1
linux/fs/notify/fanotify/fanotify_user.c

1980 lines
52 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 07:07:57 -07:00
// SPDX-License-Identifier: GPL-2.0
#include <linux/fanotify.h>
#include <linux/fcntl.h>
fanotify: add pidfd support to the fanotify API Introduce a new flag FAN_REPORT_PIDFD for fanotify_init(2) which allows userspace applications to control whether a pidfd information record containing a pidfd is to be returned alongside the generic event metadata for each event. If FAN_REPORT_PIDFD is enabled for a notification group, an additional struct fanotify_event_info_pidfd object type will be supplied alongside the generic struct fanotify_event_metadata for a single event. This functionality is analogous to that of FAN_REPORT_FID in terms of how the event structure is supplied to a userspace application. Usage of FAN_REPORT_PIDFD with FAN_REPORT_FID/FAN_REPORT_DFID_NAME is permitted, and in this case a struct fanotify_event_info_pidfd object will likely follow any struct fanotify_event_info_fid object. Currently, the usage of the FAN_REPORT_TID flag is not permitted along with FAN_REPORT_PIDFD as the pidfd API currently only supports the creation of pidfds for thread-group leaders. Additionally, usage of the FAN_REPORT_PIDFD flag is limited to privileged processes only i.e. event listeners that are running with the CAP_SYS_ADMIN capability. Attempting to supply the FAN_REPORT_TID initialization flags with FAN_REPORT_PIDFD or creating a notification group without CAP_SYS_ADMIN will result with -EINVAL being returned to the caller. In the event of a pidfd creation error, there are two types of error values that can be reported back to the listener. There is FAN_NOPIDFD, which will be reported in cases where the process responsible for generating the event has terminated prior to the event listener being able to read the event. Then there is FAN_EPIDFD, which will be reported when a more generic pidfd creation error has occurred when fanotify calls pidfd_create(). Link: https://lore.kernel.org/r/5f9e09cff7ed62bfaa51c1369e0f7ea5f16a91aa.1628398044.git.repnop@google.com Signed-off-by: Matthew Bobrowski <repnop@google.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-08-07 22:26:25 -07:00
#include <linux/fdtable.h>
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/fsnotify_backend.h>
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
#include <linux/init.h>
#include <linux/mount.h>
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
#include <linux/namei.h>
#include <linux/poll.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/slab.h>
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
#include <linux/types.h>
#include <linux/uaccess.h>
#include <linux/compat.h>
#include <linux/sched/signal.h>
fs: fsnotify: account fsnotify metadata to kmemcg Patch series "Directed kmem charging", v8. The Linux kernel's memory cgroup allows limiting the memory usage of the jobs running on the system to provide isolation between the jobs. All the kernel memory allocated in the context of the job and marked with __GFP_ACCOUNT will also be included in the memory usage and be limited by the job's limit. The kernel memory can only be charged to the memcg of the process in whose context kernel memory was allocated. However there are cases where the allocated kernel memory should be charged to the memcg different from the current processes's memcg. This patch series contains two such concrete use-cases i.e. fsnotify and buffer_head. The fsnotify event objects can consume a lot of system memory for large or unlimited queues if there is either no or slow listener. The events are allocated in the context of the event producer. However they should be charged to the event consumer. Similarly the buffer_head objects can be allocated in a memcg different from the memcg of the page for which buffer_head objects are being allocated. To solve this issue, this patch series introduces mechanism to charge kernel memory to a given memcg. In case of fsnotify events, the memcg of the consumer can be used for charging and for buffer_head, the memcg of the page can be charged. For directed charging, the caller can use the