
bfqq->ref++;
@ -6934,18 +6963,9 @@ static struct bfq_queue *bfq_init_rq(struct request *rq)
* addition, if the queue has also just been split, we have to
* resume its state.
*/
if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
if (likely(bfqq != &bfqd->oom_bfqq) && !bfqq->new_bfqq &&
bfqq_process_refs(bfqq) == 1)
bfqq->bic = bic;
if (split) {
/*
* The queue has just been split from a shared
* queue: restore the idle window and the
* possible weight raising period.
*/
bfq_bfqq_resume_state(bfqq, bfqd, bic,
bfqq_already_existing);
}
}
/*
* Consider bfqq as possibly belonging to a burst of newly

View File

@ -1156,6 +1156,8 @@ void bfq_del_bfqq_busy(struct bfq_queue *bfqq, bool expiration);
void bfq_add_bfqq_busy(struct bfq_queue *bfqq);
void bfq_add_bfqq_in_groups_with_pending_reqs(struct bfq_queue *bfqq);
void bfq_del_bfqq_in_groups_with_pending_reqs(struct bfq_queue *bfqq);
void bfq_reassign_last_bfqq(struct bfq_queue *cur_bfqq,
struct bfq_queue *new_bfqq);
/* --------------- end of interface of B-WF2Q+ ---------------- */
@ -1183,11 +1185,6 @@ struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
"%s " fmt, pid_str, ##args); \
} while (0)
#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do { \
blk_add_cgroup_trace_msg((bfqd)->queue, \
&bfqg_to_blkg(bfqg)->blkcg->css, fmt, ##args); \
} while (0)
#else /* CONFIG_BFQ_GROUP_IOSCHED */
#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \
@ -1197,7 +1194,6 @@ struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
bfq_bfqq_name((bfqq), pid_str, MAX_BFQQ_NAME_LENGTH); \
blk_add_trace_msg((bfqd)->queue, "%s " fmt, pid_str, ##args); \
} while (0)
#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0)
#endif /* CONFIG_BFQ_GROUP_IOSCHED */

View File

@ -931,7 +931,8 @@ static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
return false;
*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
*same_page = ((vec_end_addr & PAGE_MASK) == ((page_addr + off) &
PAGE_MASK));
if (!*same_page) {
if (IS_ENABLED(CONFIG_KMSAN))
return false;
@ -1016,6 +1017,29 @@ int bio_add_hw_page(struct request_queue *q, struct bio *bio,
return len;
}
/**
* bio_add_hw_folio - attempt to add a folio to a bio with hw constraints
* @q: the target queue
* @bio: destination bio
* @folio: folio to add
* @len: vec entry length
* @offset: vec entry offset in the folio
* @max_sectors: maximum number of sectors that can be added
* @same_page: return if the segment has been merged inside the same folio
*
* Add a folio to a bio while respecting the hardware max_sectors, max_segment
* and gap limitations.
*/
int bio_add_hw_folio(struct request_queue *q, struct bio *bio,
struct folio *folio, size_t len, size_t offset,
unsigned int max_sectors, bool *same_page)
{
if (len > UINT_MAX || offset > UINT_MAX)
return 0;
return bio_add_hw_page(q, bio, folio_page(folio, 0), len, offset,
max_sectors, same_page);
}
/**
* bio_add_pc_page - attempt to add page to passthrough bio
* @q: the target queue
@ -1166,7 +1190,6 @@ void __bio_release_pages(struct bio *bio, bool mark_dirty)
struct folio_iter fi;
bio_for_each_folio_all(fi, bio) {
struct page *page;
size_t nr_pages;
if (mark_dirty) {
@ -1174,12 +1197,9 @@ void __bio_release_pages(struct bio *bio, bool mark_dirty)
folio_mark_dirty(fi.folio);
folio_unlock(fi.folio);
}
page = folio_page(fi.folio, fi.offset / PAGE_SIZE);
nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE -
fi.offset / PAGE_SIZE + 1;
do {
bio_release_page(bio, page++);
} while (--nr_pages != 0);
unpin_user_folio(fi.folio, nr_pages);
}
}
EXPORT_SYMBOL_GPL(__bio_release_pages);
@ -1204,8 +1224,8 @@ void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
bio_set_flag(bio, BIO_CLONED);
}
static int bio_iov_add_page(struct bio *bio, struct page *page,
unsigned int len, unsigned int offset)
static int bio_iov_add_folio(struct bio *bio, struct folio *folio, size_t len,
size_t offset)
{
bool same_page = false;
@ -1214,30 +1234,61 @@ static int bio_iov_add_page(struct bio *bio, struct page *page,
if (bio->bi_vcnt > 0 &&
bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
page, len, offset, &same_page)) {
folio_page(folio, 0), len, offset,
&same_page)) {
bio->bi_iter.bi_size += len;
if (same_page)
bio_release_page(bio, page);
if (same_page && bio_flagged(bio, BIO_PAGE_PINNED))
unpin_user_folio(folio, 1);
return 0;
}
__bio_add_page(bio, page, len, offset);
bio_add_folio_nofail(bio, folio, len, offset);
return 0;
}
static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
unsigned int len, unsigned int offset)
static int bio_iov_add_zone_append_folio(struct bio *bio, struct folio *folio,
size_t len, size_t offset)
{
struct request_queue *q = bdev_get_queue(bio->bi_bdev);
bool same_page = false;
if (bio_add_hw_page(q, bio, page, len, offset,
if (bio_add_hw_folio(q, bio, folio, len, offset,
queue_max_zone_append_sectors(q), &same_page) != len)
return -EINVAL;
if (same_page)
bio_release_page(bio, page);
if (same_page && bio_flagged(bio, BIO_PAGE_PINNED))
unpin_user_folio(folio, 1);
return 0;
}
static unsigned int get_contig_folio_len(unsigned int *num_pages,
struct page **pages, unsigned int i,
struct folio *folio, size_t left,
size_t offset)
{
size_t bytes = left;
size_t contig_sz = min_t(size_t, PAGE_SIZE - offset, bytes);
unsigned int j;
/*
* We might COW a single page in the middle of
* a large folio, so we have to check that all
* pages belong to the same folio.
*/
bytes -= contig_sz;
for (j = i + 1; j < i + *num_pages; j++) {
size_t next = min_t(size_t, PAGE_SIZE, bytes);
if (page_folio(pages[j]) != folio ||
pages[j] != pages[j - 1] + 1) {
break;
}
contig_sz += next;
bytes -= next;
}
*num_pages = j - i;
return contig_sz;
}
#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
/**
@ -1257,9 +1308,9 @@ static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
struct page **pages = (struct page **)bv;
ssize_t size, left;
unsigned len, i = 0;
size_t offset;
ssize_t size;
unsigned int num_pages, i = 0;
size_t offset, folio_offset, left, len;
int ret = 0;
/*
@ -1299,17 +1350,28 @@ static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
goto out;
}
for (left = size, i = 0; left > 0; left -= len, i++) {
for (left = size, i = 0; left > 0; left -= len, i += num_pages) {
struct page *page = pages[i];
struct folio *folio = page_folio(page);
folio_offset = ((size_t)folio_page_idx(folio, page) <<
PAGE_SHIFT) + offset;
len = min(folio_size(folio) - folio_offset, left);
num_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
if (num_pages > 1)
len = get_contig_folio_len(&num_pages, pages, i,
folio, left, offset);
len = min_t(size_t, PAGE_SIZE - offset, left);
if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
ret = bio_iov_add_zone_append_page(bio, page, len,
offset);
ret = bio_iov_add_zone_append_folio(bio, folio, len,
folio_offset);
if (ret)
break;
} else
bio_iov_add_page(bio, page, len, offset);
bio_iov_add_folio(bio, folio, len, folio_offset);
offset = 0;
}

View File

@ -1458,7 +1458,6 @@ int blkcg_init_disk(struct gendisk *disk)
struct request_queue *q = disk->queue;
struct blkcg_gq *new_blkg, *blkg;
bool preloaded;
int ret;
new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
if (!new_blkg)
@ -1478,15 +1477,8 @@ int blkcg_init_disk(struct gendisk *disk)
if (preloaded)
radix_tree_preload_end();
ret = blk_ioprio_init(disk);
if (ret)
goto err_destroy_all;
return 0;
err_destroy_all:
blkg_destroy_all(disk);
return ret;
err_unlock:
spin_unlock_irq(&q->queue_lock);
if (preloaded)
@ -1554,6 +1546,14 @@ int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
if (blkcg_policy_enabled(q, pol))
return 0;
/*
* Policy is allowed to be registered without pd_alloc_fn/pd_free_fn,
* for example, ioprio. Such policy will work on blkcg level, not disk
* level, and don't need to be activated.
*/
if (WARN_ON_ONCE(!pol->pd_alloc_fn || !pol->pd_free_fn))
return -EINVAL;
if (queue_is_mq(q))
blk_mq_freeze_queue(q);
retry:
@ -1733,9 +1733,12 @@ int blkcg_policy_register(struct blkcg_policy *pol)
goto err_unlock;
}
/* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
/*
* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs, and policy
* without pd_alloc_fn/pd_free_fn can't be activated.
*/
if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
goto err_unlock;
/* register @pol */

View File

@ -485,7 +485,6 @@ static inline void blkcg_deactivate_policy(struct gendisk *disk,
static inline struct blkg_policy_data *blkg_to_pd(struct blkcg_gq *blkg,
struct blkcg_policy *pol) { return NULL; }
static inline struct blkcg_gq *pd_to_blkg(struct blkg_policy_data *pd) { return NULL; }
static inline char *blkg_path(struct blkcg_gq *blkg) { return NULL; }
static inline void blkg_get(struct blkcg_gq *blkg) { }
static inline void blkg_put(struct blkcg_gq *blkg) { }
static inline void blkcg_bio_issue_init(struct bio *bio) { }

View File

@ -648,7 +648,7 @@ static const struct ioc_params autop[] = {
* vrate adjust percentages indexed by ioc->busy_level. We adjust up on
* vtime credit shortage and down on device saturation.
*/
static u32 vrate_adj_pct[] =
static const u32 vrate_adj_pct[] =
{ 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
@ -2076,7 +2076,7 @@ static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
struct ioc_now *now)
{
struct ioc_gq *iocg;
u64 dur, usage_pct, nr_cycles;
u64 dur, usage_pct, nr_cycles, nr_cycles_shift;
/* if no debtor, reset the cycle */
if (!nr_debtors) {
@ -2138,10 +2138,12 @@ static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
old_debt = iocg->abs_vdebt;
old_delay = iocg->delay;
nr_cycles_shift = min_t(u64, nr_cycles, BITS_PER_LONG - 1);
if (iocg->abs_vdebt)
iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles_shift ?: 1;
if (iocg->delay)
iocg->delay = iocg->delay >> nr_cycles ?: 1;
iocg->delay = iocg->delay >> nr_cycles_shift ?: 1;
iocg_kick_waitq(iocg, true, now);

View File

@ -49,14 +49,6 @@ static const char *policy_name[] = {
static struct blkcg_policy ioprio_policy;
/**
* struct ioprio_blkg - Per (cgroup, request queue) data.
* @pd: blkg_policy_data structure.
*/
struct ioprio_blkg {
struct blkg_policy_data pd;
};
/**
* struct ioprio_blkcg - Per cgroup data.
* @cpd: blkcg_policy_data structure.
@ -67,11 +59,6 @@ struct ioprio_blkcg {
enum prio_policy prio_policy;
};
static inline struct ioprio_blkg *pd_to_ioprio(struct blkg_policy_data *pd)
{
return pd ? container_of(pd, struct ioprio_blkg, pd) : NULL;
}
static struct ioprio_blkcg *blkcg_to_ioprio_blkcg(struct blkcg *blkcg)
{
return container_of(blkcg_to_cpd(blkcg, &ioprio_policy),
@ -84,16 +71,6 @@ ioprio_blkcg_from_css(struct cgroup_subsys_state *css)
return blkcg_to_ioprio_blkcg(css_to_blkcg(css));
}
static struct ioprio_blkcg *ioprio_blkcg_from_bio(struct bio *bio)
{
struct blkg_policy_data *pd = blkg_to_pd(bio->bi_blkg, &ioprio_policy);
if (!pd)
return NULL;
return blkcg_to_ioprio_blkcg(pd->blkg->blkcg);
}
static int ioprio_show_prio_policy(struct seq_file *sf, void *v)
{
struct ioprio_blkcg *blkcg = ioprio_blkcg_from_css(seq_css(sf));
@ -118,25 +95,6 @@ static ssize_t ioprio_set_prio_policy(struct kernfs_open_file *of, char *buf,
return nbytes;
}
static struct blkg_policy_data *
ioprio_alloc_pd(struct gendisk *disk, struct blkcg *blkcg, gfp_t gfp)
{
struct ioprio_blkg *ioprio_blkg;
ioprio_blkg = kzalloc(sizeof(*ioprio_blkg), gfp);
if (!ioprio_blkg)
return NULL;
return &ioprio_blkg->pd;
}
static void ioprio_free_pd(struct blkg_policy_data *pd)
{
struct ioprio_blkg *ioprio_blkg = pd_to_ioprio(pd);
kfree(ioprio_blkg);
}
static struct blkcg_policy_data *ioprio_alloc_cpd(gfp_t gfp)
{
struct ioprio_blkcg *blkcg;
@ -179,14 +137,11 @@ static struct blkcg_policy ioprio_policy = {
.cpd_alloc_fn = ioprio_alloc_cpd,
.cpd_free_fn = ioprio_free_cpd,
.pd_alloc_fn = ioprio_alloc_pd,
.pd_free_fn = ioprio_free_pd,
};
void blkcg_set_ioprio(struct bio *bio)
{
struct ioprio_blkcg *blkcg = ioprio_blkcg_from_bio(bio);
struct ioprio_blkcg *blkcg = blkcg_to_ioprio_blkcg(bio->bi_blkg->blkcg);
u16 prio;
if (!blkcg || blkcg->prio_policy == POLICY_NO_CHANGE)
@ -219,16 +174,6 @@ void blkcg_set_ioprio(struct bio *bio)
bio->bi_ioprio = prio;
}
void blk_ioprio_exit(struct gendisk *disk)
{
blkcg_deactivate_policy(disk, &ioprio_policy);
}
int blk_ioprio_init(struct gendisk *disk)
{
return blkcg_activate_policy(disk, &ioprio_policy);
}
static int __init ioprio_init(void)
{
return blkcg_policy_register(&ioprio_policy);

View File

@ -9,17 +9,8 @@ struct request_queue;
struct bio;
#ifdef CONFIG_BLK_CGROUP_IOPRIO
int blk_ioprio_init(struct gendisk *disk);
void blk_ioprio_exit(struct gendisk *disk);
void blkcg_set_ioprio(struct bio *bio);
#else
static inline int blk_ioprio_init(struct gendisk *disk)
{
return 0;
}
static inline void blk_ioprio_exit(struct gendisk *disk)
{
}
static inline void blkcg_set_ioprio(struct bio *bio)
{
}

View File

@ -105,9 +105,33 @@ static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim)
return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
}
static struct bio *bio_split_discard(struct bio *bio,
const struct queue_limits *lim,
unsigned *nsegs, struct bio_set *bs)
static struct bio *bio_submit_split(struct bio *bio, int split_sectors)
{
if (unlikely(split_sectors < 0)) {
bio->bi_status = errno_to_blk_status(split_sectors);
bio_endio(bio);
return NULL;
}
if (split_sectors) {
struct bio *split;
split = bio_split(bio, split_sectors, GFP_NOIO,
&bio->bi_bdev->bd_disk->bio_split);
split->bi_opf |= REQ_NOMERGE;
blkcg_bio_issue_init(split);
bio_chain(split, bio);
trace_block_split(split, bio->bi_iter.bi_sector);
WARN_ON_ONCE(bio_zone_write_plugging(bio));
submit_bio_noacct(bio);
return split;
}
return bio;
}
struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim,
unsigned *nsegs)
{
unsigned int max_discard_sectors, granularity;
sector_t tmp;
@ -121,10 +145,10 @@ static struct bio *bio_split_discard(struct bio *bio,
min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
max_discard_sectors -= max_discard_sectors % granularity;
if (unlikely(!max_discard_sectors))
return NULL;
return bio;
if (bio_sectors(bio) <= max_discard_sectors)
return NULL;
return bio;
split_sectors = max_discard_sectors;
@ -139,19 +163,18 @@ static struct bio *bio_split_discard(struct bio *bio,
if (split_sectors > tmp)
split_sectors -= tmp;
return bio_split(bio, split_sectors, GFP_NOIO, bs);
return bio_submit_split(bio, split_sectors);
}
static struct bio *bio_split_write_zeroes(struct bio *bio,
const struct queue_limits *lim,
unsigned *nsegs, struct bio_set *bs)
struct bio *bio_split_write_zeroes(struct bio *bio,
const struct queue_limits *lim, unsigned *nsegs)
{
*nsegs = 0;
if (!lim->max_write_zeroes_sectors)
return NULL;
return bio;
if (bio_sectors(bio) <= lim->max_write_zeroes_sectors)
return NULL;
return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs);
return bio;
return bio_submit_split(bio, lim->max_write_zeroes_sectors);
}
static inline unsigned int blk_boundary_sectors(const struct queue_limits *lim,
@ -274,27 +297,19 @@ static bool bvec_split_segs(const struct queue_limits *lim,
}
/**
* bio_split_rw - split a bio in two bios
* bio_split_rw_at - check if and where to split a read/write bio
* @bio: [in] bio to be split
* @lim: [in] queue limits to split based on
* @segs: [out] number of segments in the bio with the first half of the sectors
* @bs: [in] bio set to allocate the clone from
* @max_bytes: [in] maximum number of bytes per bio
*
* Clone @bio, update the bi_iter of the clone to represent the first sectors
* of @bio and update @bio->bi_iter to represent the remaining sectors. The
* following is guaranteed for the cloned bio:
* - That it has at most @max_bytes worth of data
* - That it has at most queue_max_segments(@q) segments.
*
* Except for discard requests the cloned bio will point at the bi_io_vec of
* the original bio. It is the responsibility of the caller to ensure that the
* original bio is not freed before the cloned bio. The caller is also
* responsible for ensuring that @bs is only destroyed after processing of the
* split bio has finished.
* Find out if @bio needs to be split to fit the queue limits in @lim and a
* maximum size of @max_bytes. Returns a negative error number if @bio can't be
* split, 0 if the bio doesn't have to be split, or a positive sector offset if
* @bio needs to be split.
*/
struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
unsigned *segs, struct bio_set *bs, unsigned max_bytes)
int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim,
unsigned *segs, unsigned max_bytes)
{
struct bio_vec bv, bvprv, *bvprvp = NULL;
struct bvec_iter iter;
@ -324,22 +339,17 @@ struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
}
*segs = nsegs;
return NULL;
return 0;
split:
if (bio->bi_opf & REQ_ATOMIC) {
bio->bi_status = BLK_STS_INVAL;
bio_endio(bio);
return ERR_PTR(-EINVAL);
}
if (bio->bi_opf & REQ_ATOMIC)
return -EINVAL;
/*
* We can't sanely support splitting for a REQ_NOWAIT bio. End it
* with EAGAIN if splitting is required and return an error pointer.
*/
if (bio->bi_opf & REQ_NOWAIT) {
bio->bi_status = BLK_STS_AGAIN;
bio_endio(bio);
return ERR_PTR(-EAGAIN);
}
if (bio->bi_opf & REQ_NOWAIT)
return -EAGAIN;
*segs = nsegs;
@ -356,58 +366,36 @@ split:
* big IO can be trival, disable iopoll when split needed.
*/
bio_clear_polled(bio);
return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs);
return bytes >> SECTOR_SHIFT;
}
EXPORT_SYMBOL_GPL(bio_split_rw);
EXPORT_SYMBOL_GPL(bio_split_rw_at);
/**
* __bio_split_to_limits - split a bio to fit the queue limits
* @bio: bio to be split
* @lim: queue limits to split based on
* @nr_segs: returns the number of segments in the returned bio
*
* Check if @bio needs splitting based on the queue limits, and if so split off
* a bio fitting the limits from the beginning of @bio and return it. @bio is
* shortened to the remainder and re-submitted.
*
* The split bio is allocated from @q->bio_split, which is provided by the
* block layer.
*/
struct bio *__bio_split_to_limits(struct bio *bio,
const struct queue_limits *lim,
unsigned int *nr_segs)
struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
unsigned *nr_segs)
{
struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split;
struct bio *split;
return bio_submit_split(bio,
bio_split_rw_at(bio, lim, nr_segs,
get_max_io_size(bio, lim) << SECTOR_SHIFT));
}
switch (bio_op(bio)) {
case REQ_OP_DISCARD:
case REQ_OP_SECURE_ERASE:
split = bio_split_discard(bio, lim, nr_segs, bs);
break;
case REQ_OP_WRITE_ZEROES:
split = bio_split_write_zeroes(bio, lim, nr_segs, bs);
break;
default:
split = bio_split_rw(bio, lim, nr_segs, bs,
get_max_io_size(bio, lim) << SECTOR_SHIFT);
if (IS_ERR(split))
return NULL;
break;
}
/*
* REQ_OP_ZONE_APPEND bios must never be split by the block layer.
*
* But we want the nr_segs calculation provided by bio_split_rw_at, and having
* a good sanity check that the submitter built the bio correctly is nice to
* have as well.
*/
struct bio *bio_split_zone_append(struct bio *bio,
const struct queue_limits *lim, unsigned *nr_segs)
{
unsigned int max_sectors = queue_limits_max_zone_append_sectors(lim);
int split_sectors;
if (split) {
/* there isn't chance to merge the split bio */
split->bi_opf |= REQ_NOMERGE;
blkcg_bio_issue_init(split);
bio_chain(split, bio);
trace_block_split(split, bio->bi_iter.bi_sector);
WARN_ON_ONCE(bio_zone_write_plugging(bio));
submit_bio_noacct(bio);
return split;
}
return bio;
split_sectors = bio_split_rw_at(bio, lim, nr_segs,
max_sectors << SECTOR_SHIFT);
if (WARN_ON_ONCE(split_sectors > 0))
split_sectors = -EINVAL;
return bio_submit_split(bio, split_sectors);
}
/**
@ -426,9 +414,7 @@ struct bio *bio_split_to_limits(struct bio *bio)
const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits;
unsigned int nr_segs;
if (bio_may_exceed_limits(bio, lim))
return __bio_split_to_limits(bio, lim, &nr_segs);
return bio;
return __bio_split_to_limits(bio, lim, &nr_segs);
}
EXPORT_SYMBOL(bio_split_to_limits);

