2005-04-16 15:20:36 -07:00
|
|
|
/*
|
2007-07-26 10:41:21 -07:00
|
|
|
* support.c - standard functions for the use of pnp protocol drivers
|
2005-04-16 15:20:36 -07:00
|
|
|
*
|
|
|
|
* Copyright 2003 Adam Belay <ambx1@neo.rr.com>
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
* Copyright (C) 2008 Hewlett-Packard Development Company, L.P.
|
|
|
|
* Bjorn Helgaas <bjorn.helgaas@hp.com>
|
2005-04-16 15:20:36 -07:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/ctype.h>
|
|
|
|
#include <linux/pnp.h>
|
|
|
|
#include "base.h"
|
|
|
|
|
|
|
|
/**
|
2007-07-26 10:41:21 -07:00
|
|
|
* pnp_is_active - Determines if a device is active based on its current
|
|
|
|
* resources
|
2005-04-16 15:20:36 -07:00
|
|
|
* @dev: pointer to the desired PnP device
|
|
|
|
*/
|
2007-07-26 10:41:20 -07:00
|
|
|
int pnp_is_active(struct pnp_dev *dev)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
PNP: replace pnp_resource_table with dynamically allocated resources
PNP used to have a fixed-size pnp_resource_table for tracking the
resources used by a device. This table often overflowed, so we've
had to increase the table size, which wastes memory because most
devices have very few resources.
This patch replaces the table with a linked list of resources where
the entries are allocated on demand.
This removes messages like these:
pnpacpi: exceeded the max number of IO resources
00:01: too many I/O port resources
References:
http://bugzilla.kernel.org/show_bug.cgi?id=9535
http://bugzilla.kernel.org/show_bug.cgi?id=9740
http://lkml.org/lkml/2007/11/30/110
This patch also changes the way PNP uses the IORESOURCE_UNSET,
IORESOURCE_AUTO, and IORESOURCE_DISABLED flags.
Prior to this patch, the pnp_resource_table entries used the flags
like this:
IORESOURCE_UNSET
This table entry is unused and available for use. When this flag
is set, we shouldn't look at anything else in the resource structure.
This flag is set when a resource table entry is initialized.
IORESOURCE_AUTO
This resource was assigned automatically by pnp_assign_{io,mem,etc}().
This flag is set when a resource table entry is initialized and
cleared whenever we discover a resource setting by reading an ISAPNP
config register, parsing a PNPBIOS resource data stream, parsing an
ACPI _CRS list, or interpreting a sysfs "set" command.
Resources marked IORESOURCE_AUTO are reinitialized and marked as
IORESOURCE_UNSET by pnp_clean_resource_table() in these cases:
- before we attempt to assign resources automatically,
- if we fail to assign resources automatically,
- after disabling a device
IORESOURCE_DISABLED
Set by pnp_assign_{io,mem,etc}() when automatic assignment fails.
Also set by PNPBIOS and PNPACPI for:
- invalid IRQs or GSI registration failures
- invalid DMA channels
- I/O ports above 0x10000
- mem ranges with negative length
After this patch, there is no pnp_resource_table, and the resource list
entries use the flags like this:
IORESOURCE_UNSET
This flag is no longer used in PNP. Instead of keeping
IORESOURCE_UNSET entries in the resource list, we remove
entries from the list and free them.
IORESOURCE_AUTO
No change in meaning: it still means the resource was assigned
automatically by pnp_assign_{port,mem,etc}(), but these functions
now set the bit explicitly.
We still "clean" a device's resource list in the same places,
but rather than reinitializing IORESOURCE_AUTO entries, we
just remove them from the list.
Note that IORESOURCE_AUTO entries are always at the end of the
list, so removing them doesn't reorder other list entries.
This is because non-IORESOURCE_AUTO entries are added by the
ISAPNP, PNPBIOS, or PNPACPI "get resources" methods and by the
sysfs "set" command. In each of these cases, we completely free
the resource list first.