scope API memalloc_[un]use_memcg() to specify the memcg to charge for all the __GFP_ACCOUNT allocations within the scope. This patch (of 2): A lot of memory can be consumed by the events generated for the huge or unlimited queues if there is either no or slow listener. This can cause system level memory pressure or OOMs. So, it's better to account the fsnotify kmem caches to the memcg of the listener. However the listener can be in a different memcg than the memcg of the producer and these allocations happen in the context of the event producer. This patch introduces remote memcg charging API which the producer can use to charge the allocations to the memcg of the listener. There are seven fsnotify kmem caches and among them allocations from dnotify_struct_cache, dnotify_mark_cache, fanotify_mark_cache and inotify_inode_mark_cachep happens in the context of syscall from the listener. So, SLAB_ACCOUNT is enough for these caches. The objects from fsnotify_mark_connector_cachep are not accounted as they are small compared to the notification mark or events and it is unclear whom to account connector to since it is shared by all events attached to the inode. The allocations from the event caches happen in the context of the event producer. For such caches we will need to remote charge the allocations to the listener's memcg. Thus we save the memcg reference in the fsnotify_group structure of the listener. This patch has also moved the members of fsnotify_group to keep the size same, at least for 64 bit build, even with additional member by filling the holes. [shakeelb@google.com: use GFP_KERNEL_ACCOUNT rather than open-coding it] Link: http://lkml.kernel.org/r/20180702215439.211597-1-shakeelb@google.com Link: http://lkml.kernel.org/r/20180627191250.209150-2-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 15:46:39 -07:00
#include <linux/memcontrol.h>
#include <linux/statfs.h>
#include <linux/exportfs.h>
#include <asm/ioctls.h>
#include "../fsnotify.h"
fs, notify: add procfs fdinfo helper This allow us to print out fsnotify details such as watchee inode, device, mask and optionally a file handle. For inotify objects if kernel compiled with exportfs support the output will be | pos: 0 | flags: 02000000 | inotify wd:3 ino:9e7e sdev:800013 mask:800afce ignored_mask:0 fhandle-bytes:8 fhandle-type:1 f_handle:7e9e0000640d1b6d | inotify wd:2 ino:a111 sdev:800013 mask:800afce ignored_mask:0 fhandle-bytes:8 fhandle-type:1 f_handle:11a1000020542153 | inotify wd:1 ino:6b149 sdev:800013 mask:800afce ignored_mask:0 fhandle-bytes:8 fhandle-type:1 f_handle:49b1060023552153 If kernel compiled without exportfs support, the file handle won't be provided but inode and device only. | pos: 0 | flags: 02000000 | inotify wd:3 ino:9e7e sdev:800013 mask:800afce ignored_mask:0 | inotify wd:2 ino:a111 sdev:800013 mask:800afce ignored_mask:0 | inotify wd:1 ino:6b149 sdev:800013 mask:800afce ignored_mask:0 For fanotify the output is like | pos: 0 | flags: 04002 | fanotify flags:10 event-flags:0 | fanotify mnt_id:12 mask:3b ignored_mask:0 | fanotify ino:50205 sdev:800013 mask:3b ignored_mask:40000000 fhandle-bytes:8 fhandle-type:1 f_handle:05020500fb1d47e7 To minimize impact on general fsnotify code the new functionality is gathered in fs/notify/fdinfo.c file. Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> Acked-by: Pavel Emelyanov <xemul@parallels.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andrey Vagin <avagin@openvz.org> Cc: Al Viro <viro@ZenIV.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: James Bottomley <jbottomley@parallels.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Matthew Helsley <matt.helsley@gmail.com> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@onelan.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-17 17:05:12 -07:00
#include "../fdinfo.h"
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:48:14 -07:00
#include "fanotify.h"
#define FANOTIFY_DEFAULT_MAX_EVENTS 16384
