1
linux/arch/ppc/xmon/xmon.c

1781 lines
35 KiB
C
Raw Normal View History

/*
* Routines providing a simple monitor for use on the PowerMac.
*
* Copyright (C) 1996 Paul Mackerras.
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/kallsyms.h>
#include <asm/ptrace.h>
#include <asm/string.h>
#include <asm/machdep.h>
#include <asm/xmon.h>
#include "nonstdio.h"
#include "privinst.h"
#define scanhex xmon_scanhex
#define skipbl xmon_skipbl
#ifdef CONFIG_SMP
static unsigned long cpus_in_xmon = 0;
static unsigned long got_xmon = 0;
static volatile int take_xmon = -1;
#endif /* CONFIG_SMP */
static unsigned adrs;
static int size = 1;
static unsigned ndump = 64;
static unsigned nidump = 16;
static unsigned ncsum = 4096;
static int termch;
static u_int bus_error_jmp[100];
#define setjmp xmon_setjmp
#define longjmp xmon_longjmp
/* Breakpoint stuff */
struct bpt {
unsigned address;
unsigned instr;
unsigned count;
unsigned char enabled;
};
#define NBPTS 16
static struct bpt bpts[NBPTS];
static struct bpt dabr;
static struct bpt iabr;
static unsigned bpinstr = 0x7fe00008; /* trap */
/* Prototypes */
extern void (*debugger_fault_handler)(struct pt_regs *);
static int cmds(struct pt_regs *);
static int mread(unsigned, void *, int);
static int mwrite(unsigned, void *, int);
static void handle_fault(struct pt_regs *);
static void byterev(unsigned char *, int);
static void memex(void);
static int bsesc(void);
static void dump(void);
static void prdump(unsigned, int);
#ifdef __MWERKS__
static void prndump(unsigned, int);
static int nvreadb(unsigned);
#endif
static int ppc_inst_dump(unsigned, int);
void print_address(unsigned);
static int getsp(void);
static void dump_hash_table(void);
static void backtrace(struct pt_regs *);
static void excprint(struct pt_regs *);
static void prregs(struct pt_regs *);
static void memops(int);
static void memlocate(void);
static void memzcan(void);
static void memdiffs(unsigned char *, unsigned char *, unsigned, unsigned);
int skipbl(void);
int scanhex(unsigned *valp);
static void scannl(void);
static int hexdigit(int);
void getstring(char *, int);
static void flush_input(void);
static int inchar(void);
static void take_input(char *);
/* static void openforth(void); */
static unsigned read_spr(int);
static void write_spr(int, unsigned);
static void super_regs(void);
static void symbol_lookup(void);
static void remove_bpts(void);
static void insert_bpts(void);
static struct bpt *at_breakpoint(unsigned pc);
static void bpt_cmds(void);
[PATCH] scheduler cache-hot-autodetect ) From: Ingo Molnar <mingo@elte.hu> This is the latest version of the scheduler cache-hot-auto-tune patch. The first problem was that detection time scaled with O(N^2), which is unacceptable on larger SMP and NUMA systems. To solve this: - I've added a 'domain distance' function, which is used to cache measurement results. Each distance is only measured once. This means that e.g. on NUMA distances of 0, 1 and 2 might be measured, on HT distances 0 and 1, and on SMP distance 0 is measured. The code walks the domain tree to determine the distance, so it automatically follows whatever hierarchy an architecture sets up. This cuts down on the boot time significantly and removes the O(N^2) limit. The only assumption is that migration costs can be expressed as a function of domain distance - this covers the overwhelming majority of existing systems, and is a good guess even for more assymetric systems. [ People hacking systems that have assymetries that break this assumption (e.g. different CPU speeds) should experiment a bit with the cpu_distance() function. Adding a ->migration_distance factor to the domain structure would be one possible solution - but lets first see the problem systems, if they exist at all. Lets not overdesign. ] Another problem was that only a single cache-size was used for measuring the cost of migration, and most architectures didnt set that variable up. Furthermore, a single cache-size does not fit NUMA hierarchies with L3 caches and does not fit HT setups, where different CPUs will often have different 'effective cache sizes'. To solve this problem: - Instead of relying on a single cache-size provided by the platform and sticking to it, the code now auto-detects the 'effective migration cost' between two measured CPUs, via iterating through a wide range of cachesizes. The code searches for the maximum migration cost, which occurs when the working set of the test-workload falls