1
linux/arch/ia64/sn/kernel/irq.c

538 lines
13 KiB
C
Raw Normal View History

/*
* Platform dependent support for SGI SN
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (c) 2000-2008 Silicon Graphics, Inc. All Rights Reserved.
*/
#include <linux/irq.h>
#include <linux/spinlock.h>
#include <linux/init.h>
#include <linux/rculist.h>
#include <asm/sn/addrs.h>
#include <asm/sn/arch.h>
#include <asm/sn/intr.h>
#include <asm/sn/pcibr_provider.h>
#include <asm/sn/pcibus_provider_defs.h>
#include <asm/sn/pcidev.h>
#include <asm/sn/shub_mmr.h>
#include <asm/sn/sn_sal.h>
#include <asm/sn/sn_feature_sets.h>
static void force_interrupt(int irq);
static void register_intr_pda(struct sn_irq_info *sn_irq_info);
static void unregister_intr_pda(struct sn_irq_info *sn_irq_info);
int sn_force_interrupt_flag = 1;
extern int sn_ioif_inited;
struct list_head **sn_irq_lh;
static DEFINE_SPINLOCK(sn_irq_info_lock); /* non-IRQ lock */
u64 sn_intr_alloc(nasid_t local_nasid, int local_widget,
struct sn_irq_info *sn_irq_info,
int req_irq, nasid_t req_nasid,
int req_slice)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
(u64) SAL_INTR_ALLOC, (u64) local_nasid,
(u64) local_widget, __pa(sn_irq_info), (u64) req_irq,
(u64) req_nasid, (u64) req_slice);
return ret_stuff.status;
}
void sn_intr_free(nasid_t local_nasid, int local_widget,
struct sn_irq_info *sn_irq_info)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
(u64) SAL_INTR_FREE, (u64) local_nasid,
(u64) local_widget, (u64) sn_irq_info->irq_irq,
(u64) sn_irq_info->irq_cookie, 0, 0);
}
u64 sn_intr_redirect(nasid_t local_nasid, int local_widget,
struct sn_irq_info *sn_irq_info,
nasid_t req_nasid, int req_slice)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
(u64) SAL_INTR_REDIRECT, (u64) local_nasid,
(u64) local_widget, __pa(sn_irq_info),
(u64) req_nasid, (u64) req_slice, 0);
return ret_stuff.status;
}
static unsigned int sn_startup_irq(unsigned int irq)
{
return 0;
}
static void sn_shutdown_irq(unsigned int irq)
{
}
extern void ia64_mca_register_cpev(int);
static void sn_disable_irq(unsigned int irq)
{
if (irq == local_vector_to_irq(IA64_CPE_VECTOR))
ia64_mca_register_cpev(0);
}
static void sn_enable_irq(unsigned int irq)
{
if (irq == local_vector_to_irq(IA64_CPE_VECTOR))
ia64_mca_register_cpev(irq);
}
static void sn_ack_irq(unsigned int irq)
{
u64 event_occurred, mask;
irq = irq & 0xff;
event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED));
mask = event_occurred & SH_ALL_INT_MASK;
HUB_S((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS), mask);
__set_bit(irq, (volatile void *)pda->sn_in_service_ivecs);
move_native_irq(irq);
}
static void sn_end_irq(unsigned int irq)
{
int ivec;
u64 event_occurred;
ivec = irq & 0xff;
if (ivec == SGI_UART_VECTOR) {
event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR (SH_EVENT_OCCURRED));
/* If the UART bit is set here, we may have received an
* interrupt from the UART that the driver missed. To
* make sure, we IPI ourselves to force us to look again.
*/
if (event_occurred & SH_EVENT_OCCURRED_UART_INT_MASK) {
platform_send_ipi(smp_processor_id(), SGI_UART_VECTOR,
IA64_IPI_DM_INT, 0);
}
}
__clear_bit(ivec, (volatile void *)pda->sn_in_service_ivecs);
if (sn_force_interrupt_flag)
force_interrupt(irq);
}
static void sn_irq_info_free(struct rcu_head *head);
struct sn_irq_info *sn_retarget_vector(struct sn_irq_info *sn_irq_info,
nasid_t nasid, int slice)
{
int vector;
int cpuid;
#ifdef CONFIG_SMP
int cpuphys;
#endif
int64_t bridge;
int local_widget, status;
nasid_t local_nasid;
struct sn_irq_info *new_irq_info;
struct sn_pcibus_provider *pci_provider;
bridge = (u64) sn_irq_info->irq_bridge;
if (!bridge) {
return NULL; /* irq is not a device interrupt */
}
local_nasid = NASID_GET(bridge);
if (local_nasid & 1)
local_widget = TIO_SWIN_WIDGETNUM(bridge);
else
local_widget = SWIN_WIDGETNUM(bridge);
vector = sn_irq_info->irq_irq;
/* Make use of SAL_INTR_REDIRECT if PROM supports it */
status = sn_intr_redirect(local_nasid, local_widget, sn_irq_info, nasid, slice);
if (!status) {
new_irq_info = sn_irq_info;
goto finish_up;
}
/*
* PROM does not support SAL_INTR_REDIRECT, or it failed.