View File

@ -2753,6 +2753,7 @@ static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
struct request *rq;
unsigned int depth;
/*
* We may have been called recursively midway through handling
@ -2763,6 +2764,7 @@ void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
*/
if (plug->rq_count == 0)
return;
depth = plug->rq_count;
plug->rq_count = 0;
if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
@ -2770,6 +2772,7 @@ void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
rq = rq_list_peek(&plug->mq_list);
q = rq->q;
trace_block_unplug(q, depth, true);
/*
* Peek first request and see if we have a ->queue_rqs() hook.
@ -2939,7 +2942,7 @@ void blk_mq_submit_bio(struct bio *bio)
struct blk_plug *plug = current->plug;
const int is_sync = op_is_sync(bio->bi_opf);
struct blk_mq_hw_ctx *hctx;
unsigned int nr_segs = 1;
unsigned int nr_segs;
struct request *rq;
blk_status_t ret;
@ -2981,11 +2984,10 @@ void blk_mq_submit_bio(struct bio *bio)
goto queue_exit;
}
if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
if (!bio)
goto queue_exit;
}
bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
if (!bio)
goto queue_exit;
if (!bio_integrity_prep(bio))
goto queue_exit;

View File

@ -263,7 +263,7 @@ void rq_qos_wait(struct rq_wait *rqw, void *private_data,
has_sleeper = !prepare_to_wait_exclusive(&rqw->wait, &data.wq,
TASK_UNINTERRUPTIBLE);
do {
/* The memory barrier in set_task_state saves us here. */
/* The memory barrier in set_current_state saves us here. */
if (data.got_token)
break;
if (!has_sleeper && acquire_inflight_cb(rqw, private_data)) {

View File

@ -1584,6 +1584,22 @@ void blk_throtl_cancel_bios(struct gendisk *disk)
spin_unlock_irq(&q->queue_lock);
}
static bool tg_within_limit(struct throtl_grp *tg, struct bio *bio, bool rw)
{
/* throtl is FIFO - if bios are already queued, should queue */
if (tg->service_queue.nr_queued[rw])
return false;
return tg_may_dispatch(tg, bio, NULL);
}
static void tg_dispatch_in_debt(struct throtl_grp *tg, struct bio *bio, bool rw)
{
if (!bio_flagged(bio, BIO_BPS_THROTTLED))
tg->carryover_bytes[rw] -= throtl_bio_data_size(bio);
tg->carryover_ios[rw]--;
}
bool __blk_throtl_bio(struct bio *bio)
{
struct request_queue *q = bdev_get_queue(bio->bi_bdev);
@ -1600,34 +1616,35 @@ bool __blk_throtl_bio(struct bio *bio)
sq = &tg->service_queue;
while (true) {
if (tg->last_low_overflow_time[rw] == 0)
tg->last_low_overflow_time[rw] = jiffies;
/* throtl is FIFO - if bios are already queued, should queue */
if (sq->nr_queued[rw])
break;
if (tg_within_limit(tg, bio, rw)) {
/* within limits, let's charge and dispatch directly */
throtl_charge_bio(tg, bio);
/* if above limits, break to queue */
if (!tg_may_dispatch(tg, bio, NULL)) {
tg->last_low_overflow_time[rw] = jiffies;
/*
* We need to trim slice even when bios are not being
* queued otherwise it might happen that a bio is not
* queued for a long time and slice keeps on extending
* and trim is not called for a long time. Now if limits
* are reduced suddenly we take into account all the IO
* dispatched so far at new low rate and * newly queued
* IO gets a really long dispatch time.
*
* So keep on trimming slice even if bio is not queued.
*/
throtl_trim_slice(tg, rw);
} else if (bio_issue_as_root_blkg(bio)) {
/*
* IOs which may cause priority inversions are
* dispatched directly, even if they're over limit.
* Debts are handled by carryover_bytes/ios while
* calculating wait time.
*/
tg_dispatch_in_debt(tg, bio, rw);
} else {
/* if above limits, break to queue */
break;
}
/* within limits, let's charge and dispatch directly */
throtl_charge_bio(tg, bio);
/*
* We need to trim slice even when bios are not being queued
* otherwise it might happen that a bio is not queued for
* a long time and slice keeps on extending and trim is not
* called for a long time. Now if limits are reduced suddenly
* we take into account all the IO dispatched so far at new
* low rate and * newly queued IO gets a really long dispatch
* time.
*
* So keep on trimming slice even if bio is not queued.
*/
throtl_trim_slice(tg, rw);
/*
* @bio passed through this layer without being throttled.
* Climb up the ladder. If we're already at the top, it
@ -1650,8 +1667,6 @@ bool __blk_throtl_bio(struct bio *bio)
tg->io_disp[rw], tg_iops_limit(tg, rw),
sq->nr_queued[READ], sq->nr_queued[WRITE]);
tg->last_low_overflow_time[rw] = jiffies;
td->nr_queued[rw]++;
throtl_add_bio_tg(bio, qn, tg);
throttled = true;

View File

@ -106,8 +106,6 @@ struct throtl_grp {
/* Number of bio's dispatched in current slice */
unsigned int io_disp[2];
unsigned long last_low_overflow_time[2];
uint64_t last_bytes_disp[2];
unsigned int last_io_disp[2];

View File

@ -331,33 +331,67 @@ ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
ssize_t part_timeout_store(struct device *, struct device_attribute *,
const char *, size_t);
static inline bool bio_may_exceed_limits(struct bio *bio,
const struct queue_limits *lim)
{
switch (bio_op(bio)) {
case REQ_OP_DISCARD:
case REQ_OP_SECURE_ERASE:
case REQ_OP_WRITE_ZEROES:
return true; /* non-trivial splitting decisions */
default:
break;
}
struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim,
unsigned *nsegs);
struct bio *bio_split_write_zeroes(struct bio *bio,
const struct queue_limits *lim, unsigned *nsegs);
struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
unsigned *nr_segs);
struct bio *bio_split_zone_append(struct bio *bio,
const struct queue_limits *lim, unsigned *nr_segs);
/*
* All drivers must accept single-segments bios that are <= PAGE_SIZE.
* This is a quick and dirty check that relies on the fact that
* bi_io_vec[0] is always valid if a bio has data. The check might
* lead to occasional false negatives when bios are cloned, but compared
* to the performance impact of cloned bios themselves the loop below
* doesn't matter anyway.
*/
/*
* All drivers must accept single-segments bios that are smaller than PAGE_SIZE.
*
* This is a quick and dirty check that relies on the fact that bi_io_vec[0] is
* always valid if a bio has data. The check might lead to occasional false
* positives when bios are cloned, but compared to the performance impact of
* cloned bios themselves the loop below doesn't matter anyway.
*/
static inline bool bio_may_need_split(struct bio *bio,
const struct queue_limits *lim)
{
return lim->chunk_sectors || bio->bi_vcnt != 1 ||
bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE;
}
struct bio *__bio_split_to_limits(struct bio *bio,
const struct queue_limits *lim,
unsigned int *nr_segs);
/**
* __bio_split_to_limits - split a bio to fit the queue limits
* @bio: bio to be split
* @lim: queue limits to split based on
* @nr_segs: returns the number of segments in the returned bio
*
* Check if @bio needs splitting based on the queue limits, and if so split off
* a bio fitting the limits from the beginning of @bio and return it. @bio is
* shortened to the remainder and re-submitted.
*
* The split bio is allocated from @q->bio_split, which is provided by the
* block layer.
*/
static inline struct bio *__bio_split_to_limits(struct bio *bio,
const struct queue_limits *lim, unsigned int *nr_segs)
{
switch (bio_op(bio)) {
case REQ_OP_READ:
case REQ_OP_WRITE:
if (bio_may_need_split(bio, lim))
return bio_split_rw(bio, lim, nr_segs);
*nr_segs = 1;
return bio;
case REQ_OP_ZONE_APPEND:
return bio_split_zone_append(bio, lim, nr_segs);
case REQ_OP_DISCARD:
case REQ_OP_SECURE_ERASE:
return bio_split_discard(bio, lim, nr_segs);
case REQ_OP_WRITE_ZEROES:
return bio_split_write_zeroes(bio, lim, nr_segs);
default:
/* other operations can't be split */
*nr_segs = 0;
return bio;
}
}
int ll_back_merge_fn(struct request *req, struct bio *bio,
unsigned int nr_segs);
bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
@ -540,6 +574,10 @@ int bio_add_hw_page(struct request_queue *q, struct bio *bio,
struct page *page, unsigned int len, unsigned int offset,
unsigned int max_sectors, bool *same_page);
int bio_add_hw_folio(struct request_queue *q, struct bio *bio,
struct folio *folio, size_t len, size_t offset,
unsigned int max_sectors, bool *same_page);
/*
* Clean up a page appropriately, where the page may be pinned, may have a
* ref taken on it or neither.

View File

@ -126,7 +126,7 @@ static int blk_ioctl_discard(struct block_device *bdev, blk_mode_t mode,
return -EINVAL;
filemap_invalidate_lock(bdev->bd_mapping);
err = truncate_bdev_range(bdev, mode, start, start + len - 1);
err = truncate_bdev_range(bdev, mode, start, end - 1);
if (err)
goto fail;
@ -163,7 +163,7 @@ fail:
static int blk_ioctl_secure_erase(struct block_device *bdev, blk_mode_t mode,
void __user *argp)
{
uint64_t start, len;
uint64_t start, len, end;
uint64_t range[2];
int err;
@ -178,11 +178,12 @@ static int blk_ioctl_secure_erase(struct block_device *bdev, blk_mode_t mode,
len = range[1];
if ((start & 511) || (len & 511))
return -EINVAL;
if (start + len > bdev_nr_bytes(bdev))
if (check_add_overflow(start, len, &end) ||
end > bdev_nr_bytes(bdev))
return -EINVAL;
filemap_invalidate_lock(bdev->bd_mapping);
err = truncate_bdev_range(bdev, mode, start, start + len - 1);
err = truncate_bdev_range(bdev, mode, start, end - 1);
if (!err)
err = blkdev_issue_secure_erase(bdev, start >> 9, len >> 9,
GFP_KERNEL);

View File

@ -555,9 +555,11 @@ static bool blk_add_partition(struct gendisk *disk,
part = add_partition(disk, p, from, size, state->parts[p].flags,
&state->parts[p].info);
if (IS_ERR(part) && PTR_ERR(part) != -ENXIO) {
printk(KERN_ERR " %s: p%d could not be added: %pe\n",
disk->disk_name, p, part);
if (IS_ERR(part)) {
if (PTR_ERR(part) != -ENXIO) {
printk(KERN_ERR " %s: p%d could not be added: %pe\n",
disk->disk_name, p, part);
}
return true;
}

View File

@ -8,7 +8,6 @@
#include <linux/blk-integrity.h>
#include <linux/crc-t10dif.h>
#include <linux/crc64.h>
#include <linux/module.h>
#include <net/checksum.h>
#include <asm/unaligned.h>
#include "blk.h"
@ -240,9 +239,9 @@ static void ext_pi_crc64_generate(struct blk_integrity_iter *iter,
}
}
static bool ext_pi_ref_escape(u8 *ref_tag)
static bool ext_pi_ref_escape(const u8 ref_tag[6])
{
static u8 ref_escape[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
static const u8 ref_escape[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
return memcmp(ref_tag, ref_escape, sizeof(ref_escape)) == 0;
}
@ -472,6 +471,3 @@ void blk_integrity_complete(struct request *rq, unsigned int nr_bytes)
else
t10_pi_type1_complete(rq, nr_bytes);
}
MODULE_DESCRIPTION("T10 Protection Information module");
MODULE_LICENSE("GPL");

View File

@ -297,10 +297,6 @@ struct drbd_epoch {
unsigned long flags;
};
/* Prototype declaration of function defined in drbd_receiver.c */
int drbdd_init(struct drbd_thread *);
int drbd_asender(struct drbd_thread *);
/* drbd_epoch flag bits */
enum {
DE_HAVE_BARRIER_NUMBER,
@ -864,7 +860,6 @@ struct drbd_device {
struct list_head read_ee; /* [RS]P_DATA_REQUEST being read */
struct list_head net_ee; /* zero-copy network send in progress */
int next_barrier_nr;
struct list_head resync_reads;
atomic_t pp_in_use; /* allocated from page pool */
atomic_t pp_in_use_by_net; /* sendpage()d, still referenced by tcp */
@ -1390,9 +1385,6 @@ extern void conn_free_crypto(struct drbd_connection *connection);
extern void do_submit(struct work_struct *ws);
extern void __drbd_make_request(struct drbd_device *, struct bio *);
void drbd_submit_bio(struct bio *bio);
extern int drbd_read_remote(struct drbd_device *device, struct drbd_request *req);
extern int is_valid_ar_handle(struct drbd_request *, sector_t);
/* drbd_nl.c */
@ -1474,7 +1466,6 @@ extern int w_resync_timer(struct drbd_work *, int);
extern int w_send_write_hint(struct drbd_work *, int);
extern int w_send_dblock(struct drbd_work *, int);
extern int w_send_read_req(struct drbd_work *, int);
extern int w_e_reissue(struct drbd_work *, int);
extern int w_restart_disk_io(struct drbd_work *, int);
extern int w_send_out_of_sync(struct drbd_work *, int);
@ -1488,7 +1479,6 @@ extern int drbd_issue_discard_or_zero_out(struct drbd_device *device,
sector_t start, unsigned int nr_sectors, int flags);
extern int drbd_receiver(struct drbd_thread *thi);
extern int drbd_ack_receiver(struct drbd_thread *thi);
extern void drbd_send_ping_wf(struct work_struct *ws);
extern void drbd_send_acks_wf(struct work_struct *ws);
extern bool drbd_rs_c_min_rate_throttle(struct drbd_device *device);
extern bool drbd_rs_should_slow_down(struct drbd_peer_device *peer_device, sector_t sector,
@ -1504,7 +1494,6 @@ extern void __drbd_free_peer_req(struct drbd_device *, struct drbd_peer_request
#define drbd_free_peer_req(m,e) __drbd_free_peer_req(m, e, 0)
#define drbd_free_net_peer_req(m,e) __drbd_free_peer_req(m, e, 1)
extern struct page *drbd_alloc_pages(struct drbd_peer_device *, unsigned int, bool);
extern void drbd_set_recv_tcq(struct drbd_device *device, int tcq_enabled);
extern void _drbd_clear_done_ee(struct drbd_device *device, struct list_head *to_be_freed);
extern int drbd_connected(struct drbd_peer_device *);

View File

@ -1550,7 +1550,7 @@ static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *pa
* put_page(); and would cause either a VM_BUG directly, or
* __page_cache_release a page that would actually still be referenced
* by someone, leading to some obscure delayed Oops somewhere else. */
if (!drbd_disable_sendpage && sendpage_ok(page))
if (!drbd_disable_sendpage && sendpages_ok(page, len, offset))
msg.msg_flags |= MSG_NOSIGNAL | MSG_SPLICE_PAGES;
drbd_update_congested(peer_device->connection);

View File

@ -876,7 +876,7 @@ is_valid_state(struct drbd_device *device, union drbd_state ns)
ns.disk == D_OUTDATED)
rv = SS_CONNECTED_OUTDATES;
else if ((ns.conn == C_VERIFY_S || ns.conn == C_VERIFY_T) &&
else if (nc && (ns.conn == C_VERIFY_S || ns.conn == C_VERIFY_T) &&
(nc->verify_alg[0] == 0))
rv = SS_NO_VERIFY_ALG;

View File

@ -2269,25 +2269,12 @@ static const struct file_operations mtip_flags_fops = {
.llseek = no_llseek,
};
static int mtip_hw_debugfs_init(struct driver_data *dd)
static void mtip_hw_debugfs_init(struct driver_data *dd)
{
if (!dfs_parent)
return -1;
dd->dfs_node = debugfs_create_dir(dd->disk->disk_name, dfs_parent);
if (IS_ERR_OR_NULL(dd->dfs_node)) {
dev_warn(&dd->pdev->dev,
"Error creating node %s under debugfs\n",
dd->disk->disk_name);
dd->dfs_node = NULL;
return -1;
}
debugfs_create_file("flags", 0444, dd->dfs_node, dd, &mtip_flags_fops);
debugfs_create_file("registers", 0444, dd->dfs_node, dd,
&mtip_regs_fops);
return 0;
}
static void mtip_hw_debugfs_exit(struct driver_data *dd)
@ -4043,10 +4030,6 @@ static int __init mtip_init(void)
mtip_major = error;
dfs_parent = debugfs_create_dir("rssd", NULL);
if (IS_ERR_OR_NULL(dfs_parent)) {
pr_warn("Error creating debugfs parent\n");
dfs_parent = NULL;
}
/* Register our PCI operations. */
error = pci_register_driver(&mtip_pci_driver);