IORESOURCE_DISABLED
In addition to the cases where we used to set this flag, ISAPNP now
adds an IORESOURCE_DISABLED resource when it reads a configuration
register with a "disabled" value.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2008-06-27 15:56:57 -07:00
|
|
|
/*
|
|
|
|
* I don't think this is very reliable because pnp_disable_dev()
|
|
|
|
* only clears out auto-assigned resources.
|
|
|
|
*/
|
2005-04-16 15:20:36 -07:00
|
|
|
if (!pnp_port_start(dev, 0) && pnp_port_len(dev, 0) <= 1 &&
|
|
|
|
!pnp_mem_start(dev, 0) && pnp_mem_len(dev, 0) <= 1 &&
|
2007-07-26 10:41:20 -07:00
|
|
|
pnp_irq(dev, 0) == -1 && pnp_dma(dev, 0) == -1)
|
|
|
|
return 0;
|
2005-04-16 15:20:36 -07:00
|
|
|
else
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(pnp_is_active);
|
2008-04-28 15:33:53 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Functionally similar to acpi_ex_eisa_id_to_string(), but that's
|
|
|
|
* buried in the ACPI CA, and we can't depend on it being present.
|
|
|
|
*/
|
|
|
|
void pnp_eisa_id_to_string(u32 id, char *str)
|
|
|
|
{
|
|
|
|
id = be32_to_cpu(id);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* According to the specs, the first three characters are five-bit
|
|
|
|
* compressed ASCII, and the left-over high order bit should be zero.
|
|
|
|
* However, the Linux ISAPNP code historically used six bits for the
|
|
|
|
* first character, and there seem to be IDs that depend on that,
|
|
|
|
* e.g., "nEC8241" in the Linux 8250_pnp serial driver and the
|
|
|
|
* FreeBSD sys/pc98/cbus/sio_cbus.c driver.
|
|
|
|
*/
|
|
|
|
str[0] = 'A' + ((id >> 26) & 0x3f) - 1;
|
|
|
|
str[1] = 'A' + ((id >> 21) & 0x1f) - 1;
|
|
|
|
str[2] = 'A' + ((id >> 16) & 0x1f) - 1;
|
2008-05-14 16:05:49 -07:00
|
|
|
str[3] = hex_asc_hi(id >> 8);
|
|
|
|
str[4] = hex_asc_lo(id >> 8);
|
|
|
|
str[5] = hex_asc_hi(id);
|
|
|
|
str[6] = hex_asc_lo(id);
|
2008-04-28 15:33:53 -07:00
|
|
|
str[7] = '\0';
|
|
|
|
}
|
2008-04-28 15:34:08 -07:00
|
|
|
|
2008-06-27 15:56:55 -07:00
|
|
|
char *pnp_resource_type_name(struct resource *res)
|
|
|
|
{
|
|
|
|
switch (pnp_resource_type(res)) {
|
|
|
|
case IORESOURCE_IO:
|
|
|
|
return "io";
|
|
|
|
case IORESOURCE_MEM:
|
|
|
|
return "mem";
|
|
|
|
case IORESOURCE_IRQ:
|
|
|
|
return "irq";
|
|
|
|
case IORESOURCE_DMA:
|
|
|
|
return "dma";
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2008-04-28 15:34:08 -07:00
|
|
|
void dbg_pnp_show_resources(struct pnp_dev *dev, char *desc)
|
|
|
|
{
|
PNP: replace pnp_resource_table with dynamically allocated resources
PNP used to have a fixed-size pnp_resource_table for tracking the
resources used by a device. This table often overflowed, so we've
had to increase the table size, which wastes memory because most
devices have very few resources.
This patch replaces the table with a linked list of resources where
the entries are allocated on demand.
This removes messages like these:
pnpacpi: exceeded the max number of IO resources
00:01: too many I/O port resources
References:
http://bugzilla.kernel.org/show_bug.cgi?id=9535
http://bugzilla.kernel.org/show_bug.cgi?id=9740
http://lkml.org/lkml/2007/11/30/110
This patch also changes the way PNP uses the IORESOURCE_UNSET,
IORESOURCE_AUTO, and IORESOURCE_DISABLED flags.
Prior to this patch, the pnp_resource_table entries used the flags
like this:
IORESOURCE_UNSET
This table entry is unused and available for use. When this flag
is set, we shouldn't look at anything else in the resource structure.