just below the 'effective cache size'. I.e. real-life optimized search is done for the maximum migration cost, between two real CPUs. This, amongst other things, has the positive effect hat if e.g. two CPUs share a L2/L3 cache, a different (and accurate) migration cost will be found than between two CPUs on the same system that dont share any caches. (The reliable measurement of migration costs is tricky - see the source for details.) Furthermore i've added various boot-time options to override/tune migration behavior. Firstly, there's a blanket override for autodetection: migration_cost=1000,2000,3000 will override the depth 0/1/2 values with 1msec/2msec/3msec values. Secondly, there's a global factor that can be used to increase (or decrease) the autodetected values: migration_factor=120 will increase the autodetected values by 20%. This option is useful to tune things in a workload-dependent way - e.g. if a workload is cache-insensitive then CPU utilization can be maximized by specifying migration_factor=0. I've tested the autodetection code quite extensively on x86, on 3 P3/Xeon/2MB, and the autodetected values look pretty good: Dual Celeron (128K L2 cache): --------------------- migration cost matrix (max_cache_size: 131072, cpu: 467 MHz): --------------------- [00] [01] [00]: - 1.7(1) [01]: 1.7(1) - --------------------- cacheflush times [2]: 0.0 (0) 1.7 (1784008) --------------------- Here the slow memory subsystem dominates system performance, and even though caches are small, the migration cost is 1.7 msecs. Dual HT P4 (512K L2 cache): --------------------- migration cost matrix (max_cache_size: 524288, cpu: 2379 MHz): --------------------- [00] [01] [02] [03] [00]: - 0.4(1) 0.0(0) 0.4(1) [01]: 0.4(1) - 0.4(1) 0.0(0) [02]: 0.0(0) 0.4(1) - 0.4(1) [03]: 0.4(1) 0.0(0) 0.4(1) - --------------------- cacheflush times [2]: 0.0 (33900) 0.4 (448514) --------------------- Here it can be seen that there is no migration cost between two HT siblings (CPU#0/2 and CPU#1/3 are separate physical CPUs). A fast memory system makes inter-physical-CPU migration pretty cheap: 0.4 msecs. 8-way P3/Xeon [2MB L2 cache]: --------------------- migration cost matrix (max_cache_size: 2097152, cpu: 700 MHz): --------------------- [00] [01] [02] [03] [04] [05] [06] [07] [00]: - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) [01]: 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) [02]: 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) [03]: 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1) [04]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1) [05]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1) [06]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1) [07]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) - --------------------- cacheflush times [2]: 0.0 (0) 19.2 (19281756) --------------------- This one has huge caches and a relatively slow memory subsystem - so the migration cost is 19 msecs. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Ashok Raj <ashok.raj@intel.com> Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Cc: <wilder@us.ibm.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-12 02:05:30 -07:00
void cacheflush(void);
#ifdef CONFIG_SMP
static void cpu_cmd(void);
#endif /* CONFIG_SMP */
static void csum(void);
static void bootcmds(void);
static void proccall(void);
static void printtime(void);
extern int print_insn_big_powerpc(FILE *, unsigned long, unsigned);
extern void printf(const char *fmt, ...);
extern int putchar(int ch);
extern int setjmp(u_int *);
extern void longjmp(u_int *, int);
extern void xmon_enter(void);
extern void xmon_leave(void);
static unsigned start_tb[NR_CPUS][2];
static unsigned stop_tb[NR_CPUS][2];
#define GETWORD(v) (((v)[0] << 24) + ((v)[1] << 16) + ((v)[2] << 8) + (v)[3])
#define isxdigit(c) (('0' <= (c) && (c) <= '9') \
|| ('a' <= (c) && (c) <= 'f') \
|| ('A' <= (c) && (c) <= 'F'))
#define isalnum(c) (('0' <= (c) && (c) <= '9') \
|| ('a' <= (c) && (c) <= 'z') \
|| ('A' <= (c) && (c) <= 'Z'))
#define isspace(c) (c == ' ' || c == '\t' || c == 10 || c == 13 || c == 0)
static char *help_string = "\
Commands:\n\
d dump bytes\n\
di dump instructions\n\
df dump float values\n\
dd dump double values\n\
e print exception information\n\
h dump hash table\n\
m examine/change memory\n\
mm move a block of memory\n\
ms set a block of memory\n\
md compare two blocks of memory\n\
r print registers\n\
S print special registers\n\