View File

@ -181,6 +181,17 @@ static void nbd_requeue_cmd(struct nbd_cmd *cmd)
{
struct request *req = blk_mq_rq_from_pdu(cmd);
lockdep_assert_held(&cmd->lock);
/*
* Clear INFLIGHT flag so that this cmd won't be completed in
* normal completion path
*
* INFLIGHT flag will be set when the cmd is queued to nbd next
* time.
*/
__clear_bit(NBD_CMD_INFLIGHT, &cmd->flags);
if (!test_and_set_bit(NBD_CMD_REQUEUED, &cmd->flags))
blk_mq_requeue_request(req, true);
}
@ -339,7 +350,7 @@ static int __nbd_set_size(struct nbd_device *nbd, loff_t bytesize,
lim = queue_limits_start_update(nbd->disk->queue);
if (nbd->config->flags & NBD_FLAG_SEND_TRIM)
lim.max_hw_discard_sectors = UINT_MAX;
lim.max_hw_discard_sectors = UINT_MAX >> SECTOR_SHIFT;
else
lim.max_hw_discard_sectors = 0;
if (!(nbd->config->flags & NBD_FLAG_SEND_FLUSH)) {
@ -350,6 +361,11 @@ static int __nbd_set_size(struct nbd_device *nbd, loff_t bytesize,
lim.features |= BLK_FEAT_WRITE_CACHE;
lim.features &= ~BLK_FEAT_FUA;
}
if (nbd->config->flags & NBD_FLAG_ROTATIONAL)
lim.features |= BLK_FEAT_ROTATIONAL;
if (nbd->config->flags & NBD_FLAG_SEND_WRITE_ZEROES)
lim.max_write_zeroes_sectors = UINT_MAX >> SECTOR_SHIFT;
lim.logical_block_size = blksize;
lim.physical_block_size = blksize;
error = queue_limits_commit_update(nbd->disk->queue, &lim);
@ -418,6 +434,8 @@ static u32 req_to_nbd_cmd_type(struct request *req)
return NBD_CMD_WRITE;
case REQ_OP_READ:
return NBD_CMD_READ;
case REQ_OP_WRITE_ZEROES:
return NBD_CMD_WRITE_ZEROES;
default:
return U32_MAX;
}
@ -488,8 +506,8 @@ static enum blk_eh_timer_return nbd_xmit_timeout(struct request *req)
nbd_mark_nsock_dead(nbd, nsock, 1);
mutex_unlock(&nsock->tx_lock);
}
mutex_unlock(&cmd->lock);
nbd_requeue_cmd(cmd);
mutex_unlock(&cmd->lock);
nbd_config_put(nbd);
return BLK_EH_DONE;
}
@ -634,6 +652,8 @@ static blk_status_t nbd_send_cmd(struct nbd_device *nbd, struct nbd_cmd *cmd,
if (req->cmd_flags & REQ_FUA)
nbd_cmd_flags |= NBD_CMD_FLAG_FUA;
if ((req->cmd_flags & REQ_NOUNMAP) && (type == NBD_CMD_WRITE_ZEROES))
nbd_cmd_flags |= NBD_CMD_FLAG_NO_HOLE;
/* We did a partial send previously, and we at least sent the whole
* request struct, so just go and send the rest of the pages in the
@ -1703,6 +1723,10 @@ static int nbd_dbg_flags_show(struct seq_file *s, void *unused)
seq_puts(s, "NBD_FLAG_SEND_FUA\n");
if (flags & NBD_FLAG_SEND_TRIM)
seq_puts(s, "NBD_FLAG_SEND_TRIM\n");
if (flags & NBD_FLAG_SEND_WRITE_ZEROES)
seq_puts(s, "NBD_FLAG_SEND_WRITE_ZEROES\n");
if (flags & NBD_FLAG_ROTATIONAL)
seq_puts(s, "NBD_FLAG_ROTATIONAL\n");
return 0;
}

View File

@ -498,8 +498,6 @@ static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
if (!pkt_debugfs_root)
return;
pd->dfs_d_root = debugfs_create_dir(pd->disk->disk_name, pkt_debugfs_root);
if (!pd->dfs_d_root)
return;
pd->dfs_f_info = debugfs_create_file("info", 0444, pd->dfs_d_root,
pd, &pkt_seq_fops);

View File

@ -149,15 +149,22 @@ static int process_rdma(struct rnbd_srv_session *srv_sess,
rnbd_to_bio_flags(le32_to_cpu(msg->rw)), GFP_KERNEL);
if (bio_add_page(bio, virt_to_page(data), datalen,
offset_in_page(data)) != datalen) {
rnbd_srv_err(sess_dev, "Failed to map data to bio\n");
rnbd_srv_err_rl(sess_dev, "Failed to map data to bio\n");
err = -EINVAL;
goto bio_put;
}
bio->bi_opf = rnbd_to_bio_flags(le32_to_cpu(msg->rw));
if (bio_has_data(bio) &&
bio->bi_iter.bi_size != le32_to_cpu(msg->bi_size)) {
rnbd_srv_err_rl(sess_dev, "Datalen mismatch: bio bi_size (%u), bi_size (%u)\n",
bio->bi_iter.bi_size, msg->bi_size);
err = -EINVAL;
goto bio_put;
}
bio->bi_end_io = rnbd_dev_bi_end_io;
bio->bi_private = priv;
bio->bi_iter.bi_sector = le64_to_cpu(msg->sector);
bio->bi_iter.bi_size = le32_to_cpu(msg->bi_size);
prio = srv_sess->ver < RNBD_PROTO_VER_MAJOR ||
usrlen < sizeof(*msg) ? 0 : le16_to_cpu(msg->prio);
bio_set_prio(bio, prio);

View File

@ -71,9 +71,6 @@ struct ublk_rq_data {
struct llist_node node;
struct kref ref;
__u64 sector;
__u32 operation;
__u32 nr_zones;
};
struct ublk_uring_cmd_pdu {
@ -214,6 +211,33 @@ static inline bool ublk_queue_is_zoned(struct ublk_queue *ubq)
#ifdef CONFIG_BLK_DEV_ZONED
struct ublk_zoned_report_desc {
__u64 sector;
__u32 operation;
__u32 nr_zones;
};
static DEFINE_XARRAY(ublk_zoned_report_descs);
static int ublk_zoned_insert_report_desc(const struct request *req,
struct ublk_zoned_report_desc *desc)
{
return xa_insert(&ublk_zoned_report_descs, (unsigned long)req,
desc, GFP_KERNEL);
}
static struct ublk_zoned_report_desc *ublk_zoned_erase_report_desc(
const struct request *req)
{
return xa_erase(&ublk_zoned_report_descs, (unsigned long)req);
}
static struct ublk_zoned_report_desc *ublk_zoned_get_report_desc(
const struct request *req)
{
return xa_load(&ublk_zoned_report_descs, (unsigned long)req);
}
static int ublk_get_nr_zones(const struct ublk_device *ub)
{
const struct ublk_param_basic *p = &ub->params.basic;
@ -308,7 +332,7 @@ static int ublk_report_zones(struct gendisk *disk, sector_t sector,
unsigned int zones_in_request =
min_t(unsigned int, remaining_zones, max_zones_per_request);
struct request *req;
struct ublk_rq_data *pdu;
struct ublk_zoned_report_desc desc;
blk_status_t status;
memset(buffer, 0, buffer_length);
@ -319,20 +343,23 @@ static int ublk_report_zones(struct gendisk *disk, sector_t sector,
goto out;
}
pdu = blk_mq_rq_to_pdu(req);
pdu->operation = UBLK_IO_OP_REPORT_ZONES;
pdu->sector = sector;
pdu->nr_zones = zones_in_request;
desc.operation = UBLK_IO_OP_REPORT_ZONES;
desc.sector = sector;
desc.nr_zones = zones_in_request;
ret = ublk_zoned_insert_report_desc(req, &desc);
if (ret)
goto free_req;
ret = blk_rq_map_kern(disk->queue, req, buffer, buffer_length,
GFP_KERNEL);
if (ret) {
blk_mq_free_request(req);
goto out;
}
if (ret)
goto erase_desc;
status = blk_execute_rq(req, 0);
ret = blk_status_to_errno(status);
erase_desc:
ublk_zoned_erase_report_desc(req);
free_req:
blk_mq_free_request(req);
if (ret)
goto out;
@ -366,7 +393,7 @@ static blk_status_t ublk_setup_iod_zoned(struct ublk_queue *ubq,
{
struct ublksrv_io_desc *iod = ublk_get_iod(ubq, req->tag);
struct ublk_io *io = &ubq->ios[req->tag];
struct ublk_rq_data *pdu = blk_mq_rq_to_pdu(req);
struct ublk_zoned_report_desc *desc;
u32 ublk_op;
switch (req_op(req)) {
@ -389,12 +416,15 @@ static blk_status_t ublk_setup_iod_zoned(struct ublk_queue *ubq,
ublk_op = UBLK_IO_OP_ZONE_RESET_ALL;
break;
case REQ_OP_DRV_IN:
ublk_op = pdu->operation;
desc = ublk_zoned_get_report_desc(req);
if (!desc)
return BLK_STS_IOERR;
ublk_op = desc->operation;
switch (ublk_op) {
case UBLK_IO_OP_REPORT_ZONES:
iod->op_flags = ublk_op | ublk_req_build_flags(req);
iod->nr_zones = pdu->nr_zones;
iod->start_sector = pdu->sector;
iod->nr_zones = desc->nr_zones;
iod->start_sector = desc->sector;
return BLK_STS_OK;
default:
return BLK_STS_IOERR;

View File

@ -59,17 +59,17 @@ static int zram_read_page(struct zram *zram, struct page *page, u32 index,
static int zram_slot_trylock(struct zram *zram, u32 index)
{
return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
return spin_trylock(&zram->table[index].lock);
}
static void zram_slot_lock(struct zram *zram, u32 index)
{
bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
spin_lock(&zram->table[index].lock);
}
static void zram_slot_unlock(struct zram *zram, u32 index)
{
bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
spin_unlock(&zram->table[index].lock);
}
static inline bool init_done(struct zram *zram)
@ -1211,7 +1211,7 @@ static void zram_meta_free(struct zram *zram, u64 disksize)
static bool zram_meta_alloc(struct zram *zram, u64 disksize)
{
size_t num_pages;
size_t num_pages, index;
num_pages = disksize >> PAGE_SHIFT;
zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
@ -1226,6 +1226,9 @@ static bool zram_meta_alloc(struct zram *zram, u64 disksize)
if (!huge_class_size)
huge_class_size = zs_huge_class_size(zram->mem_pool);
for (index = 0; index < num_pages; index++)
spin_lock_init(&zram->table[index].lock);
return true;
}
@ -1283,7 +1286,7 @@ out:
zram_set_handle(zram, index, 0);
zram_set_obj_size(zram, index, 0);
WARN_ON_ONCE(zram->table[index].flags &
~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
~(1UL << ZRAM_UNDER_WB));
}
/*
@ -2401,9 +2404,10 @@ static void destroy_devices(void)
static int __init zram_init(void)
{
struct zram_table_entry zram_te;
int ret;
BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > BITS_PER_LONG);
BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > sizeof(zram_te.flags) * 8);
ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
zcomp_cpu_up_prepare, zcomp_cpu_dead);

View File

@ -45,9 +45,7 @@
/* Flags for zram pages (table[page_no].flags) */
enum zram_pageflags {
/* zram slot is locked */
ZRAM_LOCK = ZRAM_FLAG_SHIFT,
ZRAM_SAME, /* Page consists the same element */
ZRAM_SAME = ZRAM_FLAG_SHIFT, /* Page consists the same element */
ZRAM_WB, /* page is stored on backing_device */
ZRAM_UNDER_WB, /* page is under writeback */
ZRAM_HUGE, /* Incompressible page */
@ -68,7 +66,8 @@ struct zram_table_entry {
unsigned long handle;
unsigned long element;
};
unsigned long flags;
unsigned int flags;
spinlock_t lock;
#ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
ktime_t ac_time;
#endif

View File

@ -3949,7 +3949,9 @@ static int __load_dirty_region_bitmap(struct raid_set *rs)
/* Try loading the bitmap unless "raid0", which does not have one */
if (!rs_is_raid0(rs) &&
!test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
r = md_bitmap_load(&rs->md);
struct mddev *mddev = &rs->md;
r = mddev->bitmap_ops->load(mddev);
if (r)
DMERR("Failed to load bitmap");
}
@ -4066,7 +4068,8 @@ static int raid_preresume(struct dm_target *ti)
mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) {
int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize;
r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0);
r = mddev->bitmap_ops->resize(mddev, mddev->dev_sectors,
chunksize, false);
if (r)
DMERR("Failed to resize bitmap");
}

File diff suppressed because it is too large Load Diff

View File

@ -7,81 +7,7 @@
#ifndef BITMAP_H
#define BITMAP_H 1
#define BITMAP_MAJOR_LO 3
/* version 4 insists the bitmap is in little-endian order
* with version 3, it is host-endian which is non-portable
* Version 5 is currently set only for clustered devices
*/
#define BITMAP_MAJOR_HI 4
#define BITMAP_MAJOR_CLUSTERED 5
#define BITMAP_MAJOR_HOSTENDIAN 3
/*
* in-memory bitmap:
*
* Use 16 bit block counters to track pending writes to each "chunk".
* The 2 high order bits are special-purpose, the first is a flag indicating
* whether a resync is needed. The second is a flag indicating whether a
* resync is active.
* This means that the counter is actually 14 bits:
*
* +--------+--------+------------------------------------------------+
* | resync | resync | counter |
* | needed | active | |
* | (0-1) | (0-1) | (0-16383) |
* +--------+--------+------------------------------------------------+
*
* The "resync needed" bit is set when:
* a '1' bit is read from storage at startup.
* a write request fails on some drives
* a resync is aborted on a chunk with 'resync active' set
* It is cleared (and resync-active set) when a resync starts across all drives
* of the chunk.
*
*
* The "resync active" bit is set when:
* a resync is started on all drives, and resync_needed is set.
* resync_needed will be cleared (as long as resync_active wasn't already set).
* It is cleared when a resync completes.
*
* The counter counts pending write requests, plus the on-disk bit.
* When the counter is '1' and the resync bits are clear, the on-disk
* bit can be cleared as well, thus setting the counter to 0.
* When we set a bit, or in the counter (to start a write), if the fields is
* 0, we first set the disk bit and set the counter to 1.
*
* If the counter is 0, the on-disk bit is clear and the stripe is clean
* Anything that dirties the stripe pushes the counter to 2 (at least)
* and sets the on-disk bit (lazily).
* If a periodic sweep find the counter at 2, it is decremented to 1.
* If the sweep find the counter at 1, the on-disk bit is cleared and the
* counter goes to zero.
*
* Also, we'll hijack the "map" pointer itself and use it as two 16 bit block
* counters as a fallback when "page" memory cannot be allocated:
*
* Normal case (page memory allocated):
*
* page pointer (32-bit)
*
* [ ] ------+
* |
* +-------> [ ][ ]..[ ] (4096 byte page == 2048 counters)
* c1 c2 c2048
*
* Hijacked case (page memory allocation failed):
*
* hijacked page pointer (32-bit)
*
* [ ][ ] (no page memory allocated)
* counter #1 (16-bit) counter #2 (16-bit)
*
*/
#ifdef __KERNEL__
#define PAGE_BITS (PAGE_SIZE << 3)
#define PAGE_BIT_SHIFT (PAGE_SHIFT + 3)
#define BITMAP_MAGIC 0x6d746962
typedef __u16 bitmap_counter_t;
#define COUNTER_BITS 16
@ -91,26 +17,6 @@ typedef __u16 bitmap_counter_t;
#define NEEDED_MASK ((bitmap_counter_t) (1 << (COUNTER_BITS - 1)))
#define RESYNC_MASK ((bitmap_counter_t) (1 << (COUNTER_BITS - 2)))
#define COUNTER_MAX ((bitmap_counter_t) RESYNC_MASK - 1)
#define NEEDED(x) (((bitmap_counter_t) x) & NEEDED_MASK)
#define RESYNC(x) (((bitmap_counter_t) x) & RESYNC_MASK)
#define COUNTER(x) (((bitmap_counter_t) x) & COUNTER_MAX)
/* how many counters per page? */
#define PAGE_COUNTER_RATIO (PAGE_BITS / COUNTER_BITS)
/* same, except a shift value for more efficient bitops */
#define PAGE_COUNTER_SHIFT (PAGE_BIT_SHIFT - COUNTER_BIT_SHIFT)
/* same, except a mask value for more efficient bitops */
#define PAGE_COUNTER_MASK (PAGE_COUNTER_RATIO - 1)
#define BITMAP_BLOCK_SHIFT 9
#endif
/*
* bitmap structures:
*/
#define BITMAP_MAGIC 0x6d746962
/* use these for bitmap->flags and bitmap->sb->state bit-fields */
enum bitmap_state {
@ -152,136 +58,58 @@ typedef struct bitmap_super_s {
* devices. For raid10 it is the size of the array.
*/
#ifdef __KERNEL__
struct md_bitmap_stats {
u64 events_cleared;
int behind_writes;
bool behind_wait;
/* the in-memory bitmap is represented by bitmap_pages */
struct bitmap_page {
/*
* map points to the actual memory page
*/
char *map;
/*
* in emergencies (when map cannot be alloced), hijack the map
* pointer and use it as two counters itself
*/
unsigned int hijacked:1;
/*
* If any counter in this page is '1' or '2' - and so could be
* cleared then that page is marked as 'pending'
*/
unsigned int pending:1;
/*
* count of dirty bits on the page
*/
unsigned int count:30;
unsigned long missing_pages;
unsigned long file_pages;
unsigned long sync_size;
unsigned long pages;
struct file *file;
};
/* the main bitmap structure - one per mddev */
struct bitmap {
struct bitmap_operations {
bool (*enabled)(struct mddev *mddev);
int (*create)(struct mddev *mddev, int slot);
int (*resize)(struct mddev *mddev, sector_t blocks, int chunksize,
bool init);
struct bitmap_counts {
spinlock_t lock;
struct bitmap_page *bp;
unsigned long pages; /* total number of pages
* in the bitmap */
unsigned long missing_pages; /* number of pages
* not yet allocated */
unsigned long chunkshift; /* chunksize = 2^chunkshift
* (for bitops) */
unsigned long chunks; /* Total number of data
* chunks for the array */
} counts;
int (*load)(struct mddev *mddev);
void (*destroy)(struct mddev *mddev);
void (*flush)(struct mddev *mddev);
void (*write_all)(struct mddev *mddev);
void (*dirty_bits)(struct mddev *mddev, unsigned long s,
unsigned long e);
void (*unplug)(struct mddev *mddev, bool sync);
void (*daemon_work)(struct mddev *mddev);
void (*wait_behind_writes)(struct mddev *mddev);
struct mddev *mddev; /* the md device that the bitmap is for */
int (*startwrite)(struct mddev *mddev, sector_t offset,
unsigned long sectors, bool behind);
void (*endwrite)(struct mddev *mddev, sector_t offset,
unsigned long sectors, bool success, bool behind);
bool (*start_sync)(struct mddev *mddev, sector_t offset,
sector_t *blocks, bool degraded);
void (*end_sync)(struct mddev *mddev, sector_t offset, sector_t *blocks);
void (*cond_end_sync)(struct mddev *mddev, sector_t sector, bool force);
void (*close_sync)(struct mddev *mddev);
__u64 events_cleared;
int need_sync;
void (*update_sb)(void *data);
int (*get_stats)(void *data, struct md_bitmap_stats *stats);
struct bitmap_storage {
struct file *file; /* backing disk file */
struct page *sb_page; /* cached copy of the bitmap
* file superblock */
unsigned long sb_index;
struct page **filemap; /* list of cache pages for
* the file */
unsigned long *filemap_attr; /* attributes associated
* w/ filemap pages */
unsigned long file_pages; /* number of pages in the file*/
unsigned long bytes; /* total bytes in the bitmap */
} storage;
unsigned long flags;
int allclean;
atomic_t behind_writes;
unsigned long behind_writes_used; /* highest actual value at runtime */
/*
* the bitmap daemon - periodically wakes up and sweeps the bitmap
* file, cleaning up bits and flushing out pages to disk as necessary
*/
unsigned long daemon_lastrun; /* jiffies of last run */
unsigned long last_end_sync; /* when we lasted called end_sync to
* update bitmap with resync progress */
atomic_t pending_writes; /* pending writes to the bitmap file */
wait_queue_head_t write_wait;
wait_queue_head_t overflow_wait;
wait_queue_head_t behind_wait;
struct kernfs_node *sysfs_can_clear;
int cluster_slot; /* Slot offset for clustered env */
void (*sync_with_cluster)(struct mddev *mddev,
sector_t old_lo, sector_t old_hi,
sector_t new_lo, sector_t new_hi);
void *(*get_from_slot)(struct mddev *mddev, int slot);
int (*copy_from_slot)(struct mddev *mddev, int slot, sector_t *lo,
sector_t *hi, bool clear_bits);
void (*set_pages)(void *data, unsigned long pages);
void (*free)(void *data);
};
/* the bitmap API */
/* these are used only by md/bitmap */
struct bitmap *md_bitmap_create(struct mddev *mddev, int slot);
int md_bitmap_load(struct mddev *mddev);
void md_bitmap_flush(struct mddev *mddev);
void md_bitmap_destroy(struct mddev *mddev);
void md_bitmap_print_sb(struct bitmap *bitmap);
void md_bitmap_update_sb(struct bitmap *bitmap);
void md_bitmap_status(struct seq_file *seq, struct bitmap *bitmap);
int md_bitmap_setallbits(struct bitmap *bitmap);
void md_bitmap_write_all(struct bitmap *bitmap);
void md_bitmap_dirty_bits(struct bitmap *bitmap, unsigned long s, unsigned long e);
/* these are exported */
int md_bitmap_startwrite(struct bitmap *bitmap, sector_t offset,
unsigned long sectors, int behind);
void md_bitmap_endwrite(struct bitmap *bitmap, sector_t offset,
unsigned long sectors, int success, int behind);
int md_bitmap_start_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks, int degraded);
void md_bitmap_end_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks, int aborted);
void md_bitmap_close_sync(struct bitmap *bitmap);
void md_bitmap_cond_end_sync(struct bitmap *bitmap, sector_t sector, bool force);
void md_bitmap_sync_with_cluster(struct mddev *mddev,
sector_t old_lo, sector_t old_hi,
sector_t new_lo, sector_t new_hi);
void md_bitmap_unplug(struct bitmap *bitmap);
void md_bitmap_unplug_async(struct bitmap *bitmap);
void md_bitmap_daemon_work(struct mddev *mddev);
int md_bitmap_resize(struct bitmap *bitmap, sector_t blocks,
int chunksize, int init);
struct bitmap *get_bitmap_from_slot(struct mddev *mddev, int slot);
int md_bitmap_copy_from_slot(struct mddev *mddev, int slot,
sector_t *lo, sector_t *hi, bool clear_bits);
void md_bitmap_free(struct bitmap *bitmap);
void md_bitmap_wait_behind_writes(struct mddev *mddev);
static inline bool md_bitmap_enabled(struct bitmap *bitmap)
{
return bitmap && bitmap->storage.filemap &&
!test_bit(BITMAP_STALE, &bitmap->flags);
}
#endif
void mddev_set_bitmap_ops(struct mddev *mddev);
#endif

