2008-09-23 08:35:38 -07:00
|
|
|
/*
|
|
|
|
* GPIOs on MPC8349/8572/8610 and compatible
|
|
|
|
*
|
|
|
|
* Copyright (C) 2008 Peter Korsgaard <jacmet@sunsite.dk>
|
|
|
|
*
|
|
|
|
* This file is licensed under the terms of the GNU General Public License
|
|
|
|
* version 2. This program is licensed "as is" without any warranty of any
|
|
|
|
* kind, whether express or implied.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <linux/io.h>
|
|
|
|
#include <linux/of.h>
|
|
|
|
#include <linux/of_gpio.h>
|
|
|
|
#include <linux/gpio.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 01:04:11 -07:00
|
|
|
#include <linux/slab.h>
|
2010-01-07 09:57:46 -07:00
|
|
|
#include <linux/irq.h>
|
2008-09-23 08:35:38 -07:00
|
|
|
|
|
|
|
#define MPC8XXX_GPIO_PINS 32
|
|
|
|
|
|
|
|
#define GPIO_DIR 0x00
|
|
|
|
#define GPIO_ODR 0x04
|
|
|
|
#define GPIO_DAT 0x08
|
|
|
|
#define GPIO_IER 0x0c
|
|
|
|
#define GPIO_IMR 0x10
|
|
|
|
#define GPIO_ICR 0x14
|
|
|
|
|
|
|
|
struct mpc8xxx_gpio_chip {
|
|
|
|
struct of_mm_gpio_chip mm_gc;
|
|
|
|
spinlock_t lock;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* shadowed data register to be able to clear/set output pins in
|
|
|
|
* open drain mode safely
|
|
|
|
*/
|
|
|
|
u32 data;
|
2010-01-07 09:57:46 -07:00
|
|
|
struct irq_host *irq;
|
2008-09-23 08:35:38 -07:00
|
|
|
};
|
|
|
|
|
|
|
|
static inline u32 mpc8xxx_gpio2mask(unsigned int gpio)
|
|
|
|
{
|
|
|
|
return 1u << (MPC8XXX_GPIO_PINS - 1 - gpio);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline struct mpc8xxx_gpio_chip *
|
|
|
|
to_mpc8xxx_gpio_chip(struct of_mm_gpio_chip *mm)
|
|
|
|
{
|
|
|
|
return container_of(mm, struct mpc8xxx_gpio_chip, mm_gc);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void mpc8xxx_gpio_save_regs(struct of_mm_gpio_chip *mm)
|
|
|
|
{
|
|
|
|
struct mpc8xxx_gpio_chip *mpc8xxx_gc = to_mpc8xxx_gpio_chip(mm);
|
|
|
|
|
|
|
|
mpc8xxx_gc->data = in_be32(mm->regs + GPIO_DAT);
|
|
|
|
}
|
|
|
|
|
2009-08-11 22:57:39 -07:00
|
|
|
/* Workaround GPIO 1 errata on MPC8572/MPC8536. The status of GPIOs
|
|
|
|
* defined as output cannot be determined by reading GPDAT register,
|
|
|
|
* so we use shadow data register instead. The status of input pins
|
|
|
|
* is determined by reading GPDAT register.
