2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* This file contains quirk handling code for PnP devices
|
|
|
|
* Some devices do not report all their resources, and need to have extra
|
|
|
|
* resources added. This is most easily accomplished at initialisation time
|
|
|
|
* when building up the resource structure for the first time.
|
|
|
|
*
|
|
|
|
* Copyright (c) 2000 Peter Denison <peterd@pnd-pc.demon.co.uk>
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
* Copyright (C) 2008 Hewlett-Packard Development Company, L.P.
|
|
|
|
* Bjorn Helgaas <bjorn.helgaas@hp.com>
|
2005-04-16 15:20:36 -07:00
|
|
|
*
|
|
|
|
* Heavily based on PCI quirks handling which is
|
|
|
|
*
|
|
|
|
* Copyright (c) 1999 Martin Mares <mj@ucw.cz>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/pnp.h>
|
2007-05-08 00:36:00 -07:00
|
|
|
#include <linux/io.h>
|
2007-10-16 23:31:10 -07:00
|
|
|
#include <linux/kallsyms.h>
|
2005-04-16 15:20:36 -07:00
|
|
|
#include "base.h"
|
|
|
|
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
static void quirk_awe32_add_ports(struct pnp_dev *dev,
|
|
|
|
struct pnp_option *option,
|
|
|
|
unsigned int offset)
|
|
|
|
{
|
|
|
|
struct pnp_option *new_option;
|
|
|
|
|
|
|
|
new_option = kmalloc(sizeof(struct pnp_option), GFP_KERNEL);
|
|
|
|
if (!new_option) {
|
|
|
|
dev_err(&dev->dev, "couldn't add ioport region to option set "
|
|
|
|
"%d\n", pnp_option_set(option));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
*new_option = *option;
|
|
|
|
new_option->u.port.min += offset;
|
|
|
|
new_option->u.port.max += offset;
|
|
|
|
list_add(&new_option->list, &option->list);
|
|
|
|
|
|
|
|
dev_info(&dev->dev, "added ioport region %#llx-%#llx to set %d\n",
|
|
|
|
(unsigned long long) new_option->u.port.min,
|
|
|
|
(unsigned long long) new_option->u.port.max,
|
|
|
|
pnp_option_set(option));
|
|
|
|
}
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
static void quirk_awe32_resources(struct pnp_dev *dev)
|
|
|
|
{
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
struct pnp_option *option;
|
|
|
|
unsigned int set = ~0;
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/*
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
* Add two extra ioport regions (at offset 0x400 and 0x800 from the
|
|
|
|
* one given) to every dependent option set.
|
2005-04-16 15:20:36 -07:00
|
|
|
*/
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
list_for_each_entry(option, &dev->options, list) {
|
|
|
|
if (pnp_option_is_dependent(option) &&
|
|
|
|
pnp_option_set(option) != set) {
|
|
|
|
set = pnp_option_set(option);
|
|
|
|
quirk_awe32_add_ports(dev, option, 0x800);
|
|
|
|
quirk_awe32_add_ports(dev, option, 0x400);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void quirk_cmi8330_resources(struct pnp_dev *dev)
|
|
|
|
{
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
struct pnp_option *option;
|
|
|
|
struct pnp_irq *irq;
|
|
|
|
struct pnp_dma *dma;
|
2005-04-16 15:20:36 -07:00
|
|
|
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
list_for_each_entry(option, &dev->options, list) {
|
|
|
|
if (!pnp_option_is_dependent(option))
|
|
|
|
continue;
|
2005-04-16 15:20:36 -07:00
|
|
|
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
if (option->type == IORESOURCE_IRQ) {
|
|
|
|
irq = &option->u.irq;
|
|
|
|
bitmap_zero(irq->map.bits, PNP_IRQ_NR);
|
|
|
|
__set_bit(5, irq->map.bits);
|
|
|
|
__set_bit(7, irq->map.bits);
|
|
|
|
__set_bit(10, irq->map.bits);
|
|
|
|
dev_info(&dev->dev, "set possible IRQs in "
|
|
|
|
"option set %d to 5, 7, 10\n",
|
|
|
|
pnp_option_set(option));
|
|
|
|
} else if (option->type == IORESOURCE_DMA) {
|
|
|
|
dma = &option->u.dma;
|
2007-07-26 10:41:20 -07:00
|
|
|
if ((dma->flags & IORESOURCE_DMA_TYPE_MASK) ==
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
IORESOURCE_DMA_8BIT &&
|
|
|
|
dma->map != 0x0A) {
|
|
|
|
dev_info(&dev->dev, "changing possible "
|
|
|
|
"DMA channel mask in option set %d "
|
|
|
|
"from %#02x to 0x0A (1, 3)\n",
|
|
|
|
pnp_option_set(option), dma->map);
|
|
|
|
dma->map = 0x0A;
|
|
|
|
}
|
2008-06-27 15:57:05 -07:00
|
|
|
}
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void quirk_sb16audio_resources(struct pnp_dev *dev)
|
|
|
|
{
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
struct pnp_option *option;
|
|
|
|
unsigned int prev_option_flags = ~0, n = 0;
|
2005-04-16 15:20:36 -07:00
|
|
|
struct pnp_port *port;
|
|
|
|
|
|
|
|
/*
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
* The default range on the OPL port for these devices is 0x388-0x388.
|
2005-04-16 15:20:36 -07:00
|
|
|
* Here we increase that range so that two such cards can be
|
|
|
|
* auto-configured.
|
|
|
|
*/
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
list_for_each_entry(option, &dev->options, list) {
|
|
|
|
if (prev_option_flags != option->flags) {
|
|
|
|
prev_option_flags = option->flags;
|
|
|
|
n = 0;
|
|
|
|
}
|
2005-04-16 15:20:36 -07:00
|
|
|
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
if (pnp_option_is_dependent(option) &&
|
|
|
|
option->type == IORESOURCE_IO) {
|
|
|
|
n++;
|
|
|
|
port = &option->u.port;
|
|
|
|
if (n == 3 && port->min == port->max) {
|
|
|
|
port->max += 0x70;
|
|
|
|
dev_info(&dev->dev, "increased option port "
|
|
|
|
"range from %#llx-%#llx to "
|
|
|
|
"%#llx-%#llx\n",
|
|
|
|
(unsigned long long) port->min,
|
|
|
|
(unsigned long long) port->min,
|
|
|
|
(unsigned long long) port->min,
|
|
|
|
(unsigned long long) port->max);
|
|
|
|
}
|
|
|
|
}
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
static struct pnp_option *pnp_clone_dependent_set(struct pnp_dev *dev,
|
|
|
|
unsigned int set)
|
2008-05-14 16:05:36 -07:00
|
|
|
{
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
struct pnp_option *tail = NULL, *first_new_option = NULL;
|
|
|
|
struct pnp_option *option, *new_option;
|
|
|
|
unsigned int flags;
|
2008-05-14 16:05:36 -07:00
|
|
|
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
list_for_each_entry(option, &dev->options, list) {
|
|
|
|
if (pnp_option_is_dependent(option))
|
|
|
|
tail = option;
|
|
|
|
}
|
|
|
|
if (!tail) {
|
|
|
|
dev_err(&dev->dev, "no dependent option sets\n");
|
|
|
|
return NULL;
|
|
|
|
}
|
2008-06-27 15:57:14 -07:00
|
|
|
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
flags = pnp_new_dependent_set(dev, PNP_RES_PRIORITY_FUNCTIONAL);
|
|
|
|
list_for_each_entry(option, &dev->options, list) {
|
|
|
|
if (pnp_option_is_dependent(option) &&
|
|
|
|
pnp_option_set(option) == set) {
|
|
|
|
new_option = kmalloc(sizeof(struct pnp_option),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!new_option) {
|
|
|
|
dev_err(&dev->dev, "couldn't clone dependent "
|
|
|
|
"set %d\n", set);
|
|
|
|
return NULL;
|
|
|
|
}
|
2008-05-14 16:05:36 -07:00
|
|
|
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
*new_option = *option;
|
|
|
|
new_option->flags = flags;
|
|
|
|
if (!first_new_option)
|
|
|
|
first_new_option = new_option;
|
2008-05-14 16:05:36 -07:00
|
|
|
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
list_add(&new_option->list, &tail->list);
|
|
|
|
tail = new_option;
|
2008-05-14 16:05:36 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
return first_new_option;
|
2008-05-14 16:05:36 -07:00
|
|
|
}
|
|
|
|
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
|
|
|
|
static void quirk_add_irq_optional_dependent_sets(struct pnp_dev *dev)
|
2008-05-14 16:05:36 -07:00
|
|
|
{
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
struct pnp_option *new_option;
|
|
|
|
unsigned int num_sets, i, set;
|
2008-05-14 16:05:36 -07:00
|
|
|
struct pnp_irq *irq;
|
|
|
|
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
num_sets = dev->num_dependent_sets;
|
|
|
|
for (i = 0; i < num_sets; i++) {
|
|
|
|
new_option = pnp_clone_dependent_set(dev, i);
|
|
|
|
if (!new_option)
|
|
|
|
return;
|
2008-05-14 16:05:36 -07:00
|
|
|
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
set = pnp_option_set(new_option);
|
|
|
|
while (new_option && pnp_option_set(new_option) == set) {
|
|
|
|
if (new_option->type == IORESOURCE_IRQ) {
|
|
|
|
irq = &new_option->u.irq;
|
|
|
|
irq->flags |= IORESOURCE_IRQ_OPTIONAL;
|
|
|
|
}
|
|
|
|
dbg_pnp_show_option(dev, new_option);
|
|
|
|
new_option = list_entry(new_option->list.next,
|
|
|
|
struct pnp_option, list);
|
|
|
|
}
|
2008-05-14 16:05:36 -07:00
|
|
|
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
dev_info(&dev->dev, "added dependent option set %d (same as "
|
|
|
|
"set %d except IRQ optional)\n", set, i);
|
|
|
|
}
|
2008-05-14 16:05:36 -07:00
|
|
|
}
|
|
|
|
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
static void quirk_ad1815_mpu_resources(struct pnp_dev *dev)
|
2008-05-14 16:05:36 -07:00
|
|
|
{
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
struct pnp_option *option;
|
|
|
|
struct pnp_irq *irq = NULL;
|
|
|
|
unsigned int independent_irqs = 0;
|
|
|
|
|
|
|
|
list_for_each_entry(option, &dev->options, list) {
|
|
|
|
if (option->type == IORESOURCE_IRQ &&
|
|
|
|
!pnp_option_is_dependent(option)) {
|
|
|
|
independent_irqs++;
|
|
|
|
irq = &option->u.irq;
|
|
|
|
}
|
|
|
|
}
|
2008-05-14 16:05:36 -07:00
|
|
|
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
if (independent_irqs != 1)
|
2008-05-14 16:05:36 -07:00
|
|
|
return;
|
|
|
|
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
irq->flags |= IORESOURCE_IRQ_OPTIONAL;
|
|
|
|
dev_info(&dev->dev, "made independent IRQ optional\n");
|
2008-05-14 16:05:36 -07:00
|
|
|
}
|
2008-03-11 14:24:41 -07:00
|
|
|
|
|
|
|
#include <linux/pci.h>
|
|
|
|
|
|
|
|
static void quirk_system_pci_resources(struct pnp_dev *dev)
|
|
|
|
{
|
|
|
|
struct pci_dev *pdev = NULL;
|
2008-04-28 15:34:15 -07:00
|
|
|
struct resource *res;
|
2008-03-11 14:24:41 -07:00
|
|
|
resource_size_t pnp_start, pnp_end, pci_start, pci_end;
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Some BIOSes have PNP motherboard devices with resources that
|
|
|
|
* partially overlap PCI BARs. The PNP system driver claims these
|
|
|
|
* motherboard resources, which prevents the normal PCI driver from
|
|
|
|
* requesting them later.
|
|
|
|
*
|
|
|
|
* This patch disables the PNP resources that conflict with PCI BARs
|
|
|
|
* so they won't be claimed by the PNP system driver.
|
|
|
|
*/
|
|
|
|
for_each_pci_dev(pdev) {
|
|
|
|
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
|
2008-07-25 19:44:47 -07:00
|
|
|
unsigned int type;
|
|
|
|
|
|
|
|
type = pci_resource_flags(pdev, i) &
|
|
|
|
(IORESOURCE_IO | IORESOURCE_MEM);
|
|
|
|
if (!type || pci_resource_len(pdev, i) == 0)
|
2008-03-11 14:24:41 -07:00
|
|
|
continue;
|
|
|
|
|
|
|
|
pci_start = pci_resource_start(pdev, i);
|
|
|
|
pci_end = pci_resource_end(pdev, i);
|
2008-04-28 15:34:26 -07:00
|
|
|
for (j = 0;
|
2008-07-25 19:44:47 -07:00
|
|
|
(res = pnp_get_resource(dev, type, j)); j++) {
|
PNP: replace pnp_resource_table with dynamically allocated resources
PNP used to have a fixed-size pnp_resource_table for tracking the
resources used by a device. This table often overflowed, so we've
had to increase the table size, which wastes memory because most
devices have very few resources.
This patch replaces the table with a linked list of resources where
the entries are allocated on demand.
This removes messages like these:
pnpacpi: exceeded the max number of IO resources
00:01: too many I/O port resources
References:
http://bugzilla.kernel.org/show_bug.cgi?id=9535
http://bugzilla.kernel.org/show_bug.cgi?id=9740
http://lkml.org/lkml/2007/11/30/110
This patch also changes the way PNP uses the IORESOURCE_UNSET,
IORESOURCE_AUTO, and IORESOURCE_DISABLED flags.
Prior to this patch, the pnp_resource_table entries used the flags
like this:
IORESOURCE_UNSET
This table entry is unused and available for use. When this flag
is set, we shouldn't look at anything else in the resource structure.
This flag is set when a resource table entry is initialized.
IORESOURCE_AUTO
This resource was assigned automatically by pnp_assign_{io,mem,etc}().
This flag is set when a resource table entry is initialized and
cleared whenever we discover a resource setting by reading an ISAPNP
config register, parsing a PNPBIOS resource data stream, parsing an
ACPI _CRS list, or interpreting a sysfs "set" command.
Resources marked IORESOURCE_AUTO are reinitialized and marked as
IORESOURCE_UNSET by pnp_clean_resource_table() in these cases:
- before we attempt to assign resources automatically,
- if we fail to assign resources automatically,
- after disabling a device
IORESOURCE_DISABLED
Set by pnp_assign_{io,mem,etc}() when automatic assignment fails.
Also set by PNPBIOS and PNPACPI for:
- invalid IRQs or GSI registration failures
- invalid DMA channels
- I/O ports above 0x10000
- mem ranges with negative length
After this patch, there is no pnp_resource_table, and the resource list
entries use the flags like this:
IORESOURCE_UNSET
This flag is no longer used in PNP. Instead of keeping
IORESOURCE_UNSET entries in the resource list, we remove
entries from the list and free them.
IORESOURCE_AUTO
No change in meaning: it still means the resource was assigned
automatically by pnp_assign_{port,mem,etc}(), but these functions
now set the bit explicitly.
We still "clean" a device's resource list in the same places,
but rather than reinitializing IORESOURCE_AUTO entries, we
just remove them from the list.
Note that IORESOURCE_AUTO entries are always at the end of the
list, so removing them doesn't reorder other list entries.
This is because non-IORESOURCE_AUTO entries are added by the
ISAPNP, PNPBIOS, or PNPACPI "get resources" methods and by the
sysfs "set" command. In each of these cases, we completely free
the resource list first.
IORESOURCE_DISABLED
In addition to the cases where we used to set this flag, ISAPNP now
adds an IORESOURCE_DISABLED resource when it reads a configuration
register with a "disabled" value.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2008-06-27 15:56:57 -07:00
|
|
|
if (res->start == 0 && res->end == 0)
|
2008-03-11 14:24:41 -07:00
|
|
|
continue;
|
|
|
|
|
2008-04-28 15:34:26 -07:00
|
|
|
pnp_start = res->start;
|
|
|
|
pnp_end = res->end;
|
2008-03-11 14:24:41 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If the PNP region doesn't overlap the PCI
|
|
|
|
* region at all, there's no problem.
|
|
|
|
*/
|
|
|
|
if (pnp_end < pci_start || pnp_start > pci_end)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the PNP region completely encloses (or is
|
|
|
|
* at least as large as) the PCI region, that's
|
|
|
|
* also OK. For example, this happens when the
|
|
|
|
* PNP device describes a bridge with PCI
|
|
|
|
* behind it.
|
|
|
|
*/
|
|
|
|
if (pnp_start <= pci_start &&
|
|
|
|
pnp_end >= pci_end)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Otherwise, the PNP region overlaps *part* of
|
|
|
|
* the PCI region, and that might prevent a PCI
|
|
|
|
* driver from requesting its resources.
|
|
|
|
*/
|
2008-07-25 19:44:47 -07:00
|
|
|
dev_warn(&dev->dev, "%s resource "
|
2008-03-11 14:24:41 -07:00
|
|
|
"(0x%llx-0x%llx) overlaps %s BAR %d "
|
|
|
|
"(0x%llx-0x%llx), disabling\n",
|
2008-07-25 19:44:47 -07:00
|
|
|
pnp_resource_type_name(res),
|
2008-03-11 14:24:41 -07:00
|
|
|
(unsigned long long) pnp_start,
|
|
|
|
(unsigned long long) pnp_end,
|
|
|
|
pci_name(pdev), i,
|
|
|
|
(unsigned long long) pci_start,
|
|
|
|
(unsigned long long) pci_end);
|
2008-06-02 15:42:49 -07:00
|
|
|
res->flags |= IORESOURCE_DISABLED;
|
2008-03-11 14:24:41 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* PnP Quirks
|
|
|
|
* Cards or devices that need some tweaking due to incomplete resource info
|
|
|
|
*/
|
|
|
|
|
|
|
|
static struct pnp_fixup pnp_fixups[] = {
|
|
|
|
/* Soundblaster awe io port quirk */
|
2007-07-26 10:41:20 -07:00
|
|
|
{"CTL0021", quirk_awe32_resources},
|
|
|
|
{"CTL0022", quirk_awe32_resources},
|
|
|
|
{"CTL0023", quirk_awe32_resources},
|
2005-04-16 15:20:36 -07:00
|
|
|
/* CMI 8330 interrupt and dma fix */
|
2007-07-26 10:41:20 -07:00
|
|
|
{"@X@0001", quirk_cmi8330_resources},
|
2005-04-16 15:20:36 -07:00
|
|
|
/* Soundblaster audio device io port range quirk */
|
2007-07-26 10:41:20 -07:00
|
|
|
{"CTL0001", quirk_sb16audio_resources},
|
|
|
|
{"CTL0031", quirk_sb16audio_resources},
|
|
|
|
{"CTL0041", quirk_sb16audio_resources},
|
|
|
|
{"CTL0042", quirk_sb16audio_resources},
|
|
|
|
{"CTL0043", quirk_sb16audio_resources},
|
|
|
|
{"CTL0044", quirk_sb16audio_resources},
|
|
|
|
{"CTL0045", quirk_sb16audio_resources},
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
/* Add IRQ-optional MPU options */
|
2008-05-14 16:05:36 -07:00
|
|
|
{"ADS7151", quirk_ad1815_mpu_resources},
|
PNP: convert resource options to single linked list
ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of
a device, i.e., the possibilities an OS bus driver has when it assigns
I/O port, MMIO, and other resources to the device.