fanotify: configurable limits via sysfs fanotify has some hardcoded limits. The only APIs to escape those limits are FAN_UNLIMITED_QUEUE and FAN_UNLIMITED_MARKS. Allow finer grained tuning of the system limits via sysfs tunables under /proc/sys/fs/fanotify, similar to tunables under /proc/sys/fs/inotify, with some minor differences. - max_queued_events - global system tunable for group queue size limit. Like the inotify tunable with the same name, it defaults to 16384 and applies on initialization of a new group. - max_user_marks - user ns tunable for marks limit per user. Like the inotify tunable named max_user_watches, on a machine with sufficient RAM and it defaults to 1048576 in init userns and can be further limited per containing user ns. - max_user_groups - user ns tunable for number of groups per user. Like the inotify tunable named max_user_instances, it defaults to 128 in init userns and can be further limited per containing user ns. The slightly different tunable names used for fanotify are derived from the "group" and "mark" terminology used in the fanotify man pages and throughout the code. Considering the fact that the default value for max_user_instances was increased in kernel v5.10 from 8192 to 1048576, leaving the legacy fanotify limit of 8192 marks per group in addition to the max_user_marks limit makes little sense, so the per group marks limit has been removed. Note that when a group is initialized with FAN_UNLIMITED_MARKS, its own marks are not accounted in the per user marks account, so in effect the limit of max_user_marks is only for the collection of groups that are not initialized with FAN_UNLIMITED_MARKS. Link: https://lore.kernel.org/r/20210304112921.3996419-2-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-03-04 04:29:20 -07:00
#define FANOTIFY_OLD_DEFAULT_MAX_MARKS 8192
#define FANOTIFY_DEFAULT_MAX_GROUPS 128
#define FANOTIFY_DEFAULT_FEE_POOL_SIZE 32
fanotify: configurable limits via sysfs fanotify has some hardcoded limits. The only APIs to escape those limits are FAN_UNLIMITED_QUEUE and FAN_UNLIMITED_MARKS. Allow finer grained tuning of the system limits via sysfs tunables under /proc/sys/fs/fanotify, similar to tunables under /proc/sys/fs/inotify, with some minor differences. - max_queued_events - global system tunable for group queue size limit. Like the inotify tunable with the same name, it defaults to 16384 and applies on initialization of a new group. - max_user_marks - user ns tunable for marks limit per user. Like the inotify tunable named max_user_watches, on a machine with sufficient RAM and it defaults to 1048576 in init userns and can be further limited per containing user ns. - max_user_groups - user ns tunable for number of groups per user. Like the inotify tunable named max_user_instances, it defaults to 128 in init userns and can be further limited per containing user ns. The slightly different tunable names used for fanotify are derived from the "group" and "mark" terminology used in the fanotify man pages and throughout the code. Considering the fact that the default value for max_user_instances was increased in kernel v5.10 from 8192 to 1048576, leaving the legacy fanotify limit of 8192 marks per group in addition to the max_user_marks limit makes little sense, so the per group marks limit has been removed. Note that when a group is initialized with FAN_UNLIMITED_MARKS, its own marks are not accounted in the per user marks account, so in effect the limit of max_user_marks is only for the collection of groups that are not initialized with FAN_UNLIMITED_MARKS. Link: https://lore.kernel.org/r/20210304112921.3996419-2-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-03-04 04:29:20 -07:00
/*
* Legacy fanotify marks limits (8192) is per group and we introduced a tunable
* limit of marks per user, similar to inotify. Effectively, the legacy limit
* of fanotify marks per user is <max marks per group> * <max groups per user>.
* This default limit (1M) also happens to match the increased limit of inotify
* max_user_watches since v5.10.
*/
#define FANOTIFY_DEFAULT_MAX_USER_MARKS \
(FANOTIFY_OLD_DEFAULT_MAX_MARKS * FANOTIFY_DEFAULT_MAX_GROUPS)
/*
* Most of the memory cost of adding an inode mark is pinning the marked inode.
* The size of the filesystem inode struct is not uniform across filesystems,
* so double the size of a VFS inode is used as a conservative approximation.