|
|
|
|
*/
|
|
|
|
static int mpc8572_gpio_get(struct gpio_chip *gc, unsigned int gpio)
|
|
|
|
{
|
|
|
|
u32 val;
|
|
|
|
struct of_mm_gpio_chip *mm = to_of_mm_gpio_chip(gc);
|
|
|
|
struct mpc8xxx_gpio_chip *mpc8xxx_gc = to_mpc8xxx_gpio_chip(mm);
|
|
|
|
|
|
|
|
val = in_be32(mm->regs + GPIO_DAT) & ~in_be32(mm->regs + GPIO_DIR);
|
|
|
|
|
|
|
|
return (val | mpc8xxx_gc->data) & mpc8xxx_gpio2mask(gpio);
|
|
|
|
}
|
|
|
|
|
2008-09-23 08:35:38 -07:00
|
|
|
static int mpc8xxx_gpio_get(struct gpio_chip *gc, unsigned int gpio)
|
|
|
|
{
|
|
|
|
struct of_mm_gpio_chip *mm = to_of_mm_gpio_chip(gc);
|
|
|
|
|
|
|
|
return in_be32(mm->regs + GPIO_DAT) & mpc8xxx_gpio2mask(gpio);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void mpc8xxx_gpio_set(struct gpio_chip *gc, unsigned int gpio, int val)
|
|
|
|
{
|
|
|
|
struct of_mm_gpio_chip *mm = to_of_mm_gpio_chip(gc);
|
|
|
|
struct mpc8xxx_gpio_chip *mpc8xxx_gc = to_mpc8xxx_gpio_chip(mm);
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&mpc8xxx_gc->lock, flags);
|
|
|
|
|
|
|
|
if (val)
|
|
|
|
mpc8xxx_gc->data |= mpc8xxx_gpio2mask(gpio);
|
|
|
|
else
|
|
|
|
mpc8xxx_gc->data &= ~mpc8xxx_gpio2mask(gpio);
|
|
|
|
|
|
|
|
out_be32(mm->regs + GPIO_DAT, mpc8xxx_gc->data);
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&mpc8xxx_gc->lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int mpc8xxx_gpio_dir_in(struct gpio_chip *gc, unsigned int gpio)
|
|
|
|
{
|
|
|
|
struct of_mm_gpio_chip *mm = to_of_mm_gpio_chip(gc);
|
|
|
|
struct mpc8xxx_gpio_chip *mpc8xxx_gc = to_mpc8xxx_gpio_chip(mm);
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&mpc8xxx_gc->lock, flags);
|
|
|
|
|
|
|
|
clrbits32(mm->regs + GPIO_DIR, mpc8xxx_gpio2mask(gpio));
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&mpc8xxx_gc->lock, flags);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int mpc8xxx_gpio_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
|
|
|
|
{
|
|
|
|
struct of_mm_gpio_chip *mm = to_of_mm_gpio_chip(gc);
|
|
|
|
struct mpc8xxx_gpio_chip *mpc8xxx_gc = to_mpc8xxx_gpio_chip(mm);
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
mpc8xxx_gpio_set(gc, gpio, val);
|
|
|
|
|
|
|
|
spin_lock_irqsave(&mpc8xxx_gc->lock, flags);
|
|
|
|
|
|
|
|
setbits32(mm->regs + GPIO_DIR, mpc8xxx_gpio2mask(gpio));
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&mpc8xxx_gc->lock, flags);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2010-01-07 09:57:46 -07:00
|
|
|
static int mpc8xxx_gpio_to_irq(struct gpio_chip *gc, unsigned offset)
|
|
|
|
{
|
|
|
|
struct of_mm_gpio_chip *mm = to_of_mm_gpio_chip(gc);
|
|
|
|
struct mpc8xxx_gpio_chip *mpc8xxx_gc = to_mpc8xxx_gpio_chip(mm);
|
|
|
|
|
|
|
|
if (mpc8xxx_gc->irq && offset < MPC8XXX_GPIO_PINS)
|
|
|
|
return irq_create_mapping(mpc8xxx_gc->irq, offset);
|
|
|
|
else
|
|
|
|
return -ENXIO;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void mpc8xxx_gpio_irq_cascade(unsigned int irq, struct irq_desc *desc)
|
|
|
|
{
|
|
|
|
struct mpc8xxx_gpio_chip *mpc8xxx_gc = get_irq_desc_data(desc);
|
|
|
|
struct of_mm_gpio_chip *mm = &mpc8xxx_gc->mm_gc;
|
|
|
|
unsigned int mask;
|
|
|
|
|
|
|
|
mask = in_be32(mm->regs + GPIO_IER) & in_be32(mm->regs + GPIO_IMR);
|
|
|
|
if (mask)
|
|
|
|
generic_handle_irq(irq_linear_revmap(mpc8xxx_gc->irq,
|
|
|
|
32 - ffs(mask)));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void mpc8xxx_irq_unmask(unsigned int virq)
|
|
|
|
{
|
|
|
|
struct mpc8xxx_gpio_chip *mpc8xxx_gc = get_irq_chip_data(virq);
|
|
|
|
struct of_mm_gpio_chip *mm = &mpc8xxx_gc->mm_gc;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&mpc8xxx_gc->lock, flags);
|
|
|
|
|
|
|
|
setbits32(mm->regs + GPIO_IMR, mpc8xxx_gpio2mask(virq_to_hw(virq)));
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&mpc8xxx_gc->lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void mpc8xxx_irq_mask(unsigned int virq)
|
|
|
|
{
|
|
|
|
struct mpc8xxx_gpio_chip *mpc8xxx_gc = get_irq_chip_data(virq);
|
|
|
|
struct of_mm_gpio_chip *mm = &mpc8xxx_gc->mm_gc;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&mpc8xxx_gc->lock, flags);
|
|
|
|
|
|
|
|
clrbits32(mm->regs + GPIO_IMR, mpc8xxx_gpio2mask(virq_to_hw(virq)));
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&mpc8xxx_gc->lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void mpc8xxx_irq_ack(unsigned int virq)
|
|
|
|
{
|
|
|
|
struct mpc8xxx_gpio_chip *mpc8xxx_gc = get_irq_chip_data(virq);
|
|
|
|
struct of_mm_gpio_chip *mm = &mpc8xxx_gc->mm_gc;
|
|
|
|
|
|
|
|
out_be32(mm->regs + GPIO_IER, mpc8xxx_gpio2mask(virq_to_hw(virq)));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int mpc8xxx_irq_set_type(unsigned int virq, unsigned int flow_type)
|
|
|
|
{
|
|
|
|
struct mpc8xxx_gpio_chip *mpc8xxx_gc = get_irq_chip_data(virq);
|
|
|
|
struct of_mm_gpio_chip *mm = &mpc8xxx_gc->mm_gc;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
switch (flow_type) {
|
|
|
|
case IRQ_TYPE_EDGE_FALLING:
|
|
|
|
spin_lock_irqsave(&mpc8xxx_gc->lock, flags);
|
|
|
|
setbits32(mm->regs + GPIO_ICR,
|
|
|
|
mpc8xxx_gpio2mask(virq_to_hw(virq)));
|
|
|
|
spin_unlock_irqrestore(&mpc8xxx_gc->lock, flags);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case IRQ_TYPE_EDGE_BOTH:
|
|
|
|
spin_lock_irqsave(&mpc8xxx_gc->lock, flags);
|
|
|
|
clrbits32(mm->regs + GPIO_ICR,
|
|
|
|
mpc8xxx_gpio2mask(virq_to_hw(virq)));
|
|
|
|
spin_unlock_irqrestore(&mpc8xxx_gc->lock, flags);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct irq_chip mpc8xxx_irq_chip = {
|
|
|
|
.name = "mpc8xxx-gpio",
|
|
|
|
.unmask = mpc8xxx_irq_unmask,
|
|
|
|
.mask = mpc8xxx_irq_mask,
|
|
|
|
.ack = mpc8xxx_irq_ack,
|
|
|
|
.set_type = mpc8xxx_irq_set_type,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int mpc8xxx_gpio_irq_map(struct irq_host *h, unsigned int virq,
|
|
|
|
irq_hw_number_t hw)
|
|
|
|
{
|
|
|
|
set_irq_chip_data(virq, h->host_data);
|
|
|
|
set_irq_chip_and_handler(virq, &mpc8xxx_irq_chip, handle_level_irq);
|
|
|
|
set_irq_type(virq, IRQ_TYPE_NONE);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int mpc8xxx_gpio_irq_xlate(struct irq_host *h, struct device_node *ct,
|
|
|
|
const u32 *intspec, unsigned int intsize,
|
|
|
|
irq_hw_number_t *out_hwirq,
|
|
|
|
unsigned int *out_flags)
|
|
|
|
|
|
|
|
{
|
|
|
|
/* interrupt sense values coming from the device tree equal either
|
|
|
|
* EDGE_FALLING or EDGE_BOTH
|
|
|
|
*/
|
|
|
|
*out_hwirq = intspec[0];
|
|
|
|
*out_flags = intspec[1];
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct irq_host_ops mpc8xxx_gpio_irq_ops = {
|
|
|
|
.map = mpc8xxx_gpio_irq_map,
|
|
|
|
.xlate = mpc8xxx_gpio_irq_xlate,
|
|
|
|
};
|
|
|
|
|
2008-09-23 08:35:38 -07:00
|
|
|
static void __init mpc8xxx_add_controller(struct device_node *np)
|
|
|
|
{
|
|
|
|
struct mpc8xxx_gpio_chip *mpc8xxx_gc;
|
|
|
|
struct of_mm_gpio_chip *mm_gc;
|
|
|
|
struct gpio_chip *gc;
|
2010-01-07 09:57:46 -07:00
|
|
|
unsigned hwirq;
|
2008-09-23 08:35:38 -07:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
mpc8xxx_gc = kzalloc(sizeof(*mpc8xxx_gc), GFP_KERNEL);
|
|
|
|
if (!mpc8xxx_gc) {
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_lock_init(&mpc8xxx_gc->lock);
|
|
|
|
|
|
|
|
mm_gc = &mpc8xxx_gc->mm_gc;
|
2010-06-08 06:48:16 -07:00
|
|
|
gc = &mm_gc->gc;
|
2008-09-23 08:35:38 -07:00
|
|
|
|
|
|
|
mm_gc->save_regs = mpc8xxx_gpio_save_regs;
|
|
|
|
gc->ngpio = MPC8XXX_GPIO_PINS;
|
|
|
|
gc->direction_input = mpc8xxx_gpio_dir_in;
|
|
|
|
gc->direction_output = mpc8xxx_gpio_dir_out;
|
2009-08-11 22:57:39 -07:00
|
|
|
if (of_device_is_compatible(np, "fsl,mpc8572-gpio"))
|
|
|
|
gc->get = mpc8572_gpio_get;
|
|
|
|
else
|
|
|
|
gc->get = mpc8xxx_gpio_get;
|
2008-09-23 08:35:38 -07:00
|
|
|
gc->set = mpc8xxx_gpio_set;
|
2010-01-07 09:57:46 -07:00
|
|
|
gc->to_irq = mpc8xxx_gpio_to_irq;
|
2008-09-23 08:35:38 -07:00
|
|
|
|
|
|
|
ret = of_mm_gpiochip_add(np, mm_gc);
|
|
|
|
if (ret)
|
|
|
|
goto err;
|
|
|
|
|
2010-01-07 09:57:46 -07:00
|
|
|
hwirq = irq_of_parse_and_map(np, 0);
|
|
|
|
if (hwirq == NO_IRQ)
|
|
|
|
goto skip_irq;
|
|
|
|
|
|
|
|
mpc8xxx_gc->irq =
|
|
|
|
irq_alloc_host(np, IRQ_HOST_MAP_LINEAR, MPC8XXX_GPIO_PINS,
|
|
|
|
&mpc8xxx_gpio_irq_ops, MPC8XXX_GPIO_PINS);
|
|
|
|
if (!mpc8xxx_gc->irq)
|
|
|
|
goto skip_irq;
|
|
|
|
|
|
|
|
mpc8xxx_gc->irq->host_data = mpc8xxx_gc;
|
|
|
|
|
|
|
|
/* ack and mask all irqs */
|
|
|
|
out_be32(mm_gc->regs + GPIO_IER, 0xffffffff);
|
|
|
|
out_be32(mm_gc->regs + GPIO_IMR, 0);
|
|
|
|
|
|
|
|
set_irq_data(hwirq, mpc8xxx_gc);
|
|
|
|
set_irq_chained_handler(hwirq, mpc8xxx_gpio_irq_cascade);
|
|
|
|
|
|
|
|
skip_irq:
|
2008-09-23 08:35:38 -07:00
|
|
|
return;
|
|
|
|
|
|
|
|
err:
|
|
|
|
pr_err("%s: registration failed with status %d\n",
|
|
|
|
np->full_name, ret);
|
|
|
|
kfree(mpc8xxx_gc);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __init mpc8xxx_add_gpiochips(void)
|
|
|
|
{
|
|
|
|
struct device_node *np;
|
|
|
|
|
|
|
|
for_each_compatible_node(np, NULL, "fsl,mpc8349-gpio")
|
|
|
|
mpc8xxx_add_controller(np);
|
|
|
|
|
|
|
|
for_each_compatible_node(np, NULL, "fsl,mpc8572-gpio")
|
|
|
|
mpc8xxx_add_controller(np);
|
|
|
|
|
|
|
|
for_each_compatible_node(np, NULL, "fsl,mpc8610-gpio")
|
|
|
|
mpc8xxx_add_controller(np);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
arch_initcall(mpc8xxx_add_gpiochips);
|