PNP used to maintain this "possible resource setting" information in
one independent option structure and a list of dependent option
structures for each device. Each of these option structures had lists
of I/O, memory, IRQ, and DMA resources, for example:
dev
independent options
ind-io0 -> ind-io1 ...
ind-mem0 -> ind-mem1 ...
...
dependent option set 0
dep0-io0 -> dep0-io1 ...
dep0-mem0 -> dep0-mem1 ...
...
dependent option set 1
dep1-io0 -> dep1-io1 ...
dep1-mem0 -> dep1-mem1 ...
...
...
This data structure was designed for ISAPNP, where the OS configures
device resource settings by writing directly to configuration
registers. The OS can write the registers in arbitrary order much
like it writes PCI BARs.
However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces
that perform device configuration, and it is important to pass the
desired settings to those interfaces in the correct order. The OS
learns the correct order by using firmware interfaces that return the
"current resource settings" and "possible resource settings," but the
option structures above doesn't store the ordering information.
This patch replaces the independent and dependent lists with a single
list of options. For example, a device might have possible resource
settings like this:
dev
options
ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ...
All the possible settings are in the same list, in the order they
come from the firmware "possible resource settings" list. Each entry
is tagged with an independent/dependent flag. Dependent entries also
have a "set number" and an optional priority value. All dependent
entries must be assigned from the same set. For example, the OS can
use all the entries from dependent set 0, or all the entries from
dependent set 1, but it cannot mix entries from set 0 with entries
from set 1.
Prior to this patch PNP didn't keep track of the order of this list,
and it assigned all independent options first, then all dependent
ones. Using the example above, that resulted in a "desired
configuration" list like this:
ind->io0 -> ind->io1 -> depN-io0 ...
instead of the list the firmware expects, which looks like this:
ind->io0 -> depN-io0 -> ind-io1 ...
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-27 15:57:17 -07:00
|
|
|
{"ADS7181", quirk_add_irq_optional_dependent_sets},
|
|
|
|
{"AZT0002", quirk_add_irq_optional_dependent_sets},
|
2008-05-14 16:05:36 -07:00
|
|
|
/* PnP resources that might overlap PCI BARs */
|
2008-03-11 14:24:41 -07:00
|
|
|
{"PNP0c01", quirk_system_pci_resources},
|
|
|
|
{"PNP0c02", quirk_system_pci_resources},
|
2007-07-26 10:41:20 -07:00
|
|
|
{""}
|
2005-04-16 15:20:36 -07:00
|
|
|
};
|
|
|
|
|
|
|
|
void pnp_fixup_device(struct pnp_dev *dev)
|
|
|
|
{
|
2008-05-14 16:05:33 -07:00
|
|
|
struct pnp_fixup *f;
|
2007-10-16 23:31:10 -07:00
|
|
|
|
2008-05-14 16:05:33 -07:00
|
|
|
for (f = pnp_fixups; *f->id; f++) {
|
|
|
|
if (!compare_pnp_id(dev->id, f->id))
|
|
|
|
continue;
|
2007-10-16 23:31:10 -07:00
|
|
|
#ifdef DEBUG
|
2008-05-14 16:05:33 -07:00
|
|
|
dev_dbg(&dev->dev, "%s: calling ", f->id);
|
2008-05-15 17:50:37 -07:00
|
|
|
print_fn_descriptor_symbol("%s\n", f->quirk_function);
|
2007-10-16 23:31:10 -07:00
|
|
|
#endif
|
2008-05-14 16:05:33 -07:00
|
|
|
f->quirk_function(dev);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
}
|