View File

@ -317,7 +317,7 @@ static void recover_bitmaps(struct md_thread *thread)
str, ret);
goto clear_bit;
}
ret = md_bitmap_copy_from_slot(mddev, slot, &lo, &hi, true);
ret = mddev->bitmap_ops->copy_from_slot(mddev, slot, &lo, &hi, true);
if (ret) {
pr_err("md-cluster: Could not copy data from bitmap %d\n", slot);
goto clear_bit;
@ -497,8 +497,8 @@ static void process_suspend_info(struct mddev *mddev,
* we don't want to trigger lots of WARN.
*/
if (sb && !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE))
md_bitmap_sync_with_cluster(mddev, cinfo->sync_low,
cinfo->sync_hi, lo, hi);
mddev->bitmap_ops->sync_with_cluster(mddev, cinfo->sync_low,
cinfo->sync_hi, lo, hi);
cinfo->sync_low = lo;
cinfo->sync_hi = hi;
@ -628,8 +628,9 @@ static int process_recvd_msg(struct mddev *mddev, struct cluster_msg *msg)
break;
case BITMAP_RESIZE:
if (le64_to_cpu(msg->high) != mddev->pers->size(mddev, 0, 0))
ret = md_bitmap_resize(mddev->bitmap,
le64_to_cpu(msg->high), 0, 0);
ret = mddev->bitmap_ops->resize(mddev,
le64_to_cpu(msg->high),
0, false);
break;
default:
ret = -1;
@ -856,7 +857,7 @@ static int gather_all_resync_info(struct mddev *mddev, int total_slots)
}
/* Read the disk bitmap sb and check if it needs recovery */
ret = md_bitmap_copy_from_slot(mddev, i, &lo, &hi, false);
ret = mddev->bitmap_ops->copy_from_slot(mddev, i, &lo, &hi, false);
if (ret) {
pr_warn("md-cluster: Could not gather bitmaps from slot %d", i);
lockres_free(bm_lockres);
@ -1143,13 +1144,16 @@ static int update_bitmap_size(struct mddev *mddev, sector_t size)
static int resize_bitmaps(struct mddev *mddev, sector_t newsize, sector_t oldsize)
{
struct bitmap_counts *counts;
char str[64];
struct dlm_lock_resource *bm_lockres;
struct bitmap *bitmap = mddev->bitmap;
unsigned long my_pages = bitmap->counts.pages;
void *bitmap = mddev->bitmap;
struct md_bitmap_stats stats;
unsigned long my_pages;
int i, rv;
rv = mddev->bitmap_ops->get_stats(bitmap, &stats);
if (rv)
return rv;
my_pages = stats.pages;
/*
* We need to ensure all the nodes can grow to a larger
* bitmap size before make the reshaping.
@ -1159,17 +1163,22 @@ static int resize_bitmaps(struct mddev *mddev, sector_t newsize, sector_t oldsiz
return rv;
for (i = 0; i < mddev->bitmap_info.nodes; i++) {
struct dlm_lock_resource *bm_lockres;
char str[64];
if (i == md_cluster_ops->slot_number(mddev))
continue;
bitmap = get_bitmap_from_slot(mddev, i);
bitmap = mddev->bitmap_ops->get_from_slot(mddev, i);
if (IS_ERR(bitmap)) {
pr_err("can't get bitmap from slot %d\n", i);
bitmap = NULL;
goto out;
}
counts = &bitmap->counts;
rv = mddev->bitmap_ops->get_stats(bitmap, &stats);
if (rv)
goto out;
/*
* If we can hold the bitmap lock of one node then
* the slot is not occupied, update the pages.
@ -1183,21 +1192,21 @@ static int resize_bitmaps(struct mddev *mddev, sector_t newsize, sector_t oldsiz
bm_lockres->flags |= DLM_LKF_NOQUEUE;
rv = dlm_lock_sync(bm_lockres, DLM_LOCK_PW);
if (!rv)
counts->pages = my_pages;
mddev->bitmap_ops->set_pages(bitmap, my_pages);
lockres_free(bm_lockres);
if (my_pages != counts->pages)
if (my_pages != stats.pages)
/*
* Let's revert the bitmap size if one node
* can't resize bitmap
*/
goto out;
md_bitmap_free(bitmap);
mddev->bitmap_ops->free(bitmap);
}
return 0;
out:
md_bitmap_free(bitmap);
mddev->bitmap_ops->free(bitmap);
update_bitmap_size(mddev, oldsize);
return -1;
}
@ -1207,24 +1216,27 @@ out:
*/
static int cluster_check_sync_size(struct mddev *mddev)
{
int i, rv;
bitmap_super_t *sb;
unsigned long my_sync_size, sync_size = 0;
int node_num = mddev->bitmap_info.nodes;
int current_slot = md_cluster_ops->slot_number(mddev);
struct bitmap *bitmap = mddev->bitmap;
char str[64];
int node_num = mddev->bitmap_info.nodes;
struct dlm_lock_resource *bm_lockres;
struct md_bitmap_stats stats;
void *bitmap = mddev->bitmap;
unsigned long sync_size = 0;
unsigned long my_sync_size;
char str[64];
int i, rv;
sb = kmap_atomic(bitmap->storage.sb_page);
my_sync_size = sb->sync_size;
kunmap_atomic(sb);
rv = mddev->bitmap_ops->get_stats(bitmap, &stats);
if (rv)
return rv;
my_sync_size = stats.sync_size;
for (i = 0; i < node_num; i++) {
if (i == current_slot)
continue;
bitmap = get_bitmap_from_slot(mddev, i);
bitmap = mddev->bitmap_ops->get_from_slot(mddev, i);
if (IS_ERR(bitmap)) {
pr_err("can't get bitmap from slot %d\n", i);
return -1;
@ -1238,25 +1250,28 @@ static int cluster_check_sync_size(struct mddev *mddev)
bm_lockres = lockres_init(mddev, str, NULL, 1);
if (!bm_lockres) {
pr_err("md-cluster: Cannot initialize %s\n", str);
md_bitmap_free(bitmap);
mddev->bitmap_ops->free(bitmap);
return -1;
}
bm_lockres->flags |= DLM_LKF_NOQUEUE;
rv = dlm_lock_sync(bm_lockres, DLM_LOCK_PW);
if (!rv)
md_bitmap_update_sb(bitmap);
mddev->bitmap_ops->update_sb(bitmap);
lockres_free(bm_lockres);
sb = kmap_atomic(bitmap->storage.sb_page);
if (sync_size == 0)
sync_size = sb->sync_size;
else if (sync_size != sb->sync_size) {
kunmap_atomic(sb);
md_bitmap_free(bitmap);
rv = mddev->bitmap_ops->get_stats(bitmap, &stats);
if (rv) {
mddev->bitmap_ops->free(bitmap);
return rv;
}
if (sync_size == 0) {
sync_size = stats.sync_size;
} else if (sync_size != stats.sync_size) {
mddev->bitmap_ops->free(bitmap);
return -1;
}
kunmap_atomic(sb);
md_bitmap_free(bitmap);
mddev->bitmap_ops->free(bitmap);
}
return (my_sync_size == sync_size) ? 0 : -1;
@ -1585,7 +1600,7 @@ static int gather_bitmaps(struct md_rdev *rdev)
for (sn = 0; sn < mddev->bitmap_info.nodes; sn++) {
if (sn == (cinfo->slot_number - 1))
continue;
err = md_bitmap_copy_from_slot(mddev, sn, &lo, &hi, false);
err = mddev->bitmap_ops->copy_from_slot(mddev, sn, &lo, &hi, false);
if (err) {
pr_warn("md-cluster: Could not gather bitmaps from slot %d", sn);
goto out;