This flag is set when a resource table entry is initialized.
IORESOURCE_AUTO
This resource was assigned automatically by pnp_assign_{io,mem,etc}().
This flag is set when a resource table entry is initialized and
cleared whenever we discover a resource setting by reading an ISAPNP
config register, parsing a PNPBIOS resource data stream, parsing an
ACPI _CRS list, or interpreting a sysfs "set" command.
Resources marked IORESOURCE_AUTO are reinitialized and marked as
IORESOURCE_UNSET by pnp_clean_resource_table() in these cases:
- before we attempt to assign resources automatically,
- if we fail to assign resources automatically,
- after disabling a device
IORESOURCE_DISABLED
Set by pnp_assign_{io,mem,etc}() when automatic assignment fails.
Also set by PNPBIOS and PNPACPI for:
- invalid IRQs or GSI registration failures
- invalid DMA channels
- I/O ports above 0x10000
- mem ranges with negative length
After this patch, there is no pnp_resource_table, and the resource list
entries use the flags like this:
IORESOURCE_UNSET
This flag is no longer used in PNP. Instead of keeping
IORESOURCE_UNSET entries in the resource list, we remove
entries from the list and free them.
IORESOURCE_AUTO
No change in meaning: it still means the resource was assigned
automatically by pnp_assign_{port,mem,etc}(), but these functions
now set the bit explicitly.
We still "clean" a device's resource list in the same places,
but rather than reinitializing IORESOURCE_AUTO entries, we
just remove them from the list.
Note that IORESOURCE_AUTO entries are always at the end of the
list, so removing them doesn't reorder other list entries.
This is because non-IORESOURCE_AUTO entries are added by the
ISAPNP, PNPBIOS, or PNPACPI "get resources" methods and by the
sysfs "set" command. In each of these cases, we completely free
the resource list first.
IORESOURCE_DISABLED
In addition to the cases where we used to set this flag, ISAPNP now
adds an IORESOURCE_DISABLED resource when it reads a configuration
register with a "disabled" value.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2008-06-27 15:56:57 -07:00
|
|
|
struct pnp_resource *pnp_res;
|
2008-04-28 15:34:08 -07:00
|
|
|
|
2009-10-06 14:34:00 -07:00
|
|
|
if (list_empty(&dev->resources))
|
2008-08-19 15:53:47 -07:00
|
|
|
pnp_dbg(&dev->dev, "%s: no current resources\n", desc);
|
2009-10-06 14:34:00 -07:00
|
|
|
else {
|
|
|
|
pnp_dbg(&dev->dev, "%s: current resources:\n", desc);
|
|
|
|
list_for_each_entry(pnp_res, &dev->resources, list)
|
2009-10-27 12:26:47 -07:00
|
|
|
pnp_dbg(&dev->dev, "%pr\n", &pnp_res->res);
|
2008-04-28 15:34:08 -07:00
|
|
|
}
|
|
|
|
}
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
|
|
|
|
char *pnp_option_priority_name(struct pnp_option *option)
|
|
|
|
{
|
|
|
|
switch (pnp_option_priority(option)) {
|
|
|
|
case PNP_RES_PRIORITY_PREFERRED:
|
|
|
|
return "preferred";
|
|
|
|
case PNP_RES_PRIORITY_ACCEPTABLE:
|
|
|
|
return "acceptable";
|
|
|
|
case PNP_RES_PRIORITY_FUNCTIONAL:
|
|
|
|
return "functional";
|
|
|
|
}
|
|
|
|
return "invalid";
|
|
|
|
}
|
|
|
|
|
|
|
|
void dbg_pnp_show_option(struct pnp_dev *dev, struct pnp_option *option)
|
|
|
|
{
|
|
|
|
char buf[128];
|
|
|
|
int len = 0, i;
|
|
|
|
struct pnp_port *port;
|
|
|
|
struct pnp_mem *mem;
|
|
|
|
struct pnp_irq *irq;
|
|
|
|
struct pnp_dma *dma;
|
|
|
|
|
|
|
|