t print backtrace\n\
la lookup address\n\
ls lookup symbol\n\
C checksum\n\
p call function with arguments\n\
T print time\n\
x exit monitor\n\
zr reboot\n\
zh halt\n\
";
static int xmon_trace[NR_CPUS];
#define SSTEP 1 /* stepping because of 's' command */
#define BRSTEP 2 /* stepping over breakpoint */
#ifdef CONFIG_4xx
#define MSR_SSTEP_ENABLE 0x200
#else
#define MSR_SSTEP_ENABLE 0x400
#endif
static struct pt_regs *xmon_regs[NR_CPUS];
extern inline void sync(void)
{
asm volatile("sync; isync");
}
extern inline void __delay(unsigned int loops)
{
if (loops != 0)
__asm__ __volatile__("mtctr %0; 1: bdnz 1b" : :
"r" (loops) : "ctr");
}
/* Print an address in numeric and symbolic form (if possible) */
static void xmon_print_symbol(unsigned long address, const char *mid,
const char *after)
{
char *modname;
const char *name = NULL;
unsigned long offset, size;
static char tmpstr[128];
printf("%.8lx", address);
if (setjmp(bus_error_jmp) == 0) {
debugger_fault_handler = handle_fault;
sync();
name = kallsyms_lookup(address, &size, &offset, &modname,
tmpstr);
sync();
/* wait a little while to see if we get a machine check */
__delay(200);
}
debugger_fault_handler = NULL;
if (name) {
printf("%s%s+%#lx/%#lx", mid, name, offset, size);
if (modname)
printf(" [%s]", modname);
}
printf("%s", after);
}
static void get_tb(unsigned *p)
{
unsigned hi, lo, hiagain;
if ((get_pvr() >> 16) == 1)
return;
do {
asm volatile("mftbu %0; mftb %1; mftbu %2"
: "=r" (hi), "=r" (lo), "=r" (hiagain));
} while (hi != hiagain);
p[0] = hi;
p[1] = lo;
}
static inline void xmon_enable_sstep(struct pt_regs *regs)
{
regs->msr |= MSR_SSTEP_ENABLE;
#ifdef CONFIG_4xx
mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) | DBCR0_IC | DBCR0_IDM);
#endif
}
int xmon(struct pt_regs *excp)
{
struct pt_regs regs;
int msr, cmd;
get_tb(stop_tb[smp_processor_id()]);
if (excp == NULL) {
asm volatile ("stw 0,0(%0)\n\
lwz 0,0(1)\n\
stw 0,4(%0)\n\
stmw 2,8(%0)" : : "b" (&regs));
regs.nip = regs.link = ((unsigned long *)regs.gpr[1])[1];
regs.msr = get_msr();
regs.ctr = get_ctr();
regs.xer = get_xer();
regs.ccr = get_cr();
regs.trap = 0;
excp = &regs;
}
msr = get_msr();
set_msr(msr & ~0x8000); /* disable interrupts */
xmon_regs[smp_processor_id()] = excp;
xmon_enter();
excprint(excp);
#ifdef CONFIG_SMP
if (test_and_set_bit(smp_processor_id(), &cpus_in_xmon))
for (;;)
;
while (test_and_set_bit(0, &got_xmon)) {
if (take_xmon == smp_processor_id()) {
take_xmon = -1;
break;
}
}
/*
* XXX: breakpoints are removed while any cpu is in xmon
*/
#endif /* CONFIG_SMP */
remove_bpts();
cmd = cmds(excp);
if (cmd == 's') {
xmon_trace[smp_processor_id()] = SSTEP;
xmon_enable_sstep(excp);
} else if (at_breakpoint(excp->nip)) {
xmon_trace[smp_processor_id()] = BRSTEP;
xmon_enable_sstep(excp);
} else {
xmon_trace[smp_processor_id()] = 0;
insert_bpts();
}
xmon_leave();
xmon_regs[smp_processor_id()] = NULL;
#ifdef CONFIG_SMP
clear_bit(0, &got_xmon);
clear_bit(smp_processor_id(), &cpus_in_xmon);
#endif /* CONFIG_SMP */
set_msr(msr); /* restore interrupt enable */
get_tb(start_tb[smp_processor_id()]);
return cmd != 'X';
}
irqreturn_t
xmon_irq(int irq, void *d, struct pt_regs *regs)
{
unsigned long flags;
local_irq_save(flags);
printf("Keyboard interrupt\n");
xmon(regs);
local_irq_restore(flags);
return IRQ_HANDLED;
}
int
xmon_bpt(struct pt_regs *regs)
{
struct bpt *bp;
bp = at_breakpoint(regs->nip);
if (!bp)
return 0;
if (bp->count) {
--bp->count;
remove_bpts();
excprint(regs);
xmon_trace[smp_processor_id()] = BRSTEP;
xmon_enable_sstep(regs);
} else {
xmon(regs);
}
return 1;
}
int
xmon_sstep(struct pt_regs *regs)
{
if (!xmon_trace[smp_processor_id()])
return 0;
if (xmon_trace[smp_processor_id()] == BRSTEP) {
xmon_trace[smp_processor_id()] = 0;
insert_bpts();
} else {
xmon(regs);
}
return 1;
}
int
xmon_dabr_match(struct pt_regs *regs)
{
if (dabr.enabled && dabr.count) {
--dabr.count;
remove_bpts();
excprint(regs);
xmon_trace[smp_processor_id()] = BRSTEP;
regs->msr |= 0x400;
} else {
dabr.instr = regs->nip;
xmon(regs);
}
return 1;
}
int
xmon_iabr_match(struct pt_regs *regs)
{
if (iabr.enabled && iabr.count) {
--iabr.count;
remove_bpts();
excprint(regs);
xmon_trace[smp_processor_id()] = BRSTEP;
regs->msr |= 0x400;
} else {
xmon(regs);
}
return 1;
}
static struct bpt *
at_breakpoint(unsigned pc)
{
int i;
struct bpt *bp;
if (dabr.enabled && pc == dabr.instr)
return &dabr;
if (iabr.enabled && pc == iabr.address)
return &iabr;
bp = bpts;
for (i = 0; i < NBPTS; ++i, ++bp)