*/
#define INODE_MARK_COST (2 * sizeof(struct inode))
/* configurable via /proc/sys/fs/fanotify/ */
static int fanotify_max_queued_events __read_mostly;
#ifdef CONFIG_SYSCTL
#include <linux/sysctl.h>
static long ft_zero = 0;
static long ft_int_max = INT_MAX;
inotify: simplify subdirectory registration with register_sysctl() There is no need to user boiler plate code to specify a set of base directories we're going to stuff sysctls under. Simplify this by using register_sysctl() and specifying the directory path directly. Move inotify_user sysctl to inotify_user.c while at it to remove clutter from kernel/sysctl.c. [mcgrof@kernel.org: remember to register fanotify_table] Link: https://lkml.kernel.org/r/YZ5A6iWLb0h3N3RC@bombadil.infradead.org [mcgrof@kernel.org: update commit log to reflect new path we decided to take] Link: https://lkml.kernel.org/r/20211123202422.819032-7-mcgrof@kernel.org Signed-off-by: Xiaoming Ni <nixiaoming@huawei.com> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Antti Palosaari <crope@iki.fi> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Benjamin LaHaise <bcrl@kvack.org> Cc: Clemens Ladisch <clemens@ladisch.de> Cc: David Airlie <airlied@linux.ie> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Joel Becker <jlbec@evilplan.org> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Julia Lawall <julia.lawall@inria.fr> Cc: Kees Cook <keescook@chromium.org> Cc: Lukas Middendorf <kernel@tuxforce.de> Cc: Mark Fasheh <mark@fasheh.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Phillip Potter <phil@philpotter.co.uk> Cc: Qing Wang <wangqing@vivo.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Sebastian Reichel <sre@kernel.org> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Stephen Kitt <steve@sk2.org> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Douglas Gilbert <dgilbert@interlog.com> Cc: James E.J. Bottomley <jejb@linux.ibm.com> Cc: Jani Nikula <jani.nikula@intel.com> Cc: John Ogness <john.ogness@linutronix.de> Cc: Martin K. Petersen <martin.petersen@oracle.com> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-21 23:11:59 -07:00
static struct ctl_table fanotify_table[] = {
fanotify: configurable limits via sysfs fanotify has some hardcoded limits. The only APIs to escape those limits are FAN_UNLIMITED_QUEUE and FAN_UNLIMITED_MARKS. Allow finer grained tuning of the system limits via sysfs tunables under /proc/sys/fs/fanotify, similar to tunables under /proc/sys/fs/inotify, with some minor differences. - max_queued_events - global system tunable for group queue size limit. Like the inotify tunable with the same name, it defaults to 16384 and applies on initialization of a new group. - max_user_marks - user ns tunable for marks limit per user. Like the inotify tunable named max_user_watches, on a machine with sufficient RAM and it defaults to 1048576 in init userns and can be further limited per containing user ns. - max_user_groups - user ns tunable for number of groups per user. Like the inotify tunable named max_user_instances, it defaults to 128 in init userns and can be further limited per containing user ns. The slightly different tunable names used for fanotify are derived from the "group" and "mark" terminology used in the fanotify man pages and throughout the code. Considering the fact that the default value for max_user_instances was increased in kernel v5.10 from 8192 to 1048576, leaving the legacy fanotify limit of 8192 marks per group in addition to the max_user_marks limit makes little sense, so the per group marks limit has been removed. Note that when a group is initialized with FAN_UNLIMITED_MARKS, its own marks are not accounted in the per user marks account, so in effect the limit of max_user_marks is only for the collection of groups that are not initialized with FAN_UNLIMITED_MARKS. Link: https://lore.kernel.org/r/20210304112921.3996419-2-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-03-04 04:29:20 -07:00
{
.procname = "max_user_groups",
.data = &init_user_ns.ucount_max[UCOUNT_FANOTIFY_GROUPS],
.maxlen = sizeof(long),