View File

@ -546,137 +546,30 @@ static int mddev_set_closing_and_sync_blockdev(struct mddev *mddev, int opener_n
return 0;
}
/*
* Generic flush handling for md
*/
static void md_end_flush(struct bio *bio)
{
struct md_rdev *rdev = bio->bi_private;
struct mddev *mddev = rdev->mddev;
bio_put(bio);
rdev_dec_pending(rdev, mddev);
if (atomic_dec_and_test(&mddev->flush_pending))
/* The pre-request flush has finished */
queue_work(md_wq, &mddev->flush_work);
}
static void md_submit_flush_data(struct work_struct *ws);
static void submit_flushes(struct work_struct *ws)
{
struct mddev *mddev = container_of(ws, struct mddev, flush_work);
struct md_rdev *rdev;
mddev->start_flush = ktime_get_boottime();
INIT_WORK(&mddev->flush_work, md_submit_flush_data);
atomic_set(&mddev->flush_pending, 1);
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev)
if (rdev->raid_disk >= 0 &&
!test_bit(Faulty, &rdev->flags)) {
struct bio *bi;
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
bi = bio_alloc_bioset(rdev->bdev, 0,
REQ_OP_WRITE | REQ_PREFLUSH,
GFP_NOIO, &mddev->bio_set);
bi->bi_end_io = md_end_flush;
bi->bi_private = rdev;
atomic_inc(&mddev->flush_pending);
submit_bio(bi);
rcu_read_lock();
}
rcu_read_unlock();
if (atomic_dec_and_test(&mddev->flush_pending))
queue_work(md_wq, &mddev->flush_work);
}
static void md_submit_flush_data(struct work_struct *ws)
{
struct mddev *mddev = container_of(ws, struct mddev, flush_work);
struct bio *bio = mddev->flush_bio;
/*
* must reset flush_bio before calling into md_handle_request to avoid a
* deadlock, because other bios passed md_handle_request suspend check
* could wait for this and below md_handle_request could wait for those
* bios because of suspend check
*/
spin_lock_irq(&mddev->lock);
mddev->prev_flush_start = mddev->start_flush;
mddev->flush_bio = NULL;
spin_unlock_irq(&mddev->lock);
wake_up(&mddev->sb_wait);
if (bio->bi_iter.bi_size == 0) {
/* an empty barrier - all done */
bio_endio(bio);
} else {
bio->bi_opf &= ~REQ_PREFLUSH;
/*
* make_requst() will never return error here, it only
* returns error in raid5_make_request() by dm-raid.
* Since dm always splits data and flush operation into
* two separate io, io size of flush submitted by dm
* always is 0, make_request() will not be called here.
*/
if (WARN_ON_ONCE(!mddev->pers->make_request(mddev, bio)))
bio_io_error(bio);
}
/* The pair is percpu_ref_get() from md_flush_request() */
percpu_ref_put(&mddev->active_io);
}
/*
* Manages consolidation of flushes and submitting any flushes needed for
* a bio with REQ_PREFLUSH. Returns true if the bio is finished or is
* being finished in another context. Returns false if the flushing is
* complete but still needs the I/O portion of the bio to be processed.
*/
bool md_flush_request(struct mddev *mddev, struct bio *bio)
{
ktime_t req_start = ktime_get_boottime();
spin_lock_irq(&mddev->lock);
/* flush requests wait until ongoing flush completes,
* hence coalescing all the pending requests.
struct md_rdev *rdev;
struct bio *new;
/*
* md_flush_reqeust() should be called under md_handle_request() and
* 'active_io' is already grabbed. Hence it's safe to get rdev directly
* without rcu protection.
*/
wait_event_lock_irq(mddev->sb_wait,
!mddev->flush_bio ||
ktime_before(req_start, mddev->prev_flush_start),
mddev->lock);
/* new request after previous flush is completed */
if (ktime_after(req_start, mddev->prev_flush_start)) {
WARN_ON(mddev->flush_bio);
/*
* Grab a reference to make sure mddev_suspend() will wait for
* this flush to be done.
*
* md_flush_reqeust() is called under md_handle_request() and
* 'active_io' is already grabbed, hence percpu_ref_is_zero()
* won't pass, percpu_ref_tryget_live() can't be used because
* percpu_ref_kill() can be called by mddev_suspend()
* concurrently.
*/
WARN_ON(percpu_ref_is_zero(&mddev->active_io));
percpu_ref_get(&mddev->active_io);
mddev->flush_bio = bio;
spin_unlock_irq(&mddev->lock);
INIT_WORK(&mddev->flush_work, submit_flushes);
queue_work(md_wq, &mddev->flush_work);
return true;
WARN_ON(percpu_ref_is_zero(&mddev->active_io));
rdev_for_each(rdev, mddev) {
if (rdev->raid_disk < 0 || test_bit(Faulty, &rdev->flags))
continue;
new = bio_alloc_bioset(rdev->bdev, 0,
REQ_OP_WRITE | REQ_PREFLUSH, GFP_NOIO,
&mddev->bio_set);
bio_chain(new, bio);
submit_bio(new);
}
/* flush was performed for some other bio while we waited. */
spin_unlock_irq(&mddev->lock);
if (bio->bi_iter.bi_size == 0) {
/* pure flush without data - all done */
if (bio_sectors(bio) == 0) {
bio_endio(bio);
return true;
}
@ -763,7 +656,6 @@ int mddev_init(struct mddev *mddev)
atomic_set(&mddev->openers, 0);
atomic_set(&mddev->sync_seq, 0);
spin_lock_init(&mddev->lock);
atomic_set(&mddev->flush_pending, 0);
init_waitqueue_head(&mddev->sb_wait);
init_waitqueue_head(&mddev->recovery_wait);
mddev->reshape_position = MaxSector;
@ -772,6 +664,7 @@ int mddev_init(struct mddev *mddev)
mddev->resync_min = 0;
mddev->resync_max = MaxSector;
mddev->level = LEVEL_NONE;
mddev_set_bitmap_ops(mddev);
INIT_WORK(&mddev->sync_work, md_start_sync);
INIT_WORK(&mddev->del_work, mddev_delayed_delete);
@ -1372,6 +1265,18 @@ static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor
return ret;
}
static u64 md_bitmap_events_cleared(struct mddev *mddev)
{
struct md_bitmap_stats stats;
int err;
err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats);
if (err)
return 0;
return stats.events_cleared;
}
/*
* validate_super for 0.90.0
* note: we are not using "freshest" for 0.9 superblock
@ -1464,7 +1369,7 @@ static int super_90_validate(struct mddev *mddev, struct md_rdev *freshest, stru
/* if adding to array with a bitmap, then we can accept an
* older device ... but not too old.
*/
if (ev1 < mddev->bitmap->events_cleared)
if (ev1 < md_bitmap_events_cleared(mddev))
return 0;
if (ev1 < mddev->events)
set_bit(Bitmap_sync, &rdev->flags);
@ -1991,7 +1896,7 @@ static int super_1_validate(struct mddev *mddev, struct md_rdev *freshest, struc
/* If adding to array with a bitmap, then we can accept an
* older device, but not too old.
*/
if (ev1 < mddev->bitmap->events_cleared)
if (ev1 < md_bitmap_events_cleared(mddev))
return 0;
if (ev1 < mddev->events)
set_bit(Bitmap_sync, &rdev->flags);
@ -2323,7 +2228,6 @@ super_1_allow_new_offset(struct md_rdev *rdev,
unsigned long long new_offset)
{
/* All necessary checks on new >= old have been done */
struct bitmap *bitmap;
if (new_offset >= rdev->data_offset)
return 1;
@ -2340,11 +2244,18 @@ super_1_allow_new_offset(struct md_rdev *rdev,
*/
if (rdev->sb_start + (32+4)*2 > new_offset)
return 0;
bitmap = rdev->mddev->bitmap;
if (bitmap && !rdev->mddev->bitmap_info.file &&
rdev->sb_start + rdev->mddev->bitmap_info.offset +
bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
return 0;
if (!rdev->mddev->bitmap_info.file) {
struct mddev *mddev = rdev->mddev;
struct md_bitmap_stats stats;
int err;
err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats);
if (!err && rdev->sb_start + mddev->bitmap_info.offset +
stats.file_pages * (PAGE_SIZE >> 9) > new_offset)
return 0;
}
if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
return 0;
@ -2820,7 +2731,7 @@ repeat:
mddev_add_trace_msg(mddev, "md md_update_sb");
rewrite:
md_bitmap_update_sb(mddev->bitmap);
mddev->bitmap_ops->update_sb(mddev->bitmap);
rdev_for_each(rdev, mddev) {
if (rdev->sb_loaded != 1)
continue; /* no noise on spare devices */
@ -4141,6 +4052,34 @@ out_unlock:
static struct md_sysfs_entry md_level =
__ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
static ssize_t
new_level_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%d\n", mddev->new_level);
}
static ssize_t
new_level_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned int n;
int err;
err = kstrtouint(buf, 10, &n);
if (err < 0)
return err;
err = mddev_lock(mddev);
if (err)
return err;
mddev->new_level = n;
md_update_sb(mddev, 1);
mddev_unlock(mddev);
return len;
}
static struct md_sysfs_entry md_new_level =
__ATTR(new_level, 0664, new_level_show, new_level_store);
static ssize_t
layout_show(struct mddev *mddev, char *page)
{
@ -4680,17 +4619,23 @@ bitmap_store(struct mddev *mddev, const char *buf, size_t len)
/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
while (*buf) {
chunk = end_chunk = simple_strtoul(buf, &end, 0);
if (buf == end) break;
if (buf == end)
break;
if (*end == '-') { /* range */
buf = end + 1;
end_chunk = simple_strtoul(buf, &end, 0);
if (buf == end) break;
if (buf == end)
break;
}
if (*end && !isspace(*end)) break;
md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
if (*end && !isspace(*end))
break;
mddev->bitmap_ops->dirty_bits(mddev, chunk, end_chunk);
buf = skip_spaces(end);
}
md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
mddev->bitmap_ops->unplug(mddev, true); /* flush the bits to disk */
out:
mddev_unlock(mddev);
return len;
@ -5666,6 +5611,7 @@ __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
static struct attribute *md_default_attrs[] = {
&md_level.attr,
&md_new_level.attr,
&md_layout.attr,
&md_raid_disks.attr,
&md_uuid.attr,
@ -6206,16 +6152,10 @@ int md_run(struct mddev *mddev)
}
if (err == 0 && pers->sync_request &&
(mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
struct bitmap *bitmap;
bitmap = md_bitmap_create(mddev, -1);
if (IS_ERR(bitmap)) {
err = PTR_ERR(bitmap);
err = mddev->bitmap_ops->create(mddev, -1);
if (err)
pr_warn("%s: failed to create bitmap (%d)\n",
mdname(mddev), err);
} else
mddev->bitmap = bitmap;
}
if (err)
goto bitmap_abort;
@ -6285,7 +6225,7 @@ bitmap_abort:
pers->free(mddev, mddev->private);
mddev->private = NULL;
module_put(pers->owner);
md_bitmap_destroy(mddev);
mddev->bitmap_ops->destroy(mddev);
abort:
bioset_exit(&mddev->io_clone_set);
exit_sync_set:
@ -6304,9 +6244,10 @@ int do_md_run(struct mddev *mddev)
err = md_run(mddev);
if (err)
goto out;
err = md_bitmap_load(mddev);
err = mddev->bitmap_ops->load(mddev);
if (err) {
md_bitmap_destroy(mddev);
mddev->bitmap_ops->destroy(mddev);
goto out;
}
@ -6450,7 +6391,8 @@ static void __md_stop_writes(struct mddev *mddev)
mddev->pers->quiesce(mddev, 1);
mddev->pers->quiesce(mddev, 0);
}
md_bitmap_flush(mddev);
mddev->bitmap_ops->flush(mddev);
if (md_is_rdwr(mddev) &&
((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
@ -6477,7 +6419,7 @@ EXPORT_SYMBOL_GPL(md_stop_writes);
static void mddev_detach(struct mddev *mddev)
{
md_bitmap_wait_behind_writes(mddev);
mddev->bitmap_ops->wait_behind_writes(mddev);
if (mddev->pers && mddev->pers->quiesce && !is_md_suspended(mddev)) {
mddev->pers->quiesce(mddev, 1);
mddev->pers->quiesce(mddev, 0);
@ -6492,7 +6434,8 @@ static void mddev_detach(struct mddev *mddev)
static void __md_stop(struct mddev *mddev)
{
struct md_personality *pers = mddev->pers;
md_bitmap_destroy(mddev);
mddev->bitmap_ops->destroy(mddev);
mddev_detach(mddev);
spin_lock(&mddev->lock);
mddev->pers = NULL;
@ -7270,22 +7213,19 @@ static int set_bitmap_file(struct mddev *mddev, int fd)
err = 0;
if (mddev->pers) {
if (fd >= 0) {
struct bitmap *bitmap;
err = mddev->bitmap_ops->create(mddev, -1);
if (!err)
err = mddev->bitmap_ops->load(mddev);
bitmap = md_bitmap_create(mddev, -1);
if (!IS_ERR(bitmap)) {
mddev->bitmap = bitmap;
err = md_bitmap_load(mddev);
} else
err = PTR_ERR(bitmap);
if (err) {
md_bitmap_destroy(mddev);
mddev->bitmap_ops->destroy(mddev);
fd = -1;
}
} else if (fd < 0) {
md_bitmap_destroy(mddev);
mddev->bitmap_ops->destroy(mddev);
}
}
if (fd < 0) {
struct file *f = mddev->bitmap_info.file;
if (f) {
@ -7554,7 +7494,6 @@ static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
goto err;
}
if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
struct bitmap *bitmap;
/* add the bitmap */
if (mddev->bitmap) {
rv = -EEXIST;
@ -7568,24 +7507,24 @@ static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
mddev->bitmap_info.default_offset;
mddev->bitmap_info.space =
mddev->bitmap_info.default_space;
bitmap = md_bitmap_create(mddev, -1);
if (!IS_ERR(bitmap)) {
mddev->bitmap = bitmap;
rv = md_bitmap_load(mddev);
} else
rv = PTR_ERR(bitmap);
rv = mddev->bitmap_ops->create(mddev, -1);
if (!rv)
rv = mddev->bitmap_ops->load(mddev);
if (rv)
md_bitmap_destroy(mddev);
mddev->bitmap_ops->destroy(mddev);
} else {
/* remove the bitmap */
if (!mddev->bitmap) {
rv = -ENOENT;
struct md_bitmap_stats stats;
rv = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats);
if (rv)
goto err;
}
if (mddev->bitmap->storage.file) {
if (stats.file) {
rv = -EINVAL;
goto err;
}
if (mddev->bitmap_info.nodes) {
/* hold PW on all the bitmap lock */
if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
@ -7600,7 +7539,7 @@ static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
module_put(md_cluster_mod);
mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
}
md_bitmap_destroy(mddev);
mddev->bitmap_ops->destroy(mddev);
mddev->bitmap_info.offset = 0;
}
}
@ -8370,6 +8309,33 @@ static void md_seq_stop(struct seq_file *seq, void *v)
spin_unlock(&all_mddevs_lock);
}
static void md_bitmap_status(struct seq_file *seq, struct mddev *mddev)
{
struct md_bitmap_stats stats;
unsigned long used_pages;
unsigned long chunk_kb;
int err;
err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats);
if (err)
return;
chunk_kb = mddev->bitmap_info.chunksize >> 10;
used_pages = stats.pages - stats.missing_pages;
seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], %lu%s chunk",
used_pages, stats.pages, used_pages << (PAGE_SHIFT - 10),
chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
chunk_kb ? "KB" : "B");
if (stats.file) {
seq_puts(seq, ", file: ");
seq_file_path(seq, stats.file, " \t\n");
}
seq_putc(seq, '\n');
}
static int md_seq_show(struct seq_file *seq, void *v)
{
struct mddev *mddev;
@ -8390,14 +8356,19 @@ static int md_seq_show(struct seq_file *seq, void *v)
spin_unlock(&all_mddevs_lock);
spin_lock(&mddev->lock);
if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
seq_printf(seq, "%s : %sactive", mdname(mddev),
mddev->pers ? "" : "in");
seq_printf(seq, "%s : ", mdname(mddev));
if (mddev->pers) {
if (test_bit(MD_BROKEN, &mddev->flags))
seq_printf(seq, "broken");
else
seq_printf(seq, "active");
if (mddev->ro == MD_RDONLY)
seq_printf(seq, " (read-only)");
if (mddev->ro == MD_AUTO_READ)
seq_printf(seq, " (auto-read-only)");
seq_printf(seq, " %s", mddev->pers->name);
} else {
seq_printf(seq, "inactive");
}
sectors = 0;
@ -8453,7 +8424,7 @@ static int md_seq_show(struct seq_file *seq, void *v)
} else
seq_printf(seq, "\n ");
md_bitmap_status(seq, mddev->bitmap);
md_bitmap_status(seq, mddev);
seq_printf(seq, "\n");
}
@ -8668,7 +8639,6 @@ void md_write_start(struct mddev *mddev, struct bio *bi)
BUG_ON(mddev->ro == MD_RDONLY);
if (mddev->ro == MD_AUTO_READ) {
/* need to switch to read/write */
flush_work(&mddev->sync_work);
mddev->ro = MD_RDWR;
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
@ -9506,7 +9476,7 @@ static void md_start_sync(struct work_struct *ws)
* stored on all devices. So make sure all bitmap pages get written.
*/
if (spares)
md_bitmap_write_all(mddev->bitmap);
mddev->bitmap_ops->write_all(mddev);
name = test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ?
"reshape" : "resync";
@ -9594,7 +9564,7 @@ static void unregister_sync_thread(struct mddev *mddev)
void md_check_recovery(struct mddev *mddev)
{
if (mddev->bitmap)
md_bitmap_daemon_work(mddev);
mddev->bitmap_ops->daemon_work(mddev);
if (signal_pending(current)) {
if (mddev->pers->sync_request && !mddev->external) {
@ -9965,7 +9935,7 @@ static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
if (ret)
pr_info("md-cluster: resize failed\n");
else
md_bitmap_update_sb(mddev->bitmap);
mddev->bitmap_ops->update_sb(mddev->bitmap);
}
/* Check for change of roles in the active devices */

View File

@ -535,7 +535,8 @@ struct mddev {
struct percpu_ref writes_pending;
int sync_checkers; /* # of threads checking writes_pending */
struct bitmap *bitmap; /* the bitmap for the device */
void *bitmap; /* the bitmap for the device */
struct bitmap_operations *bitmap_ops;
struct {
struct file *file; /* the bitmap file */
loff_t offset; /* offset from superblock of
@ -571,16 +572,6 @@ struct mddev {
*/
struct bio_set io_clone_set;
/* Generic flush handling.
* The last to finish preflush schedules a worker to submit
* the rest of the request (without the REQ_PREFLUSH flag).
*/
struct bio *flush_bio;
atomic_t flush_pending;
ktime_t start_flush, prev_flush_start; /* prev_flush_start is when the previous completed
* flush was started.
*/
struct work_struct flush_work;
struct work_struct event_work; /* used by dm to report failure event */
mempool_t *serial_info_pool;
void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);

View File

@ -140,7 +140,7 @@ static inline bool raid1_add_bio_to_plug(struct mddev *mddev, struct bio *bio,
* If bitmap is not enabled, it's safe to submit the io directly, and
* this can get optimal performance.
*/
if (!md_bitmap_enabled(mddev->bitmap)) {
if (!mddev->bitmap_ops->enabled(mddev)) {
raid1_submit_write(bio);
return true;
}
@ -166,12 +166,9 @@ static inline bool raid1_add_bio_to_plug(struct mddev *mddev, struct bio *bio,
* while current io submission must wait for bitmap io to be done. In order to
* avoid such deadlock, submit bitmap io asynchronously.
*/
static inline void raid1_prepare_flush_writes(struct bitmap *bitmap)
static inline void raid1_prepare_flush_writes(struct mddev *mddev)
{
if (current->bio_list)
md_bitmap_unplug_async(bitmap);
else
md_bitmap_unplug(bitmap);
mddev->bitmap_ops->unplug(mddev, current->bio_list == NULL);
}
/*

View File

@ -411,18 +411,20 @@ static void raid1_end_read_request(struct bio *bio)
static void close_write(struct r1bio *r1_bio)
{
struct mddev *mddev = r1_bio->mddev;
/* it really is the end of this request */
if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
bio_free_pages(r1_bio->behind_master_bio);
bio_put(r1_bio->behind_master_bio);
r1_bio->behind_master_bio = NULL;
}
/* clear the bitmap if all writes complete successfully */
md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
r1_bio->sectors,
!test_bit(R1BIO_Degraded, &r1_bio->state),
test_bit(R1BIO_BehindIO, &r1_bio->state));
md_write_end(r1_bio->mddev);
mddev->bitmap_ops->endwrite(mddev, r1_bio->sector, r1_bio->sectors,
!test_bit(R1BIO_Degraded, &r1_bio->state),
test_bit(R1BIO_BehindIO, &r1_bio->state));
md_write_end(mddev);
}
static void r1_bio_write_done(struct r1bio *r1_bio)
@ -900,7 +902,7 @@ static void wake_up_barrier(struct r1conf *conf)
static void flush_bio_list(struct r1conf *conf, struct bio *bio)
{
/* flush any pending bitmap writes to disk before proceeding w/ I/O */
raid1_prepare_flush_writes(conf->mddev->bitmap);
raid1_prepare_flush_writes(conf->mddev);
wake_up_barrier(conf);
while (bio) { /* submit pending writes */
@ -1317,13 +1319,11 @@ static void raid1_read_request(struct mddev *mddev, struct bio *bio,
struct r1conf *conf = mddev->private;
struct raid1_info *mirror;
struct bio *read_bio;
struct bitmap *bitmap = mddev->bitmap;
const enum req_op op = bio_op(bio);
const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
int max_sectors;
int rdisk;
bool r1bio_existed = !!r1_bio;
char b[BDEVNAME_SIZE];
/*
* If r1_bio is set, we are blocking the raid1d thread
@ -1332,16 +1332,6 @@ static void raid1_read_request(struct mddev *mddev, struct bio *bio,
*/
gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
if (r1bio_existed) {
/* Need to get the block device name carefully */
struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
if (rdev)
snprintf(b, sizeof(b), "%pg", rdev->bdev);
else
strcpy(b, "???");
}
/*
* Still need barrier for READ in case that whole
* array is frozen.
@ -1363,15 +1353,13 @@ static void raid1_read_request(struct mddev *mddev, struct bio *bio,
* used and no empty request is available.
*/
rdisk = read_balance(conf, r1_bio, &max_sectors);
if (rdisk < 0) {
/* couldn't find anywhere to read from */
if (r1bio_existed) {
pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
if (r1bio_existed)
pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
mdname(mddev),
b,
(unsigned long long)r1_bio->sector);
}
conf->mirrors[r1_bio->read_disk].rdev->bdev,
r1_bio->sector);
raid_end_bio_io(r1_bio);
return;
}
@ -1383,15 +1371,13 @@ static void raid1_read_request(struct mddev *mddev, struct bio *bio,
(unsigned long long)r1_bio->sector,
mirror->rdev->bdev);
if (test_bit(WriteMostly, &mirror->rdev->flags) &&
bitmap) {
if (test_bit(WriteMostly, &mirror->rdev->flags)) {
/*
* Reading from a write-mostly device must take care not to
* over-take any writes that are 'behind'
*/
mddev_add_trace_msg(mddev, "raid1 wait behind writes");
wait_event(bitmap->behind_wait,
atomic_read(&bitmap->behind_writes) == 0);
mddev->bitmap_ops->wait_behind_writes(mddev);
}
if (max_sectors < bio_sectors(bio)) {
@ -1432,7 +1418,6 @@ static void raid1_write_request(struct mddev *mddev, struct bio *bio,
struct r1conf *conf = mddev->private;
struct r1bio *r1_bio;
int i, disks;
struct bitmap *bitmap = mddev->bitmap;
unsigned long flags;
struct md_rdev *blocked_rdev;
int first_clone;
@ -1585,7 +1570,7 @@ static void raid1_write_request(struct mddev *mddev, struct bio *bio,
* at a time and thus needs a new bio that can fit the whole payload
* this bio in page sized chunks.
*/
if (write_behind && bitmap)
if (write_behind && mddev->bitmap)
max_sectors = min_t(int, max_sectors,
BIO_MAX_VECS * (PAGE_SIZE >> 9));
if (max_sectors < bio_sectors(bio)) {
@ -1612,19 +1597,23 @@ static void raid1_write_request(struct mddev *mddev, struct bio *bio,
continue;
if (first_clone) {
unsigned long max_write_behind =
mddev->bitmap_info.max_write_behind;
struct md_bitmap_stats stats;
int err;
/* do behind I/O ?
* Not if there are too many, or cannot
* allocate memory, or a reader on WriteMostly
* is waiting for behind writes to flush */
if (bitmap && write_behind &&
(atomic_read(&bitmap->behind_writes)
< mddev->bitmap_info.max_write_behind) &&
!waitqueue_active(&bitmap->behind_wait)) {
err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats);
if (!err && write_behind && !stats.behind_wait &&
stats.behind_writes < max_write_behind)
alloc_behind_master_bio(r1_bio, bio);
}
md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
test_bit(R1BIO_BehindIO, &r1_bio->state));
mddev->bitmap_ops->startwrite(
mddev, r1_bio->sector, r1_bio->sectors,
test_bit(R1BIO_BehindIO, &r1_bio->state));
first_clone = 0;
}
@ -2042,7 +2031,7 @@ static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
/* make sure these bits don't get cleared. */
do {
md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
mddev->bitmap_ops->end_sync(mddev, s, &sync_blocks);
s += sync_blocks;
sectors_to_go -= sync_blocks;
} while (sectors_to_go > 0);
@ -2771,7 +2760,7 @@ static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
int wonly = -1;
int write_targets = 0, read_targets = 0;
sector_t sync_blocks;
int still_degraded = 0;
bool still_degraded = false;
int good_sectors = RESYNC_SECTORS;
int min_bad = 0; /* number of sectors that are bad in all devices */
int idx = sector_to_idx(sector_nr);
@ -2788,12 +2777,12 @@ static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
* We can find the current addess in mddev->curr_resync
*/
if (mddev->curr_resync < max_sector) /* aborted */
md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
&sync_blocks, 1);
mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync,
&sync_blocks);
else /* completed sync */
conf->fullsync = 0;
md_bitmap_close_sync(mddev->bitmap);
mddev->bitmap_ops->close_sync(mddev);
close_sync(conf);
if (mddev_is_clustered(mddev)) {
@ -2813,7 +2802,7 @@ static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
/* before building a request, check if we can skip these blocks..
* This call the bitmap_start_sync doesn't actually record anything
*/
if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, true) &&
!conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
/* We can skip this block, and probably several more */
*skipped = 1;
@ -2831,9 +2820,9 @@ static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
* sector_nr + two times RESYNC_SECTORS
*/
md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
mddev_is_clustered(mddev) &&
(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
if (raise_barrier(conf, sector_nr))
return 0;
@ -2864,7 +2853,7 @@ static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
if (rdev == NULL ||
test_bit(Faulty, &rdev->flags)) {
if (i < conf->raid_disks)
still_degraded = 1;
still_degraded = true;
} else if (!test_bit(In_sync, &rdev->flags)) {
bio->bi_opf = REQ_OP_WRITE;
bio->bi_end_io = end_sync_write;
@ -2988,8 +2977,8 @@ static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
if (len == 0)
break;
if (sync_blocks == 0) {
if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
&sync_blocks, still_degraded) &&
if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
&sync_blocks, still_degraded) &&
!conf->fullsync &&
!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
break;
@ -3313,14 +3302,16 @@ static int raid1_resize(struct mddev *mddev, sector_t sectors)
* worth it.
*/
sector_t newsize = raid1_size(mddev, sectors, 0);
int ret;
if (mddev->external_size &&
mddev->array_sectors > newsize)
return -EINVAL;
if (mddev->bitmap) {
int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
if (ret)
return ret;
}
ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
if (ret)
return ret;
md_set_array_sectors(mddev, newsize);
if (sectors > mddev->dev_sectors &&
mddev->recovery_cp > mddev->dev_sectors) {