if (bp->enabled && pc == bp->address)
return bp;
return NULL;
}
static void
insert_bpts(void)
{
int i;
struct bpt *bp;
bp = bpts;
for (i = 0; i < NBPTS; ++i, ++bp) {
if (!bp->enabled)
continue;
if (mread(bp->address, &bp->instr, 4) != 4
|| mwrite(bp->address, &bpinstr, 4) != 4) {
printf("Couldn't insert breakpoint at %x, disabling\n",
bp->address);
bp->enabled = 0;
}
store_inst((void *) bp->address);
}
#if ! (defined(CONFIG_8xx) || defined(CONFIG_4xx))
if (dabr.enabled)
set_dabr(dabr.address);
if (iabr.enabled)
set_iabr(iabr.address);
#endif
}
static void
remove_bpts(void)
{
int i;
struct bpt *bp;
unsigned instr;
#if ! (defined(CONFIG_8xx) || defined(CONFIG_4xx))
set_dabr(0);
set_iabr(0);
#endif
bp = bpts;
for (i = 0; i < NBPTS; ++i, ++bp) {
if (!bp->enabled)
continue;
if (mread(bp->address, &instr, 4) == 4
&& instr == bpinstr
&& mwrite(bp->address, &bp->instr, 4) != 4)
printf("Couldn't remove breakpoint at %x\n",
bp->address);
store_inst((void *) bp->address);
}
}
static char *last_cmd;
/* Command interpreting routine */
static int
cmds(struct pt_regs *excp)
{
int cmd;
last_cmd = NULL;
for(;;) {
#ifdef CONFIG_SMP
printf("%d:", smp_processor_id());
#endif /* CONFIG_SMP */
printf("mon> ");
fflush(stdout);
flush_input();
termch = 0;
cmd = skipbl();
if( cmd == '\n' ) {
if (last_cmd == NULL)
continue;
take_input(last_cmd);
last_cmd = NULL;
cmd = inchar();
}
switch (cmd) {
case 'm':
cmd = inchar();
switch (cmd) {
case 'm':
case 's':
case 'd':
memops(cmd);
break;
case 'l':
memlocate();
break;
case 'z':
memzcan();
break;
default:
termch = cmd;
memex();
}
break;
case 'd':
dump();
break;
case 'l':
symbol_lookup();
break;
case 'r':
if (excp != NULL)
prregs(excp); /* print regs */
break;
case 'e':
if (excp == NULL)
printf("No exception information\n");
else
excprint(excp);
break;
case 'S':
super_regs();
break;
case 't':
backtrace(excp);
break;
case 'f':
cacheflush();
break;
case 'h':
dump_hash_table();
break;
case 's':
case 'x':
case EOF:
return cmd;
case '?':
printf(help_string);
break;
default:
printf("Unrecognized command: ");
if( ' ' < cmd && cmd <= '~' )
putchar(cmd);
else
printf("\\x%x", cmd);
printf(" (type ? for help)\n");
break;
case 'b':
bpt_cmds();
break;
case 'C':
csum();
break;
#ifdef CONFIG_SMP
case 'c':
cpu_cmd();
break;
#endif /* CONFIG_SMP */
case 'z':
bootcmds();
break;
case 'p':
proccall();
break;
case 'T':
printtime();
break;
}
}
}
extern unsigned tb_to_us;
#define mulhwu(x,y) \
({unsigned z; asm ("mulhwu %0,%1,%2" : "=r" (z) : "r" (x), "r" (y)); z;})
static void printtime(void)
{
unsigned int delta;
delta = stop_tb[smp_processor_id()][1]
- start_tb[smp_processor_id()][1];
delta = mulhwu(tb_to_us, delta);
printf("%u.%06u seconds\n", delta / 1000000, delta % 1000000);
}
static void bootcmds(void)
{
int cmd;
cmd = inchar();
if (cmd == 'r')
ppc_md.restart(NULL);
else if (cmd == 'h')
ppc_md.halt();
else if (cmd == 'p')
ppc_md.power_off();
}
#ifdef CONFIG_SMP
static void cpu_cmd(void)
{
unsigned cpu;
int timeout;
int cmd;
cmd = inchar();
if (cmd == 'i') {
/* interrupt other cpu(s) */
cpu = MSG_ALL_BUT_SELF;
if (scanhex(&cpu))
smp_send_xmon_break(cpu);
return;
}
termch = cmd;
if (!scanhex(&cpu)) {
/* print cpus waiting or in xmon */
printf("cpus stopped:");
for (cpu = 0; cpu < NR_CPUS; ++cpu) {
if (test_bit(cpu, &cpus_in_xmon)) {
printf(" %d", cpu);
if (cpu == smp_processor_id())
printf("*", cpu);
}
}
printf("\n");
return;
}
/* try to switch to cpu specified */
take_xmon = cpu;
timeout = 10000000;
while (take_xmon >= 0) {
if (--timeout == 0) {
/* yes there's a race here */
take_xmon = -1;
printf("cpu %u didn't take control\n", cpu);
return;
}
}
/* now have to wait to be given control back */
while (test_and_set_bit(0, &got_xmon)) {
if (take_xmon == smp_processor_id()) {
take_xmon = -1;
break;
}
}
}
#endif /* CONFIG_SMP */
static unsigned short fcstab[256] = {
0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
};
#define FCS(fcs, c) (((fcs) >> 8) ^ fcstab[((fcs) ^ (c)) & 0xff])
static void
csum(void)
{
unsigned int i;
unsigned short fcs;
unsigned char v;
if (!scanhex(&adrs))
return;
if (!scanhex(&ncsum))
return;
fcs = 0xffff;
for (i = 0; i < ncsum; ++i) {
if (mread(adrs+i, &v, 1) == 0) {
printf("csum stopped at %x\n", adrs+i);
break;
}
fcs = FCS(fcs, v);
}
printf("%x\n", fcs);
}
static void
bpt_cmds(void)
{
int cmd;
unsigned a;
int mode, i;
struct bpt *bp;
cmd = inchar();
switch (cmd) {
#if ! (defined(CONFIG_8xx) || defined(CONFIG_4xx))
case 'd':
mode = 7;
cmd = inchar();