fanotify: configurable limits via sysfs fanotify has some hardcoded limits. The only APIs to escape those limits are FAN_UNLIMITED_QUEUE and FAN_UNLIMITED_MARKS. Allow finer grained tuning of the system limits via sysfs tunables under /proc/sys/fs/fanotify, similar to tunables under /proc/sys/fs/inotify, with some minor differences. - max_queued_events - global system tunable for group queue size limit. Like the inotify tunable with the same name, it defaults to 16384 and applies on initialization of a new group. - max_user_marks - user ns tunable for marks limit per user. Like the inotify tunable named max_user_watches, on a machine with sufficient RAM and it defaults to 1048576 in init userns and can be further limited per containing user ns. - max_user_groups - user ns tunable for number of groups per user. Like the inotify tunable named max_user_instances, it defaults to 128 in init userns and can be further limited per containing user ns. The slightly different tunable names used for fanotify are derived from the "group" and "mark" terminology used in the fanotify man pages and throughout the code. Considering the fact that the default value for max_user_instances was increased in kernel v5.10 from 8192 to 1048576, leaving the legacy fanotify limit of 8192 marks per group in addition to the max_user_marks limit makes little sense, so the per group marks limit has been removed. Note that when a group is initialized with FAN_UNLIMITED_MARKS, its own marks are not accounted in the per user marks account, so in effect the limit of max_user_marks is only for the collection of groups that are not initialized with FAN_UNLIMITED_MARKS. Link: https://lore.kernel.org/r/20210304112921.3996419-2-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-03-04 04:29:20 -07:00
.mode = 0644,
.proc_handler = proc_doulongvec_minmax,
.extra1 = &ft_zero,
.extra2 = &ft_int_max,
fanotify: configurable limits via sysfs fanotify has some hardcoded limits. The only APIs to escape those limits are FAN_UNLIMITED_QUEUE and FAN_UNLIMITED_MARKS. Allow finer grained tuning of the system limits via sysfs tunables under /proc/sys/fs/fanotify, similar to tunables under /proc/sys/fs/inotify, with some minor differences. - max_queued_events - global system tunable for group queue size limit. Like the inotify tunable with the same name, it defaults to 16384 and applies on initialization of a new group. - max_user_marks - user ns tunable for marks limit per user. Like the inotify tunable named max_user_watches, on a machine with sufficient RAM and it defaults to 1048576 in init userns and can be further limited per containing user ns. - max_user_groups - user ns tunable for number of groups per user. Like the inotify tunable named max_user_instances, it defaults to 128 in init userns and can be further limited per containing user ns. The slightly different tunable names used for fanotify are derived from the "group" and "mark" terminology used in the fanotify man pages and throughout the code. Considering the fact that the default value for max_user_instances was increased in kernel v5.10 from 8192 to 1048576, leaving the legacy fanotify limit of 8192 marks per group in addition to the max_user_marks limit makes little sense, so the per group marks limit has been removed. Note that when a group is initialized with FAN_UNLIMITED_MARKS, its own marks are not accounted in the per user marks account, so in effect the limit of max_user_marks is only for the collection of groups that are not initialized with FAN_UNLIMITED_MARKS. Link: https://lore.kernel.org/r/20210304112921.3996419-2-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-03-04 04:29:20 -07:00
},
{
.procname = "max_user_marks",
.data = &init_user_ns.ucount_max[UCOUNT_FANOTIFY_MARKS],
.maxlen = sizeof(long),
fanotify: configurable limits via sysfs fanotify has some hardcoded limits. The only APIs to escape those limits are FAN_UNLIMITED_QUEUE and FAN_UNLIMITED_MARKS. Allow finer grained tuning of the system limits via sysfs tunables under /proc/sys/fs/fanotify, similar to tunables under /proc/sys/fs/inotify, with some minor differences. - max_queued_events - global system tunable for group queue size limit. Like the inotify tunable with the same name, it defaults to 16384 and applies on initialization of a new group. - max_user_marks - user ns tunable for marks limit per user. Like the inotify tunable named max_user_watches, on a machine with sufficient RAM and it defaults to 1048576 in init userns and can be further limited per containing user ns. - max_user_groups - user ns tunable for number of groups per user. Like the inotify tunable named max_user_instances, it defaults to 128 in init userns and can be further limited per containing