* Revert to old method.
*/
new_irq_info = kmalloc(sizeof(struct sn_irq_info), GFP_ATOMIC);
if (new_irq_info == NULL)
return NULL;
memcpy(new_irq_info, sn_irq_info, sizeof(struct sn_irq_info));
/* Free the old PROM new_irq_info structure */
sn_intr_free(local_nasid, local_widget, new_irq_info);
unregister_intr_pda(new_irq_info);
/* allocate a new PROM new_irq_info struct */
status = sn_intr_alloc(local_nasid, local_widget,
new_irq_info, vector,
nasid, slice);
/* SAL call failed */
if (status) {
kfree(new_irq_info);
return NULL;
}
register_intr_pda(new_irq_info);
spin_lock(&sn_irq_info_lock);
list_replace_rcu(&sn_irq_info->list, &new_irq_info->list);
spin_unlock(&sn_irq_info_lock);
call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
finish_up:
/* Update kernels new_irq_info with new target info */
cpuid = nasid_slice_to_cpuid(new_irq_info->irq_nasid,
new_irq_info->irq_slice);
new_irq_info->irq_cpuid = cpuid;
pci_provider = sn_pci_provider[new_irq_info->irq_bridge_type];
/*
* If this represents a line interrupt, target it. If it's
* an msi (irq_int_bit < 0), it's already targeted.
*/
if (new_irq_info->irq_int_bit >= 0 &&
pci_provider && pci_provider->target_interrupt)
(pci_provider->target_interrupt)(new_irq_info);
#ifdef CONFIG_SMP
cpuphys = cpu_physical_id(cpuid);
set_irq_affinity_info((vector & 0xff), cpuphys, 0);
#endif
return new_irq_info;
}
static int sn_set_affinity_irq(unsigned int irq, const struct cpumask *mask)
{
struct sn_irq_info *sn_irq_info, *sn_irq_info_safe;
nasid_t nasid;
int slice;
nasid = cpuid_to_nasid(cpumask_first(mask));
slice = cpuid_to_slice(cpumask_first(mask));
list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe,
sn_irq_lh[irq], list)
(void)sn_retarget_vector(sn_irq_info, nasid, slice);
return 0;
}
#ifdef CONFIG_SMP
void sn_set_err_irq_affinity(unsigned int irq)
{
/*
* On systems which support CPU disabling (SHub2), all error interrupts
* are targetted at the boot CPU.
*/
if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT))
set_irq_affinity_info(irq, cpu_physical_id(0), 0);
}
#else
void sn_set_err_irq_affinity(unsigned int irq) { }
#endif
static void
sn_mask_irq(unsigned int irq)
{
}
static void
sn_unmask_irq(unsigned int irq)
{
}
struct irq_chip irq_type_sn = {
.name = "SN hub",
.startup = sn_startup_irq,
.shutdown = sn_shutdown_irq,
.enable = sn_enable_irq,
.disable = sn_disable_irq,
.ack = sn_ack_irq,
.end = sn_end_irq,
.mask = sn_mask_irq,
.unmask = sn_unmask_irq,
.set_affinity = sn_set_affinity_irq
};
ia64_vector sn_irq_to_vector(int irq)
{
if (irq >= IA64_NUM_VECTORS)
return 0;
return (ia64_vector)irq;
}
unsigned int sn_local_vector_to_irq(u8 vector)
{
return (CPU_VECTOR_TO_IRQ(smp_processor_id(), vector));
}
void sn_irq_init(void)
{
int i;
struct irq_desc *base_desc = irq_desc;
ia64_first_device_vector = IA64_SN2_FIRST_DEVICE_VECTOR;
ia64_last_device_vector = IA64_SN2_LAST_DEVICE_VECTOR;
for (i = 0; i < NR_IRQS; i++) {
if (base_desc[i].chip == &no_irq_chip) {
[PATCH] genirq: rename desc->handler to desc->chip This patch-queue improves the generic IRQ layer to be truly generic, by adding various abstractions and features to it, without impacting existing functionality. While the queue can be best described as "fix and improve everything in the generic IRQ layer that we could think of", and thus it consists of many smaller features and lots of cleanups, the one feature that stands out most is the new 'irq chip' abstraction. The irq-chip abstraction is about describing and coding and IRQ controller driver by mapping its raw hardware capabilities [and quirks, if needed] in a straightforward way, without having to think about "IRQ flow" (level/edge/etc.) type of details. This stands in contrast with the current 'irq-type' model of genirq architectures, which 'mixes' raw hardware capabilities with 'flow' details. The patchset supports both types of irq controller designs at once, and converts i386 and x86_64 to the new irq-chip design. As a bonus side-effect of the irq-chip approach, chained interrupt controllers (master/slave PIC constructs, etc.) are now supported by design as well. The end result of this patchset intends to be simpler architecture-level code and more consolidation between architectures. We reused many bits of code and many concepts from Russell King's ARM IRQ layer, the merging of which was one of the motivations for this patchset. This patch: rename desc->handler to desc->chip. Originally i did not want to do this, because it's a big patch. But having both "desc->handler", "desc->handle_irq" and "action->handler" caused a large degree of confusion and made the code appear alot less clean than it truly is. I have also attempted a dual approach as well by introducing a desc->chip alias - but that just wasnt robust enough and broke frequently. So lets get over with this quickly. The conversion was done automatically via scripts and converts all the code in the kernel. This renaming patch is the first one amongst the patches, so that the remaining patches can stay flexible and can be merged and split up without having some big monolithic patch act as a merge barrier. [akpm@osdl.org: build fix] [akpm@osdl.org: another build fix] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-29 02:24:36 -07:00
base_desc[i].chip = &irq_type_sn;
}
}
}
static void register_intr_pda(struct sn_irq_info *sn_irq_info)
{
int irq = sn_irq_info->irq_irq;
int cpu = sn_irq_info->irq_cpuid;
if (pdacpu(cpu)->sn_last_irq < irq) {
pdacpu(cpu)->sn_last_irq = irq;
}
if (pdacpu(cpu)->sn_first_irq == 0 || pdacpu(cpu)->sn_first_irq > irq)
pdacpu(cpu)->sn_first_irq = irq;
}
static void unregister_intr_pda(struct sn_irq_info *sn_irq_info)
{
int irq = sn_irq_info->irq_irq;
int cpu = sn_irq_info->irq_cpuid;
struct sn_irq_info *tmp_irq_info;
int i, foundmatch;
rcu_read_lock();
if (pdacpu(cpu)->sn_last_irq == irq) {
foundmatch = 0;
for (i = pdacpu(cpu)->sn_last_irq - 1;
i && !foundmatch; i--) {
list_for_each_entry_rcu(tmp_irq_info,
sn_irq_lh[i],
list) {
if (tmp_irq_info->irq_cpuid == cpu) {
foundmatch = 1;
break;
}
}
}
pdacpu(cpu)->sn_last_irq = i;
}
if (pdacpu(cpu)->sn_first_irq == irq) {
foundmatch = 0;
for (i = pdacpu(cpu)->sn_first_irq + 1;
i < NR_IRQS && !foundmatch; i++) {
list_for_each_entry_rcu(tmp_irq_info,
sn_irq_lh[i],
list) {
if (tmp_irq_info->irq_cpuid == cpu) {
foundmatch = 1;
break;
}
}
}
pdacpu(cpu)->sn_first_irq = ((i == NR_IRQS) ? 0 : i);
}
rcu_read_unlock();
}
static void sn_irq_info_free(struct rcu_head *head)
{
struct sn_irq_info *sn_irq_info;
sn_irq_info = container_of(head, struct sn_irq_info, rcu);
kfree(sn_irq_info);
}
void sn_irq_fixup(struct pci_dev *pci_dev, struct sn_irq_info *sn_irq_info)
{
nasid_t nasid = sn_irq_info->irq_nasid;
int slice = sn_irq_info->irq_slice;
int cpu = nasid_slice_to_cpuid(nasid, slice);
#ifdef CONFIG_SMP
int cpuphys;
struct irq_desc *desc;
#endif
pci_dev_get(pci_dev);
sn_irq_info->irq_cpuid = cpu;
sn_irq_info->irq_pciioinfo = SN_PCIDEV_INFO(pci_dev);
/* link it into the sn_irq[irq] list */
spin_lock(&sn_irq_info_lock);
list_add_rcu(&sn_irq_info->list, sn_irq_lh[sn_irq_info->irq_irq]);
reserve_irq_vector(sn_irq_info->irq_irq);
spin_unlock(&sn_irq_info_lock);
register_intr_pda(sn_irq_info);
#ifdef CONFIG_SMP
cpuphys = cpu_physical_id(cpu);
set_irq_affinity_info(sn_irq_info->irq_irq, cpuphys, 0);
desc = irq_to_desc(sn_irq_info->irq_irq);
/*
* Affinity was set by the PROM, prevent it from
* being reset by the request_irq() path.
*/
desc->status |= IRQ_AFFINITY_SET;
#endif
}
void sn_irq_unfixup(struct pci_dev *pci_dev)
{
struct sn_irq_info *sn_irq_info;
/* Only cleanup IRQ stuff if this device has a host bus context */
if (!SN_PCIDEV_BUSSOFT(pci_dev))
return;
sn_irq_info = SN_PCIDEV_INFO(pci_dev)->pdi_sn_irq_info;
if (!sn_irq_info)
return;
if (!sn_irq_info->irq_irq) {
kfree(sn_irq_info);
return;
}
unregister_intr_pda(sn_irq_info);
spin_lock(&sn_irq_info_lock);
list_del_rcu(&sn_irq_info->list);
spin_unlock(&sn_irq_info_lock);
if (list_empty(sn_irq_lh[sn_irq_info->irq_irq]))
free_irq_vector(sn_irq_info->irq_irq);
call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
pci_dev_put(pci_dev);
}
static inline void
sn_call_force_intr_provider(struct sn_irq_info *sn_irq_info)
{
struct sn_pcibus_provider *pci_provider;
pci_provider = sn_pci_provider[sn_irq_info->irq_bridge_type];
/* Don't force an interrupt if the irq has been disabled */
if (!(irq_desc[sn_irq_info->irq_irq].status & IRQ_DISABLED) &&
pci_provider && pci_provider->force_interrupt)
(*pci_provider->force_interrupt)(sn_irq_info);
}
static void force_interrupt(int irq)
{
struct sn_irq_info *sn_irq_info;
if (!sn_ioif_inited)
return;
rcu_read_lock();
list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[irq], list)
sn_call_force_intr_provider(sn_irq_info);
rcu_read_unlock();
}
/*
* Check for lost interrupts. If the PIC int_status reg. says that
* an interrupt has been sent, but not handled, and the interrupt
* is not pending in either the cpu irr regs or in the soft irr regs,
* and the interrupt is not in service, then the interrupt may have
* been lost. Force an interrupt on that pin. It is possible that
* the interrupt is in flight, so we may generate a spurious interrupt,
* but we should never miss a real lost interrupt.
*/
static void sn_check_intr(int irq, struct sn_irq_info *sn_irq_info)
{
u64 regval;
struct pcidev_info *pcidev_info;
struct pcibus_info *pcibus_info;
/*
* Bridge types attached to TIO (anything but PIC) do not need this WAR
* since they do not target Shub II interrupt registers. If that
* ever changes, this check needs to accomodate.
*/
if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_PIC)
return;
pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
if (!pcidev_info)
return;
pcibus_info =
(struct pcibus_info *)pcidev_info->pdi_host_pcidev_info->
pdi_pcibus_info;
regval = pcireg_intr_status_get(pcibus_info);
if (!ia64_get_irr(irq_to_vector(irq))) {
if (!test_bit(irq, pda->sn_in_service_ivecs)) {
regval &= 0xff;
if (sn_irq_info->irq_int_bit & regval &
sn_irq_info->irq_last_intr) {
regval &= ~(sn_irq_info->irq_int_bit & regval);
sn_call_force_intr_provider(sn_irq_info);
}
}
}
sn_irq_info->irq_last_intr = regval;
}
void sn_lb_int_war_check(void)
{
struct sn_irq_info *sn_irq_info;
int i;
if (!sn_ioif_inited || pda->sn_first_irq == 0)
return;
rcu_read_lock();
for (i = pda->sn_first_irq; i <= pda->sn_last_irq; i++) {
list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[i], list) {
sn_check_intr(i, sn_irq_info);
}
}
rcu_read_unlock();
}
void __init sn_irq_lh_init(void)
{
int i;
sn_irq_lh = kmalloc(sizeof(struct list_head *) * NR_IRQS, GFP_KERNEL);
if (!sn_irq_lh)
panic("SN PCI INIT: Failed to allocate memory for PCI init\n");
for (i = 0; i < NR_IRQS; i++) {
sn_irq_lh[i] = kmalloc(sizeof(struct list_head), GFP_KERNEL);
if (!sn_irq_lh[i])
panic("SN PCI INIT: Failed IRQ memory allocation\n");
INIT_LIST_HEAD(sn_irq_lh[i]);
}
}