if (cmd == 'r')
mode = 5;
else if (cmd == 'w')
mode = 6;
else
termch = cmd;
cmd = inchar();
if (cmd == 'p')
mode &= ~4;
else
termch = cmd;
dabr.address = 0;
dabr.count = 0;
dabr.enabled = scanhex(&dabr.address);
scanhex(&dabr.count);
if (dabr.enabled)
dabr.address = (dabr.address & ~7) | mode;
break;
case 'i':
cmd = inchar();
if (cmd == 'p')
mode = 2;
else
mode = 3;
iabr.address = 0;
iabr.count = 0;
iabr.enabled = scanhex(&iabr.address);
if (iabr.enabled)
iabr.address |= mode;
scanhex(&iabr.count);
break;
#endif
case 'c':
if (!scanhex(&a)) {
/* clear all breakpoints */
for (i = 0; i < NBPTS; ++i)
bpts[i].enabled = 0;
iabr.enabled = 0;
dabr.enabled = 0;
printf("All breakpoints cleared\n");
} else {
bp = at_breakpoint(a);
if (bp == 0) {
printf("No breakpoint at %x\n", a);
} else {
bp->enabled = 0;
}
}
break;
default:
termch = cmd;
if (!scanhex(&a)) {
/* print all breakpoints */
printf("type address count\n");
if (dabr.enabled) {
printf("data %.8x %8x [", dabr.address & ~7,
dabr.count);
if (dabr.address & 1)
printf("r");
if (dabr.address & 2)
printf("w");
if (!(dabr.address & 4))
printf("p");
printf("]\n");
}
if (iabr.enabled)
printf("inst %.8x %8x\n", iabr.address & ~3,
iabr.count);
for (bp = bpts; bp < &bpts[NBPTS]; ++bp)
if (bp->enabled)
printf("trap %.8x %8x\n", bp->address,
bp->count);
break;
}
bp = at_breakpoint(a);
if (bp == 0) {
for (bp = bpts; bp < &bpts[NBPTS]; ++bp)
if (!bp->enabled)
break;
if (bp >= &bpts[NBPTS]) {
printf("Sorry, no free breakpoints\n");
break;
}
}
bp->enabled = 1;
bp->address = a;
bp->count = 0;
scanhex(&bp->count);
break;
}
}
static void
backtrace(struct pt_regs *excp)
{
unsigned sp;
unsigned stack[2];
struct pt_regs regs;
extern char ret_from_except, ret_from_except_full, ret_from_syscall;
printf("backtrace:\n");
if (excp != NULL)
sp = excp->gpr[1];
else
sp = getsp();
scanhex(&sp);
scannl();
for (; sp != 0; sp = stack[0]) {
if (mread(sp, stack, sizeof(stack)) != sizeof(stack))
break;
printf("[%.8lx] ", stack[0]);
xmon_print_symbol(stack[1], " ", "\n");
if (stack[1] == (unsigned) &ret_from_except
|| stack[1] == (unsigned) &ret_from_except_full
|| stack[1] == (unsigned) &ret_from_syscall) {
if (mread(sp+16, &regs, sizeof(regs)) != sizeof(regs))
break;
printf("exception:%x [%x] %x\n", regs.trap, sp+16,
regs.nip);
sp = regs.gpr[1];
if (mread(sp, stack, sizeof(stack)) != sizeof(stack))
break;
}
}
}
int
getsp(void)
{
int x;
asm("mr %0,1" : "=r" (x) :);
return x;
}
void
excprint(struct pt_regs *fp)
{
int trap;
#ifdef CONFIG_SMP
printf("cpu %d: ", smp_processor_id());
#endif /* CONFIG_SMP */
printf("vector: %x at pc=", fp->trap);
xmon_print_symbol(fp->nip, ": ", ", lr=");
xmon_print_symbol(fp->link, ": ", "\n");
printf("msr = %x, sp = %x [%x]\n", fp->msr, fp->gpr[1], fp);
trap = TRAP(fp);
if (trap == 0x300 || trap == 0x600)
printf("dar = %x, dsisr = %x\n", fp->dar, fp->dsisr);
if (current)
printf("current = %x, pid = %d, comm = %s\n",
current, current->pid, current->comm);
}
void
prregs(struct pt_regs *fp)
{
int n;
unsigned base;
if (scanhex(&base))
fp = (struct pt_regs *) base;
for (n = 0; n < 32; ++n) {
printf("R%.2d = %.8x%s", n, fp->gpr[n],
(n & 3) == 3? "\n": " ");
if (n == 12 && !FULL_REGS(fp)) {
printf("\n");
break;
}
}
printf("pc = %.8x msr = %.8x lr = %.8x cr = %.8x\n",
fp->nip, fp->msr, fp->link, fp->ccr);
printf("ctr = %.8x xer = %.8x trap = %4x\n",
fp->ctr, fp->xer, fp->trap);
}
void
cacheflush(void)
{
int cmd;
unsigned nflush;
cmd = inchar();
if (cmd != 'i')
termch = cmd;
scanhex(&adrs);
if (termch != '\n')
termch = 0;
nflush = 1;
scanhex(&nflush);
nflush = (nflush + 31) / 32;
if (cmd != 'i') {
for (; nflush > 0; --nflush, adrs += 0x20)
cflush((void *) adrs);
} else {
for (; nflush > 0; --nflush, adrs += 0x20)
cinval((void *) adrs);
}
}
unsigned int
read_spr(int n)
{
unsigned int instrs[2];
int (*code)(void);
instrs[0] = 0x7c6002a6 + ((n & 0x1F) << 16) + ((n & 0x3e0) << 6);
instrs[1] = 0x4e800020;
store_inst(instrs);
store_inst(instrs+1);
code = (int (*)(void)) instrs;
return code();
}
void
write_spr(int n, unsigned int val)
{
unsigned int instrs[2];
int (*code)(unsigned int);
instrs[0] = 0x7c6003a6 + ((n & 0x1F) << 16) + ((n & 0x3e0) << 6);
instrs[1] = 0x4e800020;
store_inst(instrs);
store_inst(instrs+1);
code = (int (*)(unsigned int)) instrs;
code(val);
}
static unsigned int regno;
extern char exc_prolog;
extern char dec_exc;
void
super_regs(void)
{
int i, cmd;
unsigned val;
cmd = skipbl();
if (cmd == '\n') {
printf("msr = %x, pvr = %x\n", get_msr(), get_pvr());