user ns. The slightly different tunable names used for fanotify are derived from the "group" and "mark" terminology used in the fanotify man pages and throughout the code. Considering the fact that the default value for max_user_instances was increased in kernel v5.10 from 8192 to 1048576, leaving the legacy fanotify limit of 8192 marks per group in addition to the max_user_marks limit makes little sense, so the per group marks limit has been removed. Note that when a group is initialized with FAN_UNLIMITED_MARKS, its own marks are not accounted in the per user marks account, so in effect the limit of max_user_marks is only for the collection of groups that are not initialized with FAN_UNLIMITED_MARKS. Link: https://lore.kernel.org/r/20210304112921.3996419-2-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-03-04 04:29:20 -07:00
.mode = 0644,
.proc_handler = proc_doulongvec_minmax,
.extra1 = &ft_zero,
.extra2 = &ft_int_max,
fanotify: configurable limits via sysfs fanotify has some hardcoded limits. The only APIs to escape those limits are FAN_UNLIMITED_QUEUE and FAN_UNLIMITED_MARKS. Allow finer grained tuning of the system limits via sysfs tunables under /proc/sys/fs/fanotify, similar to tunables under /proc/sys/fs/inotify, with some minor differences. - max_queued_events - global system tunable for group queue size limit. Like the inotify tunable with the same name, it defaults to 16384 and applies on initialization of a new group. - max_user_marks - user ns tunable for marks limit per user. Like the inotify tunable named max_user_watches, on a machine with sufficient RAM and it defaults to 1048576 in init userns and can be further limited per containing user ns. - max_user_groups - user ns tunable for number of groups per user. Like the inotify tunable named max_user_instances, it defaults to 128 in init userns and can be further limited per containing user ns. The slightly different tunable names used for fanotify are derived from the "group" and "mark" terminology used in the fanotify man pages and throughout the code. Considering the fact that the default value for max_user_instances was increased in kernel v5.10 from 8192 to 1048576, leaving the legacy fanotify limit of 8192 marks per group in addition to the max_user_marks limit makes little sense, so the per group marks limit has been removed. Note that when a group is initialized with FAN_UNLIMITED_MARKS, its own marks are not accounted in the per user marks account, so in effect the limit of max_user_marks is only for the collection of groups that are not initialized with FAN_UNLIMITED_MARKS. Link: https://lore.kernel.org/r/20210304112921.3996419-2-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-03-04 04:29:20 -07:00
},
{
.procname = "max_queued_events",
.data = &fanotify_max_queued_events,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO
},
};
inotify: simplify subdirectory registration with register_sysctl() There is no need to user boiler plate code to specify a set of base directories we're going to stuff sysctls under. Simplify this by using register_sysctl() and specifying the directory path directly. Move inotify_user sysctl to inotify_user.c while at it to remove clutter from kernel/sysctl.c. [mcgrof@kernel.org: remember to register fanotify_table] Link: https://lkml.kernel.org/r/YZ5A6iWLb0h3N3RC@bombadil.infradead.org [mcgrof@kernel.org: update commit log to reflect new path we decided to take] Link: https://lkml.kernel.org/r/20211123202422.819032-7-mcgrof@kernel.org Signed-off-by: Xiaoming Ni <nixiaoming@huawei.com> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Antti Palosaari <crope@iki.fi> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Benjamin LaHaise <bcrl@kvack.org> Cc: Clemens Ladisch <clemens@ladisch.de> Cc: David Airlie <airlied@linux.ie> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Joel Becker <jlbec@evilplan.org> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Julia Lawall <julia.lawall@inria.fr> Cc: Kees Cook <keescook@chromium.org> Cc: Lukas Middendorf <kernel@tuxforce.de> Cc: Mark Fasheh <mark@fasheh.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Phillip Potter <phil@philpotter.co.uk> Cc: Qing Wang <wangqing@vivo.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Sebastian Reichel <sre@kernel.org> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Stephen Kitt <steve@sk2.org> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Douglas Gilbert <dgilbert@interlog.com> Cc: James E.J. Bottomley <jejb@linux.ibm.com> Cc: Jani Nikula <jani.nikula@intel.com> Cc: John Ogness <john.ogness@linutronix.de> Cc: Martin K. Petersen <martin.petersen@oracle.com> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-21 23:11:59 -07:00
