1
linux/arch/x86/crypto/blake2s-glue.c

75 lines
2.1 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
*/
#include <crypto/internal/blake2s.h>
#include <linux/types.h>
#include <linux/jump_label.h>
#include <linux/kernel.h>
#include <linux/sizes.h>
#include <asm/cpufeature.h>
#include <asm/fpu/api.h>
#include <asm/processor.h>
#include <asm/simd.h>
asmlinkage void blake2s_compress_ssse3(struct blake2s_state *state,
const u8 *block, const size_t nblocks,
const u32 inc);
asmlinkage void blake2s_compress_avx512(struct blake2s_state *state,
const u8 *block, const size_t nblocks,
const u32 inc);
static __ro_after_init DEFINE_STATIC_KEY_FALSE(blake2s_use_ssse3);
static __ro_after_init DEFINE_STATIC_KEY_FALSE(blake2s_use_avx512);
void blake2s_compress(struct blake2s_state *state, const u8 *block,
size_t nblocks, const u32 inc)
{
/* SIMD disables preemption, so relax after processing each page. */
crypto: arch/lib - limit simd usage to 4k chunks The initial Zinc patchset, after some mailing list discussion, contained code to ensure that kernel_fpu_enable would not be kept on for more than a 4k chunk, since it disables preemption. The choice of 4k isn't totally scientific, but it's not a bad guess either, and it's what's used in both the x86 poly1305, blake2s, and nhpoly1305 code already (in the form of PAGE_SIZE, which this commit corrects to be explicitly 4k for the former two). Ard did some back of the envelope calculations and found that at 5 cycles/byte (overestimate) on a 1ghz processor (pretty slow), 4k means we have a maximum preemption disabling of 20us, which Sebastian confirmed was probably a good limit. Unfortunately the chunking appears to have been left out of the final patchset that added the glue code. So, this commit adds it back in. Fixes: 84e03fa39fbe ("crypto: x86/chacha - expose SIMD ChaCha routine as library function") Fixes: b3aad5bad26a ("crypto: arm64/chacha - expose arm64 ChaCha routine as library function") Fixes: a44a3430d71b ("crypto: arm/chacha - expose ARM ChaCha routine as library function") Fixes: d7d7b8535662 ("crypto: x86/poly1305 - wire up faster implementations for kernel") Fixes: f569ca164751 ("crypto: arm64/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementation") Fixes: a6b803b3ddc7 ("crypto: arm/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementation") Fixes: ed0356eda153 ("crypto: blake2s - x86_64 SIMD implementation") Cc: Eric Biggers <ebiggers@google.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: stable@vger.kernel.org Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-04-22 16:18:53 -07:00
BUILD_BUG_ON(SZ_4K / BLAKE2S_BLOCK_SIZE < 8);
if (!static_branch_likely(&blake2s_use_ssse3) || !may_use_simd()) {
blake2s_compress_generic(state, block, nblocks, inc);
return;
}
crypto: arch/lib - limit simd usage to 4k chunks The initial Zinc patchset, after some mailing list discussion, contained code to ensure that kernel_fpu_enable would not be kept on for more than a 4k chunk, since it disables preemption. The choice of 4k isn't totally scientific, but it's not a bad guess either, and it's what's used in both the x86 poly1305, blake2s, and nhpoly1305 code already (in the form of PAGE_SIZE, which this commit corrects to be explicitly 4k for the former two). Ard did some back of the envelope calculations and found that at 5 cycles/byte (overestimate) on a 1ghz processor (pretty slow), 4k means we have a maximum preemption disabling of 20us, which Sebastian confirmed was probably a good limit. Unfortunately the chunking appears to have been left out of the final patchset that added the glue code. So, this commit adds it back in. Fixes: 84e03fa39fbe ("crypto: x86/chacha - expose SIMD ChaCha routine as library function") Fixes: b3aad5bad26a ("crypto: arm64/chacha - expose arm64 ChaCha routine as library function") Fixes: a44a3430d71b ("crypto: arm/chacha - expose ARM ChaCha routine as library function") Fixes: d7d7b8535662 ("crypto: x86/poly1305 - wire up faster implementations for kernel") Fixes: f569ca164751 ("crypto: arm64/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementation") Fixes: a6b803b3ddc7 ("crypto: arm/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementation") Fixes: ed0356eda153 ("crypto: blake2s - x86_64 SIMD implementation") Cc: Eric Biggers <ebiggers@google.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: stable@vger.kernel.org Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-04-22 16:18:53 -07:00
do {
const size_t blocks = min_t(size_t, nblocks,
crypto: arch/lib - limit simd usage to 4k chunks The initial Zinc patchset, after some mailing list discussion, contained code to ensure that kernel_fpu_enable would not be kept on for more than a 4k chunk, since it disables preemption. The choice of 4k isn't totally scientific, but it's not a bad guess either, and it's what's used in both the x86 poly1305, blake2s, and nhpoly1305 code already (in the form of PAGE_SIZE, which this commit corrects to be explicitly 4k for the former two). Ard did some back of the envelope calculations and found that at 5 cycles/byte (overestimate) on a 1ghz processor (pretty slow), 4k means we have a maximum preemption disabling of 20us, which Sebastian confirmed was probably a good limit. Unfortunately the chunking appears to have been left out of the final patchset that added the glue code. So, this commit adds it back in. Fixes: 84e03fa39fbe ("crypto: x86/chacha - expose SIMD ChaCha routine as library function") Fixes: b3aad5bad26a ("crypto: arm64/chacha - expose arm64 ChaCha routine as library function") Fixes: a44a3430d71b ("crypto: arm/chacha - expose ARM ChaCha routine as library function") Fixes: d7d7b8535662 ("crypto: x86/poly1305 - wire up faster implementations for kernel") Fixes: f569ca164751 ("crypto: arm64/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementation") Fixes: a6b803b3ddc7 ("crypto: arm/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementation") Fixes: ed0356eda153 ("crypto: blake2s - x86_64 SIMD implementation") Cc: Eric Biggers <ebiggers@google.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: stable@vger.kernel.org Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-04-22 16:18:53 -07:00
SZ_4K / BLAKE2S_BLOCK_SIZE);
kernel_fpu_begin();
if (IS_ENABLED(CONFIG_AS_AVX512) &&
static_branch_likely(&blake2s_use_avx512))
blake2s_compress_avx512(state, block, blocks, inc);
else
blake2s_compress_ssse3(state, block, blocks, inc);
kernel_fpu_end();
nblocks -= blocks;
block += blocks * BLAKE2S_BLOCK_SIZE;
crypto: arch/lib - limit simd usage to 4k chunks The initial Zinc patchset, after some mailing list discussion, contained code to ensure that kernel_fpu_enable would not be kept on for more than a 4k chunk, since it disables preemption. The choice of 4k isn't totally scientific, but it's not a bad guess either, and it's what's used in both the x86 poly1305, blake2s, and nhpoly1305 code already (in the form of PAGE_SIZE, which this commit corrects to be explicitly 4k for the former two). Ard did some back of the envelope calculations and found that at 5 cycles/byte (overestimate) on a 1ghz processor (pretty slow), 4k means we have a maximum preemption disabling of 20us, which Sebastian confirmed was probably a good limit. Unfortunately the chunking appears to have been left out of the final patchset that added the glue code. So, this commit adds it back in. Fixes: 84e03fa39fbe ("crypto: x86/chacha - expose SIMD ChaCha routine as library function") Fixes: b3aad5bad26a ("crypto: arm64/chacha - expose arm64 ChaCha routine as library function") Fixes: a44a3430d71b ("crypto: arm/chacha - expose ARM ChaCha routine as library function") Fixes: d7d7b8535662 ("crypto: x86/poly1305 - wire up faster implementations for kernel") Fixes: f569ca164751 ("crypto: arm64/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementation") Fixes: a6b803b3ddc7 ("crypto: arm/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementation") Fixes: ed0356eda153 ("crypto: blake2s - x86_64 SIMD implementation") Cc: Eric Biggers <ebiggers@google.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: stable@vger.kernel.org Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-04-22 16:18:53 -07:00
} while (nblocks);
}
EXPORT_SYMBOL(blake2s_compress);
static int __init blake2s_mod_init(void)
{
if (boot_cpu_has(X86_FEATURE_SSSE3))
static_branch_enable(&blake2s_use_ssse3);
if (IS_ENABLED(CONFIG_AS_AVX512) &&
boot_cpu_has(X86_FEATURE_AVX) &&
boot_cpu_has(X86_FEATURE_AVX2) &&
boot_cpu_has(X86_FEATURE_AVX512F) &&
boot_cpu_has(X86_FEATURE_AVX512VL) &&
cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM |
XFEATURE_MASK_AVX512, NULL))
static_branch_enable(&blake2s_use_avx512);
return 0;
}
subsys_initcall(blake2s_mod_init);