printf("sprg0-3 = %x %x %x %x\n", get_sprg0(), get_sprg1(),
get_sprg2(), get_sprg3());
printf("srr0 = %x, srr1 = %x\n", get_srr0(), get_srr1());
#ifdef CONFIG_PPC_STD_MMU
printf("sr0-15 =");
for (i = 0; i < 16; ++i)
printf(" %x", get_sr(i));
printf("\n");
#endif
asm("mr %0,1" : "=r" (i) :);
printf("sp = %x ", i);
asm("mr %0,2" : "=r" (i) :);
printf("toc = %x\n", i);
return;
}
scanhex(&regno);
switch (cmd) {
case 'w':
val = read_spr(regno);
scanhex(&val);
write_spr(regno, val);
/* fall through */
case 'r':
printf("spr %x = %x\n", regno, read_spr(regno));
break;
case 's':
val = get_sr(regno);
scanhex(&val);
set_sr(regno, val);
break;
case 'm':
val = get_msr();
scanhex(&val);
set_msr(val);
break;
}
scannl();
}
#ifndef CONFIG_PPC_STD_MMU
static void
dump_hash_table(void)
{
printf("This CPU doesn't have a hash table.\n");
}
#else
static void
dump_hash_table_seg(unsigned seg, unsigned start, unsigned end)
{
extern void *Hash;
extern unsigned long Hash_size;
unsigned *htab = Hash;
unsigned hsize = Hash_size;
unsigned v, hmask, va, last_va = 0;
int found, last_found, i;
unsigned *hg, w1, last_w2 = 0, last_va0 = 0;
last_found = 0;
hmask = hsize / 64 - 1;
va = start;
start = (start >> 12) & 0xffff;
end = (end >> 12) & 0xffff;
for (v = start; v < end; ++v) {
found = 0;
hg = htab + (((v ^ seg) & hmask) * 16);
w1 = 0x80000000 | (seg << 7) | (v >> 10);
for (i = 0; i < 8; ++i, hg += 2) {
if (*hg == w1) {
found = 1;
break;
}
}
if (!found) {
w1 ^= 0x40;
hg = htab + ((~(v ^ seg) & hmask) * 16);
for (i = 0; i < 8; ++i, hg += 2) {
if (*hg == w1) {
found = 1;
break;
}
}
}
if (!(last_found && found && (hg[1] & ~0x180) == last_w2 + 4096)) {
if (last_found) {
if (last_va != last_va0)
printf(" ... %x", last_va);
printf("\n");
}
if (found) {
printf("%x to %x", va, hg[1]);
last_va0 = va;
}
last_found = found;
}
if (found) {
last_w2 = hg[1] & ~0x180;
last_va = va;
}
va += 4096;
}
if (last_found)
printf(" ... %x\n", last_va);
}
static unsigned hash_ctx;
static unsigned hash_start;
static unsigned hash_end;
static void
dump_hash_table(void)
{
int seg;
unsigned seg_start, seg_end;
hash_ctx = 0;
hash_start = 0;
hash_end = 0xfffff000;
scanhex(&hash_ctx);
scanhex(&hash_start);
scanhex(&hash_end);
printf("Mappings for context %x\n", hash_ctx);
seg_start = hash_start;
for (seg = hash_start >> 28; seg <= hash_end >> 28; ++seg) {
seg_end = (seg << 28) | 0x0ffff000;
if (seg_end > hash_end)
seg_end = hash_end;
dump_hash_table_seg((hash_ctx << 4) + (seg * 0x111),
seg_start, seg_end);
seg_start = seg_end + 0x1000;
}
}
#endif /* CONFIG_PPC_STD_MMU */
/*
* Stuff for reading and writing memory safely
*/
int
mread(unsigned adrs, void *buf, int size)
{
volatile int n;
char *p, *q;
n = 0;
if( setjmp(bus_error_jmp) == 0 ){
debugger_fault_handler = handle_fault;
sync();
p = (char *) adrs;
q = (char *) buf;
switch (size) {
case 2: *(short *)q = *(short *)p; break;
case 4: *(int *)q = *(int *)p; break;
default:
for( ; n < size; ++n ) {
*q++ = *p++;
sync();
}
}
sync();
/* wait a little while to see if we get a machine check */
__delay(200);
n = size;
}
debugger_fault_handler = NULL;
return n;
}
int
mwrite(unsigned adrs, void *buf, int size)
{
volatile int n;
char *p, *q;
n = 0;
if( setjmp(bus_error_jmp) == 0 ){
debugger_fault_handler = handle_fault;
sync();
p = (char *) adrs;
q = (char *) buf;
switch (size) {
case 2: *(short *)p = *(short *)q; break;
case 4: *(int *)p = *(int *)q; break;
default:
for( ; n < size; ++n ) {
*p++ = *q++;
sync();
}
}
sync();
n = size;
} else {
printf("*** Error writing address %x\n", adrs + n);
}
debugger_fault_handler = NULL;
return n;
}
static int fault_type;
static int fault_except;
static char *fault_chars[] = { "--", "**", "##" };
static void
handle_fault(struct pt_regs *regs)
{
fault_except = TRAP(regs);
fault_type = TRAP(regs) == 0x200? 0: TRAP(regs) == 0x300? 1: 2;
longjmp(bus_error_jmp, 1);
}
#define SWAP(a, b, t) ((t) = (a), (a) = (b), (b) = (t))
void
byterev(unsigned char *val, int size)
{
int t;
switch (size) {
case 2:
SWAP(val[0], val[1], t);
break;
case 4:
SWAP(val[0], val[3], t);
SWAP(val[1], val[2], t);
break;
}
}
static int brev;
static int mnoread;
void
memex(void)
{
int cmd, inc, i, nslash;
unsigned n;
unsigned char val[4];
last_cmd = "m\n";
scanhex(&adrs);
while ((cmd = skipbl()) != '\n') {
switch( cmd ){
case 'b': size = 1; break;
case 'w': size = 2; break;
case 'l': size = 4; break;
case 'r': brev = !brev; break;
case 'n': mnoread = 1; break;
case '.': mnoread = 0; break;
}
}
if( size <= 0 )
size = 1;
else if( size > 4 )
size = 4;
for(;;){
if (!mnoread)
n = mread(adrs, val, size);
printf("%.8x%c", adrs, brev? 'r': ' ');
if (!mnoread) {
if (brev)
byterev(val, size);
putchar(' ');
for (i = 0; i < n; ++i)
printf("%.2x", val[i]);
for (; i < size; ++i)
printf("%s", fault_chars[fault_type]);
}
putchar(' ');
inc = size;
nslash = 0;
for(;;){
if( scanhex(&n) ){
for (i = 0; i < size; ++i)
val[i] = n >> (i * 8);
if (!brev)
byterev(val, size);
mwrite(adrs, val, size);
inc = size;
}
cmd = skipbl();
if (cmd == '\n')
break;
inc = 0;
switch (cmd) {
case '\'':
for(;;){
n = inchar();
if( n == '\\' )
n = bsesc();
else if( n == '\'' )
break;
for (i = 0; i < size; ++i)
val[i] = n >> (i * 8);
if (!brev)
byterev(val, size);
mwrite(adrs, val, size);
adrs += size;
}
adrs -= size;
inc = size;
break;
case ',':
adrs += size;
break;
case '.':
mnoread = 0;
break;
case ';':
break;
case 'x':
case EOF:
scannl();
return;
case 'b':
case 'v':
size = 1;
break;
case 'w':
size = 2;
break;
case 'l':
size = 4;
break;
case '^':
adrs -= size;
break;
break;
case '/':
if (nslash > 0)
adrs -= 1 << nslash;
else
nslash = 0;
nslash += 4;
adrs += 1 << nslash;
break;
case '\\':
if (nslash < 0)
adrs += 1 << -nslash;
else
nslash = 0;
nslash -= 4;
adrs -= 1 << -nslash;
break;
case 'm':
scanhex(&adrs);
break;
case 'n':
mnoread = 1;
break;
case 'r':
brev = !brev;
break;
case '<':
n = size;
scanhex(&n);
adrs -= n;
break;
case '>':
n = size;
scanhex(&n);
adrs += n;
break;
}
}
adrs += inc;
}
}
int
bsesc(void)
{
int c;
c = inchar();
switch( c ){
case 'n': c = '\n'; break;
case 'r': c = '\r'; break;
case 'b': c = '\b'; break;
case 't': c = '\t'; break;
}
return c;
}
void
dump(void)
{
int c;
c = inchar();
if ((isxdigit(c) && c != 'f' && c != 'd') || c == '\n')
termch = c;
scanhex(&adrs);
if( termch != '\n')
termch = 0;
if( c == 'i' ){
scanhex(&nidump);
if( nidump == 0 )
nidump = 16;
adrs += ppc_inst_dump(adrs, nidump);
last_cmd = "di\n";
} else {
scanhex(&ndump);
if( ndump == 0 )
ndump = 64;
prdump(adrs, ndump);
adrs += ndump;
last_cmd = "d\n";
}
}
void
prdump(unsigned adrs, int ndump)
{
register int n, m, c, r, nr;
unsigned char temp[16];
for( n = ndump; n > 0; ){
printf("%.8x", adrs);
putchar(' ');
r = n < 16? n: 16;
nr = mread(adrs, temp, r);
adrs += nr;
for( m = 0; m < r; ++m ){
putchar((m & 3) == 0 && m > 0? '.': ' ');
if( m < nr )
printf("%.2x", temp[m]);
else
printf("%s", fault_chars[fault_type]);
}
for(; m < 16; ++m )
printf(" ");
printf(" |");
for( m = 0; m < r; ++m ){
if( m < nr ){
c = temp[m];
putchar(' ' <= c && c <= '~'? c: '.');
} else
putchar(' ');
}
n -= r;
for(; m < 16; ++m )
putchar(' ');
printf("|\n");
if( nr < r )
break;
}
}
int
ppc_inst_dump(unsigned adr, int count)
{
int nr, dotted;
unsigned first_adr;
unsigned long inst, last_inst = 0;
unsigned char val[4];
dotted = 0;
for (first_adr = adr; count > 0; --count, adr += 4){
nr = mread(adr, val, 4);
if( nr == 0 ){
const char *x = fault_chars[fault_type];
printf("%.8x %s%s%s%s\n", adr, x, x, x, x);
break;
}
inst = GETWORD(val);
if (adr > first_adr && inst == last_inst) {
if (!dotted) {
printf(" ...\n");
dotted = 1;
}
continue;
}
dotted = 0;
last_inst = inst;
printf("%.8x ", adr);
printf("%.8x\t", inst);
print_insn_big_powerpc(stdout, inst, adr); /* always returns 4 */
printf("\n");
}
return adr - first_adr;
}
void
print_address(unsigned addr)
{
printf("0x%x", addr);
}
/*
* Memory operations - move, set, print differences
*/
static unsigned mdest; /* destination address */
static unsigned msrc; /* source address */
static unsigned mval; /* byte value to set memory to */
static unsigned mcount; /* # bytes to affect */
static unsigned mdiffs; /* max # differences to print */
void
memops(int cmd)
{
scanhex(&mdest);
if( termch != '\n' )
termch = 0;
scanhex(cmd == 's'? &mval: &msrc);
if( termch != '\n' )
termch = 0;
scanhex(&mcount);
switch( cmd ){
case 'm':
memmove((void *)mdest, (void *)msrc, mcount);
break;
case 's':
memset((void *)mdest, mval, mcount);
break;
case 'd':
if( termch != '\n' )
termch = 0;
scanhex(&mdiffs);
memdiffs((unsigned char *)mdest, (unsigned char *)msrc, mcount, mdiffs);
break;
}
}
void
memdiffs(unsigned char *p1, unsigned char *p2, unsigned nb, unsigned maxpr)
{
unsigned n, prt;
prt = 0;
for( n = nb; n > 0; --n )
if( *p1++ != *p2++ )
if( ++prt <= maxpr )
printf("%.8x %.2x # %.8x %.2x\n", (unsigned)p1 - 1,
p1[-1], (unsigned)p2 - 1, p2[-1]);
if( prt > maxpr )
printf("Total of %d differences\n", prt);
}
static unsigned mend;
static unsigned mask;
void
memlocate(void)
{
unsigned a, n;
unsigned char val[4];
last_cmd = "ml";
scanhex(&mdest);
if (termch != '\n') {
termch = 0;
scanhex(&mend);
if (termch != '\n') {
termch = 0;
scanhex(&mval);
mask = ~0;
if (termch != '\n') termch = 0;
scanhex(&mask);
}
}
n = 0;
for (a = mdest; a < mend; a += 4) {
if (mread(a, val, 4) == 4
&& ((GETWORD(val) ^ mval) & mask) == 0) {
printf("%.8x: %.8x\n", a, GETWORD(val));
if (++n >= 10)
break;
}
}
}
static unsigned mskip = 0x1000;
static unsigned mlim = 0xffffffff;
void
memzcan(void)
{
unsigned char v;
unsigned a;
int ok, ook;
scanhex(&mdest);
if (termch != '\n') termch = 0;
scanhex(&mskip);
if (termch != '\n') termch = 0;
scanhex(&mlim);
ook = 0;
for (a = mdest; a < mlim; a += mskip) {
ok = mread(a, &v, 1);
if (ok && !ook) {
printf("%.8x .. ", a);
fflush(stdout);
} else if (!ok && ook)
printf("%.8x\n", a - mskip);
ook = ok;
if (a + mskip < a)
break;
}
if (ook)
printf("%.8x\n", a - mskip);
}
void proccall(void)
{
unsigned int args[8];
unsigned int ret;
int i;
typedef unsigned int (*callfunc_t)(unsigned int, unsigned int,
unsigned int, unsigned int, unsigned int,
unsigned int, unsigned int, unsigned int);
callfunc_t func;
scanhex(&adrs);
if (termch != '\n')
termch = 0;
for (i = 0; i < 8; ++i)
args[i] = 0;
for (i = 0; i < 8; ++i) {
if (!scanhex(&args[i]) || termch == '\n')
break;
termch = 0;
}
func = (callfunc_t) adrs;
ret = 0;
if (setjmp(bus_error_jmp) == 0) {
debugger_fault_handler = handle_fault;
sync();
ret = func(args[0], args[1], args[2], args[3],
args[4], args[5], args[6], args[7]);
sync();
printf("return value is %x\n", ret);
} else {
printf("*** %x exception occurred\n", fault_except);
}
debugger_fault_handler = NULL;
}
/* Input scanning routines */
int
skipbl(void)
{
int c;
if( termch != 0 ){
c = termch;
termch = 0;
} else
c = inchar();
while( c == ' ' || c == '\t' )
c = inchar();
return c;
}
#define N_PTREGS 44
static char *regnames[N_PTREGS] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
"pc", "msr", "or3", "ctr", "lr", "xer", "ccr", "mq",
"trap", "dar", "dsisr", "res"
};
int
scanhex(unsigned *vp)
{
int c, d;
unsigned v;
c = skipbl();
if (c == '%') {
/* parse register name */
char regname[8];
int i;
for (i = 0; i < sizeof(regname) - 1; ++i) {
c = inchar();
if (!isalnum(c)) {
termch = c;
break;
}
regname[i] = c;
}
regname[i] = 0;
for (i = 0; i < N_PTREGS; ++i) {
if (strcmp(regnames[i], regname) == 0) {
unsigned *rp = (unsigned *)
xmon_regs[smp_processor_id()];
if (rp == NULL) {
printf("regs not available\n");
return 0;
}
*vp = rp[i];
return 1;
}
}
printf("invalid register name '%%%s'\n", regname);
return 0;
} else if (c == '$') {
static char symname[128];
int i;
for (i=0; i<63; i++) {
c = inchar();
if (isspace(c)) {
termch = c;
break;
}
symname[i] = c;
}
symname[i++] = 0;
*vp = 0;
if (setjmp(bus_error_jmp) == 0) {
debugger_fault_handler = handle_fault;
sync();
*vp = kallsyms_lookup_name(symname);
sync();
}
debugger_fault_handler = NULL;
if (!(*vp)) {
printf("unknown symbol\n");
return 0;
}
return 1;
}
d = hexdigit(c);
if( d == EOF ){
termch = c;
return 0;
}
v = 0;
do {
v = (v << 4) + d;
c = inchar();
d = hexdigit(c);
} while( d != EOF );
termch = c;
*vp = v;
return 1;
}
void
scannl(void)
{
int c;
c = termch;
termch = 0;
while( c != '\n' )
c = inchar();
}
int hexdigit(int c)
{
if( '0' <= c && c <= '9' )
return c - '0';
if( 'A' <= c && c <= 'F' )
return c - ('A' - 10);
if( 'a' <= c && c <= 'f' )
return c - ('a' - 10);
return EOF;
}
void
getstring(char *s, int size)
{
int c;
c = skipbl();
do {
if( size > 1 ){
*s++ = c;
--size;
}
c = inchar();
} while( c != ' ' && c != '\t' && c != '\n' );
termch = c;
*s = 0;
}
static char line[256];
static char *lineptr;
void
flush_input(void)
{
lineptr = NULL;
}
int
inchar(void)
{
if (lineptr == NULL || *lineptr == 0) {
if (fgets(line, sizeof(line), stdin) == NULL) {
lineptr = NULL;
return EOF;
}
lineptr = line;
}
return *lineptr++;
}
void
take_input(char *str)
{
lineptr = str;
}
static void
symbol_lookup(void)
{
int type = inchar();
unsigned addr;
static char tmp[128];
switch (type) {
case 'a':
if (scanhex(&addr))
xmon_print_symbol(addr, ": ", "\n");
termch = 0;
break;
case 's':
getstring(tmp, 64);
if (setjmp(bus_error_jmp) == 0) {
debugger_fault_handler = handle_fault;
sync();
addr = kallsyms_lookup_name(tmp);
if (addr)
printf("%s: %lx\n", tmp, addr);
else
printf("Symbol '%s' not found.\n", tmp);
sync();
}
debugger_fault_handler = NULL;
termch = 0;
break;
}
}