static void __init fanotify_sysctls_init(void)
{
register_sysctl("fs/fanotify", fanotify_table);
}
#else
#define fanotify_sysctls_init() do { } while (0)
fanotify: configurable limits via sysfs fanotify has some hardcoded limits. The only APIs to escape those limits are FAN_UNLIMITED_QUEUE and FAN_UNLIMITED_MARKS. Allow finer grained tuning of the system limits via sysfs tunables under /proc/sys/fs/fanotify, similar to tunables under /proc/sys/fs/inotify, with some minor differences. - max_queued_events - global system tunable for group queue size limit. Like the inotify tunable with the same name, it defaults to 16384 and applies on initialization of a new group. - max_user_marks - user ns tunable for marks limit per user. Like the inotify tunable named max_user_watches, on a machine with sufficient RAM and it defaults to 1048576 in init userns and can be further limited per containing user ns. - max_user_groups - user ns tunable for number of groups per user. Like the inotify tunable named max_user_instances, it defaults to 128 in init userns and can be further limited per containing user ns. The slightly different tunable names used for fanotify are derived from the "group" and "mark" terminology used in the fanotify man pages and throughout the code. Considering the fact that the default value for max_user_instances was increased in kernel v5.10 from 8192 to 1048576, leaving the legacy fanotify limit of 8192 marks per group in addition to the max_user_marks limit makes little sense, so the per group marks limit has been removed. Note that when a group is initialized with FAN_UNLIMITED_MARKS, its own marks are not accounted in the per user marks account, so in effect the limit of max_user_marks is only for the collection of groups that are not initialized with FAN_UNLIMITED_MARKS. Link: https://lore.kernel.org/r/20210304112921.3996419-2-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-03-04 04:29:20 -07:00
#endif /* CONFIG_SYSCTL */
fanotify: check file flags passed in fanotify_init Without this patch fanotify_init does not validate the value passed in event_f_flags. When a fanotify event is read from the fanotify file descriptor a new file descriptor is created where file.f_flags = event_f_flags. Internal and external open flags are stored together in field f_flags of struct file. Hence, an application might create file descriptors with internal flags like FMODE_EXEC, FMODE_NOCMTIME set. Jan Kara and Eric Paris both aggreed that this is a bug and the value of event_f_flags should be checked: https://lkml.org/lkml/2014/4/29/522 https://lkml.org/lkml/2014/4/29/539 This updated patch version considers the comments by Michael Kerrisk in https://lkml.org/lkml/2014/5/4/10 With the patch the value of event_f_flags is checked. When specifying an invalid value error EINVAL is returned. Internal flags are disallowed. File creation flags are disallowed: O_CREAT, O_DIRECTORY, O_EXCL, O_NOCTTY, O_NOFOLLOW, O_TRUNC, and O_TTY_INIT. Flags which do not make sense with fanotify are disallowed: __O_TMPFILE, O_PATH, FASYNC, and O_DIRECT. This leaves us with the following allowed values: O_RDONLY, O_WRONLY, O_RDWR are basic functionality. The are stored in the bits given by O_ACCMODE. O_APPEND is working as expected. The value might be useful in a logging application which appends the current status each time the log is opened. O_LARGEFILE is needed for files exceeding 4GB on 32bit systems. O_NONBLOCK may be useful when monitoring slow devices like tapes. O_NDELAY is equal to O_NONBLOCK except for platform parisc. To avoid code breaking on parisc either both flags should be allowed or none. The patch allows both. __O_SYNC and O_DSYNC may be used to avoid data loss on power disruption. O_NOATIME may be useful to reduce disk activity. O_CLOEXEC may be useful, if separate processes shall be used to scan files. Once this patch is accepted, the fanotify_init.2 manpage has to be updated. Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:05:44 -07:00
/*
* All flags that may be specified in parameter event_f_flags of fanotify_init.