if (pnp_option_is_dependent(option))
|
2008-07-31 00:07:27 -07:00
|
|
|
len += scnprintf(buf + len, sizeof(buf) - len,
|
|
|
|
" dependent set %d (%s) ",
|
|
|
|
pnp_option_set(option),
|
|
|
|
pnp_option_priority_name(option));
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
else
|
2008-07-31 00:07:27 -07:00
|
|
|
len += scnprintf(buf + len, sizeof(buf) - len,
|
|
|
|
" independent ");
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
|
|
|
|
switch (option->type) {
|
|
|
|
case IORESOURCE_IO:
|
|
|
|
port = &option->u.port;
|
2008-07-31 00:07:27 -07:00
|
|
|
len += scnprintf(buf + len, sizeof(buf) - len, "io min %#llx "
|
|
|
|
"max %#llx align %lld size %lld flags %#x",
|
|
|
|
(unsigned long long) port->min,
|
|
|
|
(unsigned long long) port->max,
|
|
|
|
(unsigned long long) port->align,
|
|
|
|
(unsigned long long) port->size, port->flags);
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
break;
|
|
|
|
case IORESOURCE_MEM:
|
|
|
|
mem = &option->u.mem;
|
2008-07-31 00:07:27 -07:00
|
|
|
len += scnprintf(buf + len, sizeof(buf) - len, "mem min %#llx "
|
|
|
|
"max %#llx align %lld size %lld flags %#x",
|
|
|
|
(unsigned long long) mem->min,
|
|
|
|
(unsigned long long) mem->max,
|
|
|
|
(unsigned long long) mem->align,
|
|
|
|
(unsigned long long) mem->size, mem->flags);
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
break;
|
|
|
|
case IORESOURCE_IRQ:
|
|
|
|
irq = &option->u.irq;
|
2008-07-31 00:07:27 -07:00
|
|
|
len += scnprintf(buf + len, sizeof(buf) - len, "irq");
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
if (bitmap_empty(irq->map.bits, PNP_IRQ_NR))
|
2008-07-31 00:07:27 -07:00
|
|
|
len += scnprintf(buf + len, sizeof(buf) - len,
|
|
|
|
" <none>");
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
else {
|
|
|
|
for (i = 0; i < PNP_IRQ_NR; i++)
|
|
|
|
if (test_bit(i, irq->map.bits))
|
2008-07-31 00:07:27 -07:00
|
|
|
len += scnprintf(buf + len,
|
|
|
|
sizeof(buf) - len,
|
|
|
|
" %d", i);
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
}
|
2008-07-31 00:07:27 -07:00
|
|
|
len += scnprintf(buf + len, sizeof(buf) - len, " flags %#x",
|
|
|
|
irq->flags);
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
if (irq->flags & IORESOURCE_IRQ_OPTIONAL)
|
2008-07-31 00:07:27 -07:00
|
|
|
len += scnprintf(buf + len, sizeof(buf) - len,
|
|
|
|
" (optional)");
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
break;
|
|
|
|
case IORESOURCE_DMA:
|
|
|
|
dma = &option->u.dma;
|
2008-07-31 00:07:27 -07:00
|
|
|
len += scnprintf(buf + len, sizeof(buf) - len, "dma");
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
if (!dma->map)
|
2008-07-31 00:07:27 -07:00
|
|
|
len += scnprintf(buf + len, sizeof(buf) - len,
|
|
|
|
" <none>");
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
else {
|
|
|
|
for (i = 0; i < 8; i++)
|
|
|
|
if (dma->map & (1 << i))
|
2008-07-31 00:07:27 -07:00
|
|
|
len += scnprintf(buf + len,
|
|
|
|
sizeof(buf) - len,
|
|
|
|
" %d", i);
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
}
|
2008-07-31 00:07:27 -07:00
|
|
|
len += scnprintf(buf + len, sizeof(buf) - len, " (bitmask %#x) "
|
|
|
|
"flags %#x", dma->map, dma->flags);
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
break;
|
|
|
|
}
|
2008-08-19 15:53:47 -07:00
|
|
|
pnp_dbg(&dev->dev, "%s\n", buf);
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
}
|