View File

@ -426,12 +426,13 @@ static void raid10_end_read_request(struct bio *bio)
static void close_write(struct r10bio *r10_bio)
{
struct mddev *mddev = r10_bio->mddev;
/* clear the bitmap if all writes complete successfully */
md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
r10_bio->sectors,
!test_bit(R10BIO_Degraded, &r10_bio->state),
0);
md_write_end(r10_bio->mddev);
mddev->bitmap_ops->endwrite(mddev, r10_bio->sector, r10_bio->sectors,
!test_bit(R10BIO_Degraded, &r10_bio->state),
false);
md_write_end(mddev);
}
static void one_write_done(struct r10bio *r10_bio)
@ -884,7 +885,7 @@ static void flush_pending_writes(struct r10conf *conf)
__set_current_state(TASK_RUNNING);
blk_start_plug(&plug);
raid1_prepare_flush_writes(conf->mddev->bitmap);
raid1_prepare_flush_writes(conf->mddev);
wake_up(&conf->wait_barrier);
while (bio) { /* submit pending writes */
@ -1100,7 +1101,7 @@ static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
/* we aren't scheduling, so we can do the write-out directly. */
bio = bio_list_get(&plug->pending);
raid1_prepare_flush_writes(mddev->bitmap);
raid1_prepare_flush_writes(mddev);
wake_up_barrier(conf);
while (bio) { /* submit pending writes */
@ -1492,7 +1493,8 @@ static void raid10_write_request(struct mddev *mddev, struct bio *bio,
md_account_bio(mddev, &bio);
r10_bio->master_bio = bio;
atomic_set(&r10_bio->remaining, 1);
md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
mddev->bitmap_ops->startwrite(mddev, r10_bio->sector, r10_bio->sectors,
false);
for (i = 0; i < conf->copies; i++) {
if (r10_bio->devs[i].bio)
@ -2465,7 +2467,7 @@ static void fix_recovery_read_error(struct r10bio *r10_bio)
s = PAGE_SIZE >> 9;
rdev = conf->mirrors[dr].rdev;
addr = r10_bio->devs[0].addr + sect,
addr = r10_bio->devs[0].addr + sect;
ok = sync_page_io(rdev,
addr,
s << 9,
@ -3192,13 +3194,15 @@ static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
if (mddev->curr_resync < max_sector) { /* aborted */
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
&sync_blocks, 1);
mddev->bitmap_ops->end_sync(mddev,
mddev->curr_resync,
&sync_blocks);
else for (i = 0; i < conf->geo.raid_disks; i++) {
sector_t sect =
raid10_find_virt(conf, mddev->curr_resync, i);
md_bitmap_end_sync(mddev->bitmap, sect,
&sync_blocks, 1);
mddev->bitmap_ops->end_sync(mddev, sect,
&sync_blocks);
}
} else {
/* completed sync */
@ -3218,7 +3222,7 @@ static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
}
conf->fullsync = 0;
}
md_bitmap_close_sync(mddev->bitmap);
mddev->bitmap_ops->close_sync(mddev);
close_sync(conf);
*skipped = 1;
return sectors_skipped;
@ -3287,10 +3291,10 @@ static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
r10_bio = NULL;
for (i = 0 ; i < conf->geo.raid_disks; i++) {
int still_degraded;
bool still_degraded;
struct r10bio *rb2;
sector_t sect;
int must_sync;
bool must_sync;
int any_working;
struct raid10_info *mirror = &conf->mirrors[i];
struct md_rdev *mrdev, *mreplace;
@ -3307,7 +3311,7 @@ static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
if (!mrdev && !mreplace)
continue;
still_degraded = 0;
still_degraded = false;
/* want to reconstruct this device */
rb2 = r10_bio;
sect = raid10_find_virt(conf, sector_nr, i);
@ -3320,8 +3324,9 @@ static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
* we only need to recover the block if it is set in
* the bitmap
*/
must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
&sync_blocks, 1);
must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
&sync_blocks,
true);
if (sync_blocks < max_sync)
max_sync = sync_blocks;
if (!must_sync &&
@ -3359,13 +3364,13 @@ static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
struct md_rdev *rdev = conf->mirrors[j].rdev;
if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
still_degraded = 1;
still_degraded = false;
break;
}
}
must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
&sync_blocks, still_degraded);
must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
&sync_blocks, still_degraded);
any_working = 0;
for (j=0; j<conf->copies;j++) {
@ -3538,12 +3543,13 @@ static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
* safety reason, which ensures curr_resync_completed is
* updated in bitmap_cond_end_sync.
*/
md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
mddev_is_clustered(mddev) &&
(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
&sync_blocks, mddev->degraded) &&
if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
&sync_blocks,
mddev->degraded) &&
!conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
&mddev->recovery)) {
/* We can skip this block */
@ -4190,6 +4196,7 @@ static int raid10_resize(struct mddev *mddev, sector_t sectors)
*/
struct r10conf *conf = mddev->private;
sector_t oldsize, size;
int ret;
if (mddev->reshape_position != MaxSector)
return -EBUSY;
@ -4202,11 +4209,11 @@ static int raid10_resize(struct mddev *mddev, sector_t sectors)
if (mddev->external_size &&
mddev->array_sectors > size)
return -EINVAL;
if (mddev->bitmap) {
int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
if (ret)
return ret;
}
ret = mddev->bitmap_ops->resize(mddev, size, 0, false);
if (ret)
return ret;
md_set_array_sectors(mddev, size);
if (sectors > mddev->dev_sectors &&
mddev->recovery_cp > oldsize) {
@ -4472,7 +4479,7 @@ static int raid10_start_reshape(struct mddev *mddev)
newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
if (!mddev_is_clustered(mddev)) {
ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
if (ret)
goto abort;
else
@ -4487,20 +4494,20 @@ static int raid10_start_reshape(struct mddev *mddev)
/*
* some node is already performing reshape, and no need to
* call md_bitmap_resize again since it should be called when
* call bitmap_ops->resize again since it should be called when
* receiving BITMAP_RESIZE msg
*/
if ((sb && (le32_to_cpu(sb->feature_map) &
MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
goto out;
ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
if (ret)
goto abort;
ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
if (ret) {
md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
mddev->bitmap_ops->resize(mddev, oldsize, 0, false);
goto abort;
}
}

View File

@ -313,10 +313,10 @@ void r5c_handle_cached_data_endio(struct r5conf *conf,
if (sh->dev[i].written) {
set_bit(R5_UPTODATE, &sh->dev[i].flags);
r5c_return_dev_pending_writes(conf, &sh->dev[i]);
md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
RAID5_STRIPE_SECTORS(conf),
!test_bit(STRIPE_DEGRADED, &sh->state),
0);
conf->mddev->bitmap_ops->endwrite(conf->mddev,
sh->sector, RAID5_STRIPE_SECTORS(conf),
!test_bit(STRIPE_DEGRADED, &sh->state),
false);
}
}
}
@ -2798,7 +2798,6 @@ void r5c_finish_stripe_write_out(struct r5conf *conf,
{
struct r5l_log *log = READ_ONCE(conf->log);
int i;
int do_wakeup = 0;
sector_t tree_index;
void __rcu **pslot;
uintptr_t refcount;
@ -2815,7 +2814,7 @@ void r5c_finish_stripe_write_out(struct r5conf *conf,
for (i = sh->disks; i--; ) {
clear_bit(R5_InJournal, &sh->dev[i].flags);
if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
do_wakeup = 1;
wake_up_bit(&sh->dev[i].flags, R5_Overlap);
}
/*
@ -2828,9 +2827,6 @@ void r5c_finish_stripe_write_out(struct r5conf *conf,
if (atomic_dec_and_test(&conf->pending_full_writes))
md_wakeup_thread(conf->mddev->thread);
if (do_wakeup)
wake_up(&conf->wait_for_overlap);
spin_lock_irq(&log->stripe_in_journal_lock);
list_del_init(&sh->r5c);
spin_unlock_irq(&log->stripe_in_journal_lock);

View File

@ -2337,7 +2337,7 @@ static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (test_and_clear_bit(R5_Overlap, &dev->flags))
wake_up(&sh->raid_conf->wait_for_overlap);
wake_up_bit(&dev->flags, R5_Overlap);
}
}
local_unlock(&conf->percpu->lock);
@ -3473,7 +3473,7 @@ static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
* With PPL only writes to consecutive data chunks within a
* stripe are allowed because for a single stripe_head we can
* only have one PPL entry at a time, which describes one data
* range. Not really an overlap, but wait_for_overlap can be
* range. Not really an overlap, but R5_Overlap can be
* used to handle this.
*/
sector_t sector;
@ -3563,8 +3563,8 @@ static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
*/
set_bit(STRIPE_BITMAP_PENDING, &sh->state);
spin_unlock_irq(&sh->stripe_lock);
md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
RAID5_STRIPE_SECTORS(conf), 0);
conf->mddev->bitmap_ops->startwrite(conf->mddev, sh->sector,
RAID5_STRIPE_SECTORS(conf), false);
spin_lock_irq(&sh->stripe_lock);
clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
if (!sh->batch_head) {
@ -3652,7 +3652,7 @@ handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
log_stripe_write_finished(sh);
if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
wake_up(&conf->wait_for_overlap);
wake_up_bit(&sh->dev[i].flags, R5_Overlap);
while (bi && bi->bi_iter.bi_sector <
sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
@ -3663,8 +3663,9 @@ handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
bi = nextbi;
}
if (bitmap_end)
md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
RAID5_STRIPE_SECTORS(conf), 0, 0);
conf->mddev->bitmap_ops->endwrite(conf->mddev,
sh->sector, RAID5_STRIPE_SECTORS(conf),
false, false);
bitmap_end = 0;
/* and fail all 'written' */
bi = sh->dev[i].written;
@ -3696,7 +3697,7 @@ handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
sh->dev[i].toread = NULL;
spin_unlock_irq(&sh->stripe_lock);
if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
wake_up(&conf->wait_for_overlap);
wake_up_bit(&sh->dev[i].flags, R5_Overlap);
if (bi)
s->to_read--;
while (bi && bi->bi_iter.bi_sector <
@ -3709,8 +3710,9 @@ handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
}
}
if (bitmap_end)
md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
RAID5_STRIPE_SECTORS(conf), 0, 0);
conf->mddev->bitmap_ops->endwrite(conf->mddev,
sh->sector, RAID5_STRIPE_SECTORS(conf),
false, false);
/* If we were in the middle of a write the parity block might
* still be locked - so just clear all R5_LOCKED flags
*/
@ -3734,7 +3736,7 @@ handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
BUG_ON(sh->batch_head);
clear_bit(STRIPE_SYNCING, &sh->state);
if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
wake_up(&conf->wait_for_overlap);
wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap);
s->syncing = 0;
s->replacing = 0;
/* There is nothing more to do for sync/check/repair.
@ -4059,10 +4061,10 @@ returnbi:
bio_endio(wbi);
wbi = wbi2;
}
md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
RAID5_STRIPE_SECTORS(conf),
!test_bit(STRIPE_DEGRADED, &sh->state),
0);
conf->mddev->bitmap_ops->endwrite(conf->mddev,
sh->sector, RAID5_STRIPE_SECTORS(conf),
!test_bit(STRIPE_DEGRADED, &sh->state),
false);
if (head_sh->batch_head) {
sh = list_first_entry(&sh->batch_list,
struct stripe_head,
@ -4875,7 +4877,6 @@ static void break_stripe_batch_list(struct stripe_head *head_sh,
{
struct stripe_head *sh, *next;
int i;
int do_wakeup = 0;
list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
@ -4911,7 +4912,7 @@ static void break_stripe_batch_list(struct stripe_head *head_sh,
spin_unlock_irq(&sh->stripe_lock);
for (i = 0; i < sh->disks; i++) {
if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
do_wakeup = 1;
wake_up_bit(&sh->dev[i].flags, R5_Overlap);
sh->dev[i].flags = head_sh->dev[i].flags &
(~((1 << R5_WriteError) | (1 << R5_Overlap)));
}
@ -4925,12 +4926,9 @@ static void break_stripe_batch_list(struct stripe_head *head_sh,
spin_unlock_irq(&head_sh->stripe_lock);
for (i = 0; i < head_sh->disks; i++)
if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
do_wakeup = 1;
wake_up_bit(&head_sh->dev[i].flags, R5_Overlap);
if (head_sh->state & handle_flags)
set_bit(STRIPE_HANDLE, &head_sh->state);
if (do_wakeup)
wake_up(&head_sh->raid_conf->wait_for_overlap);
}
static void handle_stripe(struct stripe_head *sh)
@ -5196,7 +5194,7 @@ static void handle_stripe(struct stripe_head *sh)
md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
clear_bit(STRIPE_SYNCING, &sh->state);
if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
wake_up(&conf->wait_for_overlap);
wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap);
}
/* If the failed drives are just a ReadError, then we might need
@ -5259,7 +5257,7 @@ static void handle_stripe(struct stripe_head *sh)
} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
clear_bit(STRIPE_EXPAND_READY, &sh->state);
atomic_dec(&conf->reshape_stripes);
wake_up(&conf->wait_for_overlap);
wake_up(&conf->wait_for_reshape);
md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
}
@ -5753,12 +5751,11 @@ static void make_discard_request(struct mddev *mddev, struct bio *bi)
int d;
again:
sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
prepare_to_wait(&conf->wait_for_overlap, &w,
TASK_UNINTERRUPTIBLE);
set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
if (test_bit(STRIPE_SYNCING, &sh->state)) {
raid5_release_stripe(sh);
schedule();
wait_on_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap,
TASK_UNINTERRUPTIBLE);
goto again;
}
clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
@ -5770,12 +5767,12 @@ static void make_discard_request(struct mddev *mddev, struct bio *bi)
set_bit(R5_Overlap, &sh->dev[d].flags);
spin_unlock_irq(&sh->stripe_lock);
raid5_release_stripe(sh);
schedule();
wait_on_bit(&sh->dev[d].flags, R5_Overlap,
TASK_UNINTERRUPTIBLE);
goto again;
}
}
set_bit(STRIPE_DISCARD, &sh->state);
finish_wait(&conf->wait_for_overlap, &w);
sh->overwrite_disks = 0;
for (d = 0; d < conf->raid_disks; d++) {
if (d == sh->pd_idx || d == sh->qd_idx)
@ -5788,13 +5785,10 @@ static void make_discard_request(struct mddev *mddev, struct bio *bi)
}
spin_unlock_irq(&sh->stripe_lock);
if (conf->mddev->bitmap) {
for (d = 0;
d < conf->raid_disks - conf->max_degraded;
for (d = 0; d < conf->raid_disks - conf->max_degraded;
d++)
md_bitmap_startwrite(mddev->bitmap,
sh->sector,
RAID5_STRIPE_SECTORS(conf),
0);
mddev->bitmap_ops->startwrite(mddev, sh->sector,
RAID5_STRIPE_SECTORS(conf), false);
sh->bm_seq = conf->seq_flush + 1;
set_bit(STRIPE_BIT_DELAY, &sh->state);
}
@ -5855,7 +5849,6 @@ static int add_all_stripe_bios(struct r5conf *conf,
struct bio *bi, int forwrite, int previous)
{
int dd_idx;
int ret = 1;
spin_lock_irq(&sh->stripe_lock);
@ -5871,14 +5864,19 @@ static int add_all_stripe_bios(struct r5conf *conf,
if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
set_bit(R5_Overlap, &dev->flags);
ret = 0;
continue;
spin_unlock_irq(&sh->stripe_lock);
raid5_release_stripe(sh);
/* release batch_last before wait to avoid risk of deadlock */
if (ctx->batch_last) {
raid5_release_stripe(ctx->batch_last);
ctx->batch_last = NULL;
}
md_wakeup_thread(conf->mddev->thread);
wait_on_bit(&dev->flags, R5_Overlap, TASK_UNINTERRUPTIBLE);
return 0;
}
}
if (!ret)
goto out;
for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
struct r5dev *dev = &sh->dev[dd_idx];
@ -5894,9 +5892,8 @@ static int add_all_stripe_bios(struct r5conf *conf,
RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
}
out:
spin_unlock_irq(&sh->stripe_lock);
return ret;
return 1;
}
enum reshape_loc {
@ -5992,17 +5989,17 @@ static enum stripe_result make_stripe_request(struct mddev *mddev,
goto out_release;
}
if (test_bit(STRIPE_EXPANDING, &sh->state) ||
!add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
/*
* Stripe is busy expanding or add failed due to
* overlap. Flush everything and wait a while.
*/
if (test_bit(STRIPE_EXPANDING, &sh->state)) {
md_wakeup_thread(mddev->thread);
ret = STRIPE_SCHEDULE_AND_RETRY;
goto out_release;
}
if (!add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
ret = STRIPE_RETRY;
goto out;
}
if (stripe_can_batch(sh)) {
stripe_add_to_batch_list(conf, sh, ctx->batch_last);
if (ctx->batch_last)
@ -6073,6 +6070,7 @@ static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf,
static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
{
DEFINE_WAIT_FUNC(wait, woken_wake_function);
bool on_wq;
struct r5conf *conf = mddev->private;
sector_t logical_sector;
struct stripe_request_ctx ctx = {};
@ -6146,11 +6144,15 @@ static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
* sequential IO pattern. We don't bother with the optimization when
* reshaping as the performance benefit is not worth the complexity.
*/
if (likely(conf->reshape_progress == MaxSector))
if (likely(conf->reshape_progress == MaxSector)) {
logical_sector = raid5_bio_lowest_chunk_sector(conf, bi);
on_wq = false;
} else {
add_wait_queue(&conf->wait_for_reshape, &wait);
on_wq = true;
}
s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf);
add_wait_queue(&conf->wait_for_overlap, &wait);
while (1) {
res = make_stripe_request(mddev, conf, &ctx, logical_sector,
bi);
@ -6161,6 +6163,7 @@ static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
continue;
if (res == STRIPE_SCHEDULE_AND_RETRY) {
WARN_ON_ONCE(!on_wq);
/*
* Must release the reference to batch_last before
* scheduling and waiting for work to be done,
@ -6185,7 +6188,8 @@ static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
logical_sector = ctx.first_sector +
(s << RAID5_STRIPE_SHIFT(conf));
}
remove_wait_queue(&conf->wait_for_overlap, &wait);
if (unlikely(on_wq))
remove_wait_queue(&conf->wait_for_reshape, &wait);
if (ctx.batch_last)
raid5_release_stripe(ctx.batch_last);
@ -6338,7 +6342,7 @@ static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *sk
: (safepos < writepos && readpos > writepos)) ||
time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
/* Cannot proceed until we've updated the superblock... */
wait_event(conf->wait_for_overlap,
wait_event(conf->wait_for_reshape,
atomic_read(&conf->reshape_stripes)==0
|| test_bit(MD_RECOVERY_INTR, &mddev->recovery));
if (atomic_read(&conf->reshape_stripes) != 0)
@ -6364,7 +6368,7 @@ static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *sk
spin_lock_irq(&conf->device_lock);
conf->reshape_safe = mddev->reshape_position;
spin_unlock_irq(&conf->device_lock);
wake_up(&conf->wait_for_overlap);
wake_up(&conf->wait_for_reshape);
sysfs_notify_dirent_safe(mddev->sysfs_completed);
}
@ -6447,7 +6451,7 @@ finish:
(sector_nr - mddev->curr_resync_completed) * 2
>= mddev->resync_max - mddev->curr_resync_completed) {
/* Cannot proceed until we've updated the superblock... */
wait_event(conf->wait_for_overlap,
wait_event(conf->wait_for_reshape,
atomic_read(&conf->reshape_stripes) == 0
|| test_bit(MD_RECOVERY_INTR, &mddev->recovery));
if (atomic_read(&conf->reshape_stripes) != 0)
@ -6473,7 +6477,7 @@ finish:
spin_lock_irq(&conf->device_lock);
conf->reshape_safe = mddev->reshape_position;
spin_unlock_irq(&conf->device_lock);
wake_up(&conf->wait_for_overlap);
wake_up(&conf->wait_for_reshape);
sysfs_notify_dirent_safe(mddev->sysfs_completed);
}
ret:
@ -6486,7 +6490,7 @@ static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_n
struct r5conf *conf = mddev->private;
struct stripe_head *sh;
sector_t sync_blocks;
int still_degraded = 0;
bool still_degraded = false;
int i;
if (sector_nr >= max_sector) {
@ -6498,17 +6502,17 @@ static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_n
}
if (mddev->curr_resync < max_sector) /* aborted */
md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
&sync_blocks, 1);
mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync,
&sync_blocks);
else /* completed sync */
conf->fullsync = 0;
md_bitmap_close_sync(mddev->bitmap);
mddev->bitmap_ops->close_sync(mddev);
return 0;
}
/* Allow raid5_quiesce to complete */
wait_event(conf->wait_for_overlap, conf->quiesce != 2);
wait_event(conf->wait_for_reshape, conf->quiesce != 2);
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
return reshape_request(mddev, sector_nr, skipped);
@ -6531,7 +6535,8 @@ static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_n
}
if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
!conf->fullsync &&
!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
!mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks,
true) &&
sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
/* we can skip this block, and probably more */
do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
@ -6540,7 +6545,7 @@ static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_n
return sync_blocks * RAID5_STRIPE_SECTORS(conf);
}
md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, false);
sh = raid5_get_active_stripe(conf, NULL, sector_nr,
R5_GAS_NOBLOCK);
@ -6559,10 +6564,11 @@ static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_n
struct md_rdev *rdev = conf->disks[i].rdev;
if (rdev == NULL || test_bit(Faulty, &rdev->flags))
still_degraded = 1;
still_degraded = true;
}
md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks,
still_degraded);
set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
@ -6767,7 +6773,7 @@ static void raid5d(struct md_thread *thread)
/* Now is a good time to flush some bitmap updates */
conf->seq_flush++;
spin_unlock_irq(&conf->device_lock);
md_bitmap_unplug(mddev->bitmap);
mddev->bitmap_ops->unplug(mddev, true);
spin_lock_irq(&conf->device_lock);
conf->seq_write = conf->seq_flush;
activate_bit_delay(conf, conf->temp_inactive_list);
@ -7492,7 +7498,7 @@ static struct r5conf *setup_conf(struct mddev *mddev)
init_waitqueue_head(&conf->wait_for_quiescent);
init_waitqueue_head(&conf->wait_for_stripe);
init_waitqueue_head(&conf->wait_for_overlap);
init_waitqueue_head(&conf->wait_for_reshape);
INIT_LIST_HEAD(&conf->handle_list);
INIT_LIST_HEAD(&conf->loprio_list);
INIT_LIST_HEAD(&conf->hold_list);
@ -8312,6 +8318,7 @@ static int raid5_resize(struct mddev *mddev, sector_t sectors)
*/
sector_t newsize;
struct r5conf *conf = mddev->private;
int ret;
if (raid5_has_log(conf) || raid5_has_ppl(conf))
return -EINVAL;
@ -8320,11 +8327,11 @@ static int raid5_resize(struct mddev *mddev, sector_t sectors)
if (mddev->external_size &&
mddev->array_sectors > newsize)
return -EINVAL;
if (mddev->bitmap) {
int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
if (ret)
return ret;
}
ret = mddev->bitmap_ops->resize(mddev, sectors, 0, false);
if (ret)
return ret;
md_set_array_sectors(mddev, newsize);
if (sectors > mddev->dev_sectors &&
mddev->recovery_cp > mddev->dev_sectors) {
@ -8550,7 +8557,7 @@ static void end_reshape(struct r5conf *conf)
!test_bit(In_sync, &rdev->flags))
rdev->recovery_offset = MaxSector;
spin_unlock_irq(&conf->device_lock);
wake_up(&conf->wait_for_overlap);
wake_up(&conf->wait_for_reshape);
mddev_update_io_opt(conf->mddev,
conf->raid_disks - conf->max_degraded);
@ -8614,13 +8621,13 @@ static void raid5_quiesce(struct mddev *mddev, int quiesce)
conf->quiesce = 1;
unlock_all_device_hash_locks_irq(conf);
/* allow reshape to continue */
wake_up(&conf->wait_for_overlap);
wake_up(&conf->wait_for_reshape);
} else {
/* re-enable writes */
lock_all_device_hash_locks_irq(conf);
conf->quiesce = 0;
wake_up(&conf->wait_for_quiescent);
wake_up(&conf->wait_for_overlap);
wake_up(&conf->wait_for_reshape);
unlock_all_device_hash_locks_irq(conf);
}
log_quiesce(conf, quiesce);
@ -8939,7 +8946,7 @@ static void raid5_prepare_suspend(struct mddev *mddev)
{
struct r5conf *conf = mddev->private;
wake_up(&conf->wait_for_overlap);
wake_up(&conf->wait_for_reshape);
}
static struct md_personality raid6_personality =

View File

@ -668,7 +668,7 @@ struct r5conf {
struct llist_head released_stripes;
wait_queue_head_t wait_for_quiescent;
wait_queue_head_t wait_for_stripe;
wait_queue_head_t wait_for_overlap;
wait_queue_head_t wait_for_reshape;
unsigned long cache_state;
struct shrinker *shrinker;
int pool_size; /* number of disks in stripeheads in pool */

View File

@ -20,6 +20,28 @@ key_serial_t nvme_keyring_id(void)
}
EXPORT_SYMBOL_GPL(nvme_keyring_id);
static bool nvme_tls_psk_revoked(struct key *psk)
{
return test_bit(KEY_FLAG_REVOKED, &psk->flags) ||
test_bit(KEY_FLAG_INVALIDATED, &psk->flags);
}
struct key *nvme_tls_key_lookup(key_serial_t key_id)
{
struct key *key = key_lookup(key_id);
if (IS_ERR(key)) {
pr_err("key id %08x not found\n", key_id);
return key;
}
if (nvme_tls_psk_revoked(key)) {
pr_err("key id %08x revoked\n", key_id);
return ERR_PTR(-EKEYREVOKED);
}
return key;
}
EXPORT_SYMBOL_GPL(nvme_tls_key_lookup);
static void nvme_tls_psk_describe(const struct key *key, struct seq_file *m)
{
seq_puts(m, key->description);
@ -36,14 +58,12 @@ static bool nvme_tls_psk_match(const struct key *key,
pr_debug("%s: no key description\n", __func__);
return false;
}
match_len = strlen(key->description);
pr_debug("%s: id %s len %zd\n", __func__, key->description, match_len);
if (!match_data->raw_data) {
pr_debug("%s: no match data\n", __func__);
return false;
}
match_id = match_data->raw_data;
match_len = strlen(match_id);
pr_debug("%s: match '%s' '%s' len %zd\n",
__func__, match_id, key->description, match_len);
return !memcmp(key->description, match_id, match_len);
@ -71,7 +91,7 @@ static struct key_type nvme_tls_psk_key_type = {
static struct key *nvme_tls_psk_lookup(struct key *keyring,
const char *hostnqn, const char *subnqn,
int hmac, bool generated)
u8 hmac, u8 psk_ver, bool generated)
{
char *identity;
size_t identity_len = (NVMF_NQN_SIZE) * 2 + 11;
@ -82,8 +102,8 @@ static struct key *nvme_tls_psk_lookup(struct key *keyring,
if (!identity)
return ERR_PTR(-ENOMEM);
snprintf(identity, identity_len, "NVMe0%c%02d %s %s",
generated ? 'G' : 'R', hmac, hostnqn, subnqn);
snprintf(identity, identity_len, "NVMe%u%c%02u %s %s",
psk_ver, generated ? 'G' : 'R', hmac, hostnqn, subnqn);
if (!keyring)
keyring = nvme_keyring;
@ -107,21 +127,38 @@ static struct key *nvme_tls_psk_lookup(struct key *keyring,
/*
* NVMe PSK priority list
*
* 'Retained' PSKs (ie 'generated == false')
* should be preferred to 'generated' PSKs,
* and SHA-384 should be preferred to SHA-256.
* 'Retained' PSKs (ie 'generated == false') should be preferred to 'generated'
* PSKs, PSKs with hash (psk_ver 1) should be preferred to PSKs without hash
* (psk_ver 0), and SHA-384 should be preferred to SHA-256.
*/
static struct nvme_tls_psk_priority_list {
bool generated;
u8 psk_ver;
enum nvme_tcp_tls_cipher cipher;
} nvme_tls_psk_prio[] = {
{ .generated = false,
.psk_ver = 1,
.cipher = NVME_TCP_TLS_CIPHER_SHA384, },
{ .generated = false,
.psk_ver = 1,
.cipher = NVME_TCP_TLS_CIPHER_SHA256, },
{ .generated = false,
.psk_ver = 0,
.cipher = NVME_TCP_TLS_CIPHER_SHA384, },
{ .generated = false,
.psk_ver = 0,
.cipher = NVME_TCP_TLS_CIPHER_SHA256, },
{ .generated = true,
.psk_ver = 1,
.cipher = NVME_TCP_TLS_CIPHER_SHA384, },
{ .generated = true,
.psk_ver = 1,
.cipher = NVME_TCP_TLS_CIPHER_SHA256, },
{ .generated = true,
.psk_ver = 0,
.cipher = NVME_TCP_TLS_CIPHER_SHA384, },
{ .generated = true,
.psk_ver = 0,
.cipher = NVME_TCP_TLS_CIPHER_SHA256, },
};
@ -137,10 +174,11 @@ key_serial_t nvme_tls_psk_default(struct key *keyring,
for (prio = 0; prio < ARRAY_SIZE(nvme_tls_psk_prio); prio++) {
bool generated = nvme_tls_psk_prio[prio].generated;
u8 ver = nvme_tls_psk_prio[prio].psk_ver;
enum nvme_tcp_tls_cipher cipher = nvme_tls_psk_prio[prio].cipher;
tls_key = nvme_tls_psk_lookup(keyring, hostnqn, subnqn,
cipher, generated);
cipher, ver, generated);
if (!IS_ERR(tls_key)) {
tls_key_id = tls_key->serial;
key_put(tls_key);

View File

@ -41,6 +41,7 @@ config NVME_HWMON
config NVME_FABRICS
select NVME_CORE
select NVME_KEYRING if NVME_TCP_TLS
tristate
config NVME_RDMA
@ -94,7 +95,6 @@ config NVME_TCP
config NVME_TCP_TLS
bool "NVMe over Fabrics TCP TLS encryption support"
depends on NVME_TCP
select NVME_KEYRING
select NET_HANDSHAKE
select KEYS
help
@ -109,6 +109,7 @@ config NVME_HOST_AUTH
bool "NVMe over Fabrics In-Band Authentication in host side"
depends on NVME_CORE
select NVME_AUTH
select NVME_KEYRING if NVME_TCP_TLS
help
This provides support for NVMe over Fabrics In-Band Authentication in
host side.

View File

@ -4,6 +4,7 @@
* Copyright (c) 2011-2014, Intel Corporation.
*/
#include <linux/async.h>
#include <linux/blkdev.h>
#include <linux/blk-mq.h>
#include <linux/blk-integrity.h>
@ -987,8 +988,8 @@ static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
cmnd->rw.length =
cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
cmnd->rw.reftag = 0;
cmnd->rw.apptag = 0;
cmnd->rw.appmask = 0;
cmnd->rw.lbat = 0;
cmnd->rw.lbatm = 0;
if (ns->head->ms) {
/*
@ -4040,6 +4041,35 @@ static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
}
}
/**
* struct async_scan_info - keeps track of controller & NSIDs to scan
* @ctrl: Controller on which namespaces are being scanned
* @next_nsid: Index of next NSID to scan in ns_list
* @ns_list: Pointer to list of NSIDs to scan
*
* Note: There is a single async_scan_info structure shared by all instances
* of nvme_scan_ns_async() scanning a given controller, so the atomic
* operations on next_nsid are critical to ensure each instance scans a unique
* NSID.
*/
struct async_scan_info {
struct nvme_ctrl *ctrl;
atomic_t next_nsid;
__le32 *ns_list;
};
static void nvme_scan_ns_async(void *data, async_cookie_t cookie)
{
struct async_scan_info *scan_info = data;
int idx;
u32 nsid;
idx = (u32)atomic_fetch_inc(&scan_info->next_nsid);
nsid = le32_to_cpu(scan_info->ns_list[idx]);
nvme_scan_ns(scan_info->ctrl, nsid);
}
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
unsigned nsid)
{
@ -4066,11 +4096,15 @@ static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
__le32 *ns_list;
u32 prev = 0;
int ret = 0, i;
ASYNC_DOMAIN(domain);
struct async_scan_info scan_info;
ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
if (!ns_list)
return -ENOMEM;
scan_info.ctrl = ctrl;
scan_info.ns_list = ns_list;
for (;;) {
struct nvme_command cmd = {
.identify.opcode = nvme_admin_identify,
@ -4086,19 +4120,23 @@ static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
goto free;
}
atomic_set(&scan_info.next_nsid, 0);
for (i = 0; i < nr_entries; i++) {
u32 nsid = le32_to_cpu(ns_list[i]);
if (!nsid) /* end of the list? */
goto out;
nvme_scan_ns(ctrl, nsid);
async_schedule_domain(nvme_scan_ns_async, &scan_info,
&domain);
while (++prev < nsid)
nvme_ns_remove_by_nsid(ctrl, prev);
}
async_synchronize_full_domain(&domain);
}
out:
nvme_remove_invalid_namespaces(ctrl, prev);
free:
async_synchronize_full_domain(&domain);
kfree(ns_list);
return ret;
}
@ -4568,7 +4606,7 @@ int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
set->flags = BLK_MQ_F_SHOULD_MERGE;
if (ctrl->ops->flags & NVME_F_BLOCKING)
set->flags |= BLK_MQ_F_BLOCKING;
set->cmd_size = cmd_size,
set->cmd_size = cmd_size;
set->driver_data = ctrl;
set->nr_hw_queues = ctrl->queue_count - 1;
set->timeout = NVME_IO_TIMEOUT;
@ -4678,7 +4716,6 @@ static void nvme_free_ctrl(struct device *dev)
if (!subsys || ctrl->instance != subsys->instance)
ida_free(&nvme_instance_ida, ctrl->instance);
key_put(ctrl->tls_key);
nvme_free_cels(ctrl);
nvme_mpath_uninit(ctrl);
cleanup_srcu_struct(&ctrl->srcu);

View File

@ -665,7 +665,7 @@ static struct key *nvmf_parse_key(int key_id)
return ERR_PTR(-EINVAL);
}
key = key_lookup(key_id);
key = nvme_tls_key_lookup(key_id);
if (IS_ERR(key))
pr_err("key id %08x not found\n", key_id);
else

View File

@ -4,6 +4,7 @@
* Copyright (c) 2017-2021 Christoph Hellwig.
*/
#include <linux/bio-integrity.h>
#include <linux/blk-integrity.h>
#include <linux/ptrace.h> /* for force_successful_syscall_return */
#include <linux/nvme_ioctl.h>
#include <linux/io_uring/cmd.h>
@ -119,9 +120,14 @@ static int nvme_map_user_request(struct request *req, u64 ubuffer,
struct request_queue *q = req->q;
struct nvme_ns *ns = q->queuedata;
struct block_device *bdev = ns ? ns->disk->part0 : NULL;
bool supports_metadata = bdev && blk_get_integrity(bdev->bd_disk);
bool has_metadata = meta_buffer && meta_len;
struct bio *bio = NULL;
int ret;
if (has_metadata && !supports_metadata)
return -EINVAL;
if (ioucmd && (ioucmd->flags & IORING_URING_CMD_FIXED)) {
struct iov_iter iter;
@ -143,15 +149,15 @@ static int nvme_map_user_request(struct request *req, u64 ubuffer,
goto out;
bio = req->bio;
if (bdev) {
if (bdev)
bio_set_dev(bio, bdev);
if (meta_buffer && meta_len) {
ret = bio_integrity_map_user(bio, meta_buffer, meta_len,
meta_seed);
if (ret)
goto out_unmap;
req->cmd_flags |= REQ_INTEGRITY;
}
if (has_metadata) {
ret = bio_integrity_map_user(bio, meta_buffer, meta_len,
meta_seed);
if (ret)
goto out_unmap;
req->cmd_flags |= REQ_INTEGRITY;
}
return ret;
@ -260,8 +266,8 @@ static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
c.rw.control = cpu_to_le16(io.control);
c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
c.rw.reftag = cpu_to_le32(io.reftag);
c.rw.apptag = cpu_to_le16(io.apptag);
c.rw.appmask = cpu_to_le16(io.appmask);
c.rw.lbat = cpu_to_le16(io.apptag);
c.rw.lbatm = cpu_to_le16(io.appmask);
return nvme_submit_user_cmd(ns->queue, &c, io.addr, length, metadata,
meta_len, lower_32_bits(io.slba), NULL, 0, 0);

View File

@ -90,6 +90,11 @@ enum nvme_quirks {
*/
NVME_QUIRK_NO_DEEPEST_PS = (1 << 5),
/*
* Problems seen with concurrent commands
*/
NVME_QUIRK_QDEPTH_ONE = (1 << 6),
/*
* Set MEDIUM priority on SQ creation
*/
@ -372,7 +377,7 @@ struct nvme_ctrl {
struct nvme_dhchap_key *ctrl_key;
u16 transaction;
#endif
struct key *tls_key;
key_serial_t tls_pskid;
/* Power saving configuration */
u64 ps_max_latency_us;