*
* Internal and external open flags are stored together in field f_flags of
* struct file. Only external open flags shall be allowed in event_f_flags.
* Internal flags like FMODE_NONOTIFY, FMODE_EXEC, FMODE_NOCMTIME shall be
* excluded.
*/
#define FANOTIFY_INIT_ALL_EVENT_F_BITS ( \
O_ACCMODE | O_APPEND | O_NONBLOCK | \
__O_SYNC | O_DSYNC | O_CLOEXEC | \
O_LARGEFILE | O_NOATIME )
extern const struct fsnotify_ops fanotify_fsnotify_ops;
struct kmem_cache *fanotify_mark_cache __ro_after_init;
struct kmem_cache *fanotify_fid_event_cachep __ro_after_init;
struct kmem_cache *fanotify_path_event_cachep __ro_after_init;
struct kmem_cache *fanotify_perm_event_cachep __ro_after_init;
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
#define FANOTIFY_EVENT_ALIGN 4
#define FANOTIFY_FID_INFO_HDR_LEN \
fanotify: report name info for FAN_DIR_MODIFY event Report event FAN_DIR_MODIFY with name in a variable length record similar to how fid's are reported. With name info reporting implemented, setting FAN_DIR_MODIFY in mark mask is now allowed. When events are reported with name, the reported fid identifies the directory and the name follows the fid. The info record type for this event info is FAN_EVENT_INFO_TYPE_DFID_NAME. For now, all reported events have at most one info record which is either FAN_EVENT_INFO_TYPE_FID or FAN_EVENT_INFO_TYPE_DFID_NAME (for FAN_DIR_MODIFY). Later on, events "on child" will report both records. There are several ways that an application can use this information: 1. When watching a single directory, the name is always relative to the watched directory, so application need to fstatat(2) the name relative to the watched directory. 2. When watching a set of directories, the application could keep a map of dirfd for all watched directories and hash the map by fid obtained with name_to_handle_at(2). When getting a name event, the fid in the event info could be used to lookup the base dirfd in the map and then call fstatat(2) with that dirfd. 3. When watching a filesystem (FAN_MARK_FILESYSTEM) or a large set of directories, the application could use open_by_handle_at(2) with the fid in event info to obtain dirfd for the directory where event happened and call fstatat(2) with this dirfd. The last option scales better for a large number of watched directories. The first two options may be available in the future also for non privileged fanotify watchers, because open_by_handle_at(2) requires the CAP_DAC_READ_SEARCH capability. Link: https://lore.kernel.org/r/20200319151022.31456-15-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2020-03-19 08:10:22 -07:00
(sizeof(struct fanotify_event_info_fid) + sizeof(struct file_handle))
fanotify: add pidfd support to the fanotify API Introduce a new flag FAN_REPORT_PIDFD for fanotify_init(2) which allows userspace applications to control whether a pidfd information record containing a pidfd is to be returned alongside the generic event metadata for each event. If FAN_REPORT_PIDFD is enabled for a notification group, an additional struct fanotify_event_info_pidfd object type will be supplied alongside the generic struct fanotify_event_metadata for a single event. This functionality is analogous to that of FAN_REPORT_FID in terms of how the event structure is supplied to a userspace application. Usage of FAN_REPORT_PIDFD with FