1
linux/arch/ppc64/kernel/Makefile

63 lines
1.4 KiB
Makefile
Raw Normal View History

#
# Makefile for the linux ppc64 kernel.
#
ifneq ($(CONFIG_PPC_MERGE),y)
EXTRA_CFLAGS += -mno-minimal-toc
extra-y := head.o vmlinux.lds
obj-y := misc.o prom.o
endif
obj-y += irq.o idle.o dma.o \
[PATCH] powerpc: Merge bitops.h Here's a revised version. This re-introduces the set_bits() function from ppc64, which I removed because I thought it was unused (it exists on no other arch). In fact it is used in the powermac interrupt code (but not on pSeries). - We use LARXL/STCXL macros to generate the right (32 or 64 bit) instructions, similar to LDL/STL from ppc_asm.h, used in fpu.S - ppc32 previously used a full "sync" barrier at the end of test_and_*_bit(), whereas ppc64 used an "isync". The merged version uses "isync", since I believe that's sufficient. - The ppc64 versions of then minix_*() bitmap functions have changed semantics. Previously on ppc64, these functions were big-endian (that is bit 0 was the LSB in the first 64-bit, big-endian word). On ppc32 (and x86, for that matter, they were little-endian. As far as I can tell, the big-endian usage was simply wrong - I guess no-one ever tried to use minixfs on ppc64. - On ppc32 find_next_bit() and find_next_zero_bit() are no longer inline (they were already out-of-line on ppc64). - For ppc64, sched_find_first_bit() has moved from mmu_context.h to the merged bitops. What it was doing in mmu_context.h in the first place, I have no idea. - The fls() function is now implemented using the cntlzw instruction on ppc64, instead of generic_fls(), as it already was on ppc32. - For ARCH=ppc, this patch requires adding arch/powerpc/lib to the arch/ppc/Makefile. This in turn requires some changes to arch/powerpc/lib/Makefile which didn't correctly handle ARCH=ppc. Built and running on G5. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-10-31 23:28:10 -07:00
align.o pacaData.o \
udbg.o ioctl32.o \
rtc.o \
cpu_setup_power4.o \
iommu.o sysfs.o vdso.o firmware.o
obj-y += vdso32/ vdso64/
pci-obj-$(CONFIG_PPC_MULTIPLATFORM) += pci_dn.o pci_direct_iommu.o
obj-$(CONFIG_PCI) += pci.o pci_iommu.o iomap.o $(pci-obj-y)
obj-$(CONFIG_PPC_MULTIPLATFORM) += nvram.o
ifneq ($(CONFIG_PPC_MERGE),y)
obj-$(CONFIG_PPC_MULTIPLATFORM) += prom_init.o
endif
obj-$(CONFIG_PPC_PSERIES) += udbg_16550.o
[PATCH] ppc64: kexec support for ppc64 This patch implements the kexec support for ppc64 platforms. A couple of notes: 1) We copy the pages in virtual mode, using the full base kernel and a statically allocated stack. At kexec_prepare time we scan the pages and if any overlap our (0, _end[]) range we return -ETXTBSY. On PowerPC 64 systems running in LPAR (logical partitioning) mode, only a small region of memory, referred to as the RMO, can be accessed in real mode. Since Linux runs with only one zone of memory in the memory allocator, and it can be orders of magnitude more memory than the RMO, looping until we allocate pages in the source region is not feasible. Copying in virtual means we don't have to write a hash table generation and call hypervisor to insert translations, instead we rely on the pinned kernel linear mapping. The kernel already has move to linked location built in, so there is no requirement to load it at 0. If we want to load something other than a kernel, then a stub can be written to copy a linear chunk in real mode. 2) The start entry point gets passed parameters from the kernel. Slaves are started at a fixed address after copying code from the entry point. All CPUs get passed their firmware assigned physical id in r3 (most calling conventions use this register for the first argument). This is used to distinguish each CPU from all other CPUs. Since firmware is not around, there is no other way to obtain this information other than to pass it somewhere. A single CPU, referred to here as the master and the one executing the kexec call, branches to start with the address of start in r4. While this can be calculated, we have to load it through a gpr to branch to this point so defining the register this is contained in is free. A stack of unspecified size is available at r1 (also common calling convention). All remaining running CPUs are sent to start at absolute address 0x60 after copying the first 0x100 bytes from start to address 0. This convention was chosen because it matches what the kernel has been doing itself. (only gpr3 is defined). Note: This is not quite the convention of the kexec bootblock v2 in the kernel. A stub has been written to convert between them, and we may adjust the kernel in the future to allow this directly without any stub. 3) Destination pages can be placed anywhere, even where they would not be accessible in real mode. This will allow us to place ram disks above the RMO if we choose. Signed-off-by: Milton Miller <miltonm@bga.com> Signed-off-by: R Sharada <sharada@in.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 14:58:10 -07:00
obj-$(CONFIG_KEXEC) += machine_kexec.o
obj-$(CONFIG_EEH) += eeh.o
obj-$(CONFIG_PROC_FS) += proc_ppc64.o
obj-$(CONFIG_MODULES) += module.o
ifneq ($(CONFIG_PPC_MERGE),y)
obj-$(CONFIG_MODULES) += ppc_ksyms.o
endif
obj-$(CONFIG_PPC_RTAS) += rtas_pci.o
obj-$(CONFIG_SCANLOG) += scanlog.o
obj-$(CONFIG_LPARCFG) += lparcfg.o
obj-$(CONFIG_HVC_CONSOLE) += hvconsole.o
ifneq ($(CONFIG_PPC_MERGE),y)
obj-$(CONFIG_BOOTX_TEXT) += btext.o
endif
obj-$(CONFIG_HVCS) += hvcserver.o
obj-$(CONFIG_PPC_PMAC) += udbg_scc.o
obj-$(CONFIG_PPC_MAPLE) += udbg_16550.o
obj-$(CONFIG_KPROBES) += kprobes.o
CFLAGS_ioctl32.o += -Ifs/
ifneq ($(CONFIG_PPC_MERGE),y)
ifeq ($(CONFIG_PPC_ISERIES),y)
arch/ppc64/kernel/head.o: arch/powerpc/kernel/lparmap.s
AFLAGS_head.o += -Iarch/powerpc/kernel
endif
endif