View File

@ -2563,15 +2563,8 @@ static int nvme_pci_enable(struct nvme_dev *dev)
else
dev->io_sqes = NVME_NVM_IOSQES;
/*
* Temporary fix for the Apple controller found in the MacBook8,1 and
* some MacBook7,1 to avoid controller resets and data loss.
*/
if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
dev->q_depth = 2;
dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
"set queue depth=%u to work around controller resets\n",
dev->q_depth);
} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
(pdev->device == 0xa821 || pdev->device == 0xa822) &&
NVME_CAP_MQES(dev->ctrl.cap) == 0) {
@ -3442,6 +3435,8 @@ static const struct pci_device_id nvme_id_table[] = {
NVME_QUIRK_BOGUS_NID, },
{ PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
.driver_data = NVME_QUIRK_BOGUS_NID, },
{ PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
.driver_data = NVME_QUIRK_QDEPTH_ONE },
{ PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */
.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
NVME_QUIRK_BOGUS_NID, },
@ -3576,7 +3571,12 @@ static const struct pci_device_id nvme_id_table[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
.driver_data = NVME_QUIRK_SINGLE_VECTOR },
/*
* Fix for the Apple controller found in the MacBook8,1 and
* some MacBook7,1 to avoid controller resets and data loss.
*/
.driver_data = NVME_QUIRK_SINGLE_VECTOR |
NVME_QUIRK_QDEPTH_ONE },
{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
.driver_data = NVME_QUIRK_SINGLE_VECTOR |

View File

@ -1363,8 +1363,8 @@ static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
if (control & NVME_RW_PRINFO_PRCHK_REF)
domain->sig.dif.ref_remap = true;
domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.lbat);
domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.lbatm);
domain->sig.dif.app_escape = true;
if (pi_type == NVME_NS_DPS_PI_TYPE3)
domain->sig.dif.ref_escape = true;
@ -1876,6 +1876,8 @@ static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
*/
priv.hrqsize = cpu_to_le16(queue->queue_size);
priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
/* cntlid should only be set when creating an I/O queue */
priv.cntlid = cpu_to_le16(ctrl->ctrl.cntlid);
}
ret = rdma_connect_locked(queue->cm_id, &param);

View File

@ -664,19 +664,6 @@ static DEVICE_ATTR(dhchap_ctrl_secret, S_IRUGO | S_IWUSR,
nvme_ctrl_dhchap_ctrl_secret_show, nvme_ctrl_dhchap_ctrl_secret_store);
#endif
#ifdef CONFIG_NVME_TCP_TLS
static ssize_t tls_key_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
if (!ctrl->tls_key)
return 0;
return sysfs_emit(buf, "%08x", key_serial(ctrl->tls_key));
}
static DEVICE_ATTR_RO(tls_key);
#endif
static struct attribute *nvme_dev_attrs[] = {
&dev_attr_reset_controller.attr,
&dev_attr_rescan_controller.attr,
@ -703,9 +690,6 @@ static struct attribute *nvme_dev_attrs[] = {
#ifdef CONFIG_NVME_HOST_AUTH
&dev_attr_dhchap_secret.attr,
&dev_attr_dhchap_ctrl_secret.attr,
#endif
#ifdef CONFIG_NVME_TCP_TLS
&dev_attr_tls_key.attr,
#endif
&dev_attr_adm_passthru_err_log_enabled.attr,
NULL
@ -737,11 +721,6 @@ static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
if (a == &dev_attr_dhchap_ctrl_secret.attr && !ctrl->opts)
return 0;
#endif
#ifdef CONFIG_NVME_TCP_TLS
if (a == &dev_attr_tls_key.attr &&
(!ctrl->opts || strcmp(ctrl->opts->transport, "tcp")))
return 0;
#endif
return a->mode;
}
@ -752,8 +731,77 @@ const struct attribute_group nvme_dev_attrs_group = {
};
EXPORT_SYMBOL_GPL(nvme_dev_attrs_group);
#ifdef CONFIG_NVME_TCP_TLS
static ssize_t tls_key_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
if (!ctrl->tls_pskid)
return 0;
return sysfs_emit(buf, "%08x\n", ctrl->tls_pskid);
}
static DEVICE_ATTR_RO(tls_key);
static ssize_t tls_configured_key_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
struct key *key = ctrl->opts->tls_key;
return sysfs_emit(buf, "%08x\n", key_serial(key));
}
static DEVICE_ATTR_RO(tls_configured_key);
static ssize_t tls_keyring_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
struct key *keyring = ctrl->opts->keyring;
return sysfs_emit(buf, "%s\n", keyring->description);
}
static DEVICE_ATTR_RO(tls_keyring);
static struct attribute *nvme_tls_attrs[] = {
&dev_attr_tls_key.attr,
&dev_attr_tls_configured_key.attr,
&dev_attr_tls_keyring.attr,
};
static umode_t nvme_tls_attrs_are_visible(struct kobject *kobj,
struct attribute *a, int n)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
if (!ctrl->opts || strcmp(ctrl->opts->transport, "tcp"))
return 0;
if (a == &dev_attr_tls_key.attr &&
!ctrl->opts->tls)
return 0;
if (a == &dev_attr_tls_configured_key.attr &&
!ctrl->opts->tls_key)
return 0;
if (a == &dev_attr_tls_keyring.attr &&
!ctrl->opts->keyring)
return 0;
return a->mode;
}
const struct attribute_group nvme_tls_attrs_group = {
.attrs = nvme_tls_attrs,
.is_visible = nvme_tls_attrs_are_visible,
};
#endif
const struct attribute_group *nvme_dev_attr_groups[] = {
&nvme_dev_attrs_group,
#ifdef CONFIG_NVME_TCP_TLS
&nvme_tls_attrs_group,
#endif
NULL,
};

View File

@ -165,6 +165,7 @@ struct nvme_tcp_queue {
bool hdr_digest;
bool data_digest;
bool tls_enabled;
struct ahash_request *rcv_hash;
struct ahash_request *snd_hash;
__le32 exp_ddgst;
@ -213,7 +214,21 @@ static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
return queue - queue->ctrl->queues;
}
static inline bool nvme_tcp_tls(struct nvme_ctrl *ctrl)
/*
* Check if the queue is TLS encrypted
*/
static inline bool nvme_tcp_queue_tls(struct nvme_tcp_queue *queue)
{
if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
return 0;
return queue->tls_enabled;
}
/*
* Check if TLS is configured for the controller.
*/
static inline bool nvme_tcp_tls_configured(struct nvme_ctrl *ctrl)
{
if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
return 0;
@ -368,7 +383,7 @@ static inline bool nvme_tcp_queue_has_pending(struct nvme_tcp_queue *queue)
static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
{
return !nvme_tcp_tls(&queue->ctrl->ctrl) &&
return !nvme_tcp_queue_tls(queue) &&
nvme_tcp_queue_has_pending(queue);
}
@ -1051,7 +1066,7 @@ static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
else
msg.msg_flags |= MSG_MORE;
if (!sendpage_ok(page))
if (!sendpages_ok(page, len, offset))
msg.msg_flags &= ~MSG_SPLICE_PAGES;
bvec_set_page(&bvec, page, len, offset);
@ -1427,7 +1442,7 @@ static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
memset(&msg, 0, sizeof(msg));
iov.iov_base = icresp;
iov.iov_len = sizeof(*icresp);
if (nvme_tcp_tls(&queue->ctrl->ctrl)) {
if (nvme_tcp_queue_tls(queue)) {
msg.msg_control = cbuf;
msg.msg_controllen = sizeof(cbuf);
}
@ -1439,7 +1454,7 @@ static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
goto free_icresp;
}
ret = -ENOTCONN;
if (nvme_tcp_tls(&queue->ctrl->ctrl)) {
if (nvme_tcp_queue_tls(queue)) {
ctype = tls_get_record_type(queue->sock->sk,
(struct cmsghdr *)cbuf);
if (ctype != TLS_RECORD_TYPE_DATA) {
@ -1581,13 +1596,16 @@ static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid)
goto out_complete;
}
tls_key = key_lookup(pskid);
tls_key = nvme_tls_key_lookup(pskid);
if (IS_ERR(tls_key)) {
dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n",
qid, pskid);
queue->tls_err = -ENOKEY;
} else {
ctrl->ctrl.tls_key = tls_key;
queue->tls_enabled = true;
if (qid == 0)
ctrl->ctrl.tls_pskid = key_serial(tls_key);
key_put(tls_key);
queue->tls_err = 0;
}
@ -1768,7 +1786,7 @@ static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid,
}
/* If PSKs are configured try to start TLS */
if (IS_ENABLED(CONFIG_NVME_TCP_TLS) && pskid) {
if (nvme_tcp_tls_configured(nctrl) && pskid) {
ret = nvme_tcp_start_tls(nctrl, queue, pskid);
if (ret)
goto err_init_connect;
@ -1829,6 +1847,8 @@ static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
mutex_lock(&queue->queue_lock);
if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
__nvme_tcp_stop_queue(queue);
/* Stopping the queue will disable TLS */
queue->tls_enabled = false;
mutex_unlock(&queue->queue_lock);
}
@ -1925,16 +1945,17 @@ static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
int ret;
key_serial_t pskid = 0;
if (nvme_tcp_tls(ctrl)) {
if (nvme_tcp_tls_configured(ctrl)) {
if (ctrl->opts->tls_key)
pskid = key_serial(ctrl->opts->tls_key);
else
else {
pskid = nvme_tls_psk_default(ctrl->opts->keyring,
ctrl->opts->host->nqn,
ctrl->opts->subsysnqn);
if (!pskid) {
dev_err(ctrl->device, "no valid PSK found\n");
return -ENOKEY;
if (!pskid) {
dev_err(ctrl->device, "no valid PSK found\n");
return -ENOKEY;
}
}
}
@ -1957,13 +1978,14 @@ static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
{
int i, ret;
if (nvme_tcp_tls(ctrl) && !ctrl->tls_key) {
if (nvme_tcp_tls_configured(ctrl) && !ctrl->tls_pskid) {
dev_err(ctrl->device, "no PSK negotiated\n");
return -ENOKEY;
}
for (i = 1; i < ctrl->queue_count; i++) {
ret = nvme_tcp_alloc_queue(ctrl, i,
key_serial(ctrl->tls_key));
ctrl->tls_pskid);
if (ret)
goto out_free_queues;
}
@ -2144,6 +2166,11 @@ static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
if (remove)
nvme_unquiesce_admin_queue(ctrl);
nvme_tcp_destroy_admin_queue(ctrl, remove);
if (ctrl->tls_pskid) {
dev_dbg(ctrl->device, "Wipe negotiated TLS_PSK %08x\n",
ctrl->tls_pskid);
ctrl->tls_pskid = 0;
}
}
static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,

View File

@ -1015,8 +1015,6 @@ u16 nvmet_parse_admin_cmd(struct nvmet_req *req)
if (nvme_is_fabrics(cmd))
return nvmet_parse_fabrics_admin_cmd(req);
if (unlikely(!nvmet_check_auth_status(req)))
return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
if (nvmet_is_disc_subsys(nvmet_req_subsys(req)))
return nvmet_parse_discovery_cmd(req);

View File

@ -25,6 +25,18 @@ int nvmet_auth_set_key(struct nvmet_host *host, const char *secret,
unsigned char key_hash;
char *dhchap_secret;
if (!strlen(secret)) {
if (set_ctrl) {
kfree(host->dhchap_ctrl_secret);
host->dhchap_ctrl_secret = NULL;
host->dhchap_ctrl_key_hash = 0;
} else {
kfree(host->dhchap_secret);
host->dhchap_secret = NULL;
host->dhchap_key_hash = 0;
}
return 0;
}
if (sscanf(secret, "DHHC-1:%hhd:%*s", &key_hash) != 1)
return -EINVAL;
if (key_hash > 3) {

View File

@ -578,8 +578,8 @@ static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
if (control & NVME_RW_PRINFO_PRCHK_REF)
domain->sig.dif.ref_remap = true;
domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.lbat);
domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.lbatm);
domain->sig.dif.app_escape = true;
if (pi_type == NVME_NS_DPS_PI_TYPE3)
domain->sig.dif.ref_escape = true;

View File

@ -73,20 +73,13 @@ struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
struct btrfs_bio *orig_bbio,
u64 map_length, bool use_append)
u64 map_length)
{
struct btrfs_bio *bbio;
struct bio *bio;
if (use_append) {
unsigned int nr_segs;
bio = bio_split_rw(&orig_bbio->bio, &fs_info->limits, &nr_segs,
&btrfs_clone_bioset, map_length);
} else {
bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT,
GFP_NOFS, &btrfs_clone_bioset);
}
bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, GFP_NOFS,
&btrfs_clone_bioset);
bbio = btrfs_bio(bio);
btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
bbio->inode = orig_bbio->inode;
@ -659,6 +652,19 @@ static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
return true;
}
static u64 btrfs_append_map_length(struct btrfs_bio *bbio, u64 map_length)
{
unsigned int nr_segs;
int sector_offset;
map_length = min(map_length, bbio->fs_info->max_zone_append_size);
sector_offset = bio_split_rw_at(&bbio->bio, &bbio->fs_info->limits,
&nr_segs, map_length);
if (sector_offset)
return sector_offset << SECTOR_SHIFT;
return map_length;
}
static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
{
struct btrfs_inode *inode = bbio->inode;
@ -688,10 +694,10 @@ static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
map_length = min(map_length, length);
if (use_append)
map_length = min(map_length, fs_info->max_zone_append_size);
map_length = btrfs_append_map_length(bbio, map_length);
if (map_length < length) {
bbio = btrfs_split_bio(fs_info, bbio, map_length, use_append);
bbio = btrfs_split_bio(fs_info, bbio, map_length);
bio = &bbio->bio;
}

View File

@ -324,8 +324,8 @@ static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio)
void bio_trim(struct bio *bio, sector_t offset, sector_t size);
extern struct bio *bio_split(struct bio *bio, int sectors,
gfp_t gfp, struct bio_set *bs);
struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
unsigned *segs, struct bio_set *bs, unsigned max_bytes);
int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim,
unsigned *segs, unsigned max_bytes);
/**
* bio_next_split - get next @sectors from a bio, splitting if necessary

View File

@ -1187,7 +1187,8 @@ static inline unsigned int queue_max_segment_size(const struct request_queue *q)
return q->limits.max_segment_size;
}
static inline unsigned int queue_limits_max_zone_append_sectors(struct queue_limits *l)
static inline unsigned int
queue_limits_max_zone_append_sectors(const struct queue_limits *l)
{
unsigned int max_sectors = min(l->chunk_sectors, l->max_hw_sectors);

View File

@ -1605,6 +1605,7 @@ void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
bool make_dirty);
void unpin_user_pages(struct page **pages, unsigned long npages);
void unpin_user_folio(struct folio *folio, unsigned long npages);
void unpin_folios(struct folio **folios, unsigned long nfolios);
static inline bool is_cow_mapping(vm_flags_t flags)

View File

@ -322,6 +322,25 @@ static inline bool sendpage_ok(struct page *page)
return !PageSlab(page) && page_count(page) >= 1;
}
/*
* Check sendpage_ok on contiguous pages.
*/
static inline bool sendpages_ok(struct page *page, size_t len, size_t offset)
{
struct page *p = page + (offset >> PAGE_SHIFT);
size_t count = 0;
while (count < len) {
if (!sendpage_ok(p))
return false;
p++;
count += PAGE_SIZE;
}
return true;
}
int kernel_sendmsg(struct socket *sock, struct msghdr *msg, struct kvec *vec,
size_t num, size_t len);
int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,

View File

@ -12,7 +12,7 @@ key_serial_t nvme_tls_psk_default(struct key *keyring,
const char *hostnqn, const char *subnqn);
key_serial_t nvme_keyring_id(void);
struct key *nvme_tls_key_lookup(key_serial_t key_id);
#else
static inline key_serial_t nvme_tls_psk_default(struct key *keyring,
@ -24,5 +24,9 @@ static inline key_serial_t nvme_keyring_id(void)
{
return 0;
}
static inline struct key *nvme_tls_key_lookup(key_serial_t key_id)
{
return ERR_PTR(-ENOTSUPP);
}
#endif /* !CONFIG_NVME_KEYRING */
#endif /* _NVME_KEYRING_H */

View File

@ -25,6 +25,7 @@ enum nvme_rdma_cm_status {
NVME_RDMA_CM_NO_RSC = 0x06,
NVME_RDMA_CM_INVALID_IRD = 0x07,
NVME_RDMA_CM_INVALID_ORD = 0x08,
NVME_RDMA_CM_INVALID_CNTLID = 0x09,
};
static inline const char *nvme_rdma_cm_msg(enum nvme_rdma_cm_status status)
@ -46,6 +47,8 @@ static inline const char *nvme_rdma_cm_msg(enum nvme_rdma_cm_status status)
return "invalid IRD";
case NVME_RDMA_CM_INVALID_ORD:
return "Invalid ORD";
case NVME_RDMA_CM_INVALID_CNTLID:
return "invalid controller ID";
default:
return "unrecognized reason";
}
@ -64,7 +67,8 @@ struct nvme_rdma_cm_req {
__le16 qid;
__le16 hrqsize;
__le16 hsqsize;
u8 rsvd[24];
__le16 cntlid;
u8 rsvd[22];
};
/**

View File

@ -987,8 +987,8 @@ struct nvme_rw_command {
__le16 control;
__le32 dsmgmt;
__le32 reftag;
__le16 apptag;
__le16 appmask;
__le16 lbat;
__le16 lbatm;
};
enum {
@ -1057,8 +1057,8 @@ struct nvme_write_zeroes_cmd {
__le16 control;
__le32 dsmgmt;
__le32 reftag;
__le16 apptag;
__le16 appmask;
__le16 lbat;
__le16 lbatm;
};
enum nvme_zone_mgmt_action {

View File

@ -42,8 +42,9 @@ enum {
NBD_CMD_WRITE = 1,
NBD_CMD_DISC = 2,
NBD_CMD_FLUSH = 3,
NBD_CMD_TRIM = 4
NBD_CMD_TRIM = 4,
/* userspace defines additional extension commands */
NBD_CMD_WRITE_ZEROES = 6,
};
/* values for flags field, these are server interaction specific. */
@ -51,12 +52,15 @@ enum {
#define NBD_FLAG_READ_ONLY (1 << 1) /* device is read-only */
#define NBD_FLAG_SEND_FLUSH (1 << 2) /* can flush writeback cache */
#define NBD_FLAG_SEND_FUA (1 << 3) /* send FUA (forced unit access) */
/* there is a gap here to match userspace */
#define NBD_FLAG_ROTATIONAL (1 << 4) /* device is rotational */
#define NBD_FLAG_SEND_TRIM (1 << 5) /* send trim/discard */
#define NBD_FLAG_SEND_WRITE_ZEROES (1 << 6) /* supports WRITE_ZEROES */
/* there is a gap here to match userspace */
#define NBD_FLAG_CAN_MULTI_CONN (1 << 8) /* Server supports multiple connections per export. */
/* values for cmd flags in the upper 16 bits of request type */
#define NBD_CMD_FLAG_FUA (1 << 16) /* FUA (forced unit access) op */
#define NBD_CMD_FLAG_NO_HOLE (1 << 17) /* Do not punch a hole for WRITE_ZEROES */
/* These are client behavior specific flags. */
#define NBD_CFLAG_DESTROY_ON_DISCONNECT (1 << 0) /* delete the nbd device on

View File

@ -415,6 +415,19 @@ void unpin_user_pages(struct page **pages, unsigned long npages)
}
EXPORT_SYMBOL(unpin_user_pages);
/**
* unpin_user_folio() - release pages of a folio
* @folio: pointer to folio to be released
* @npages: number of pages of same folio
*
* Release npages of the folio
*/
void unpin_user_folio(struct folio *folio, unsigned long npages)
{
gup_put_folio(folio, npages, FOLL_PIN);
}
EXPORT_SYMBOL(unpin_user_folio);
/**
* unpin_folios() - release an array of gup-pinned folios.
* @folios: array of folios to be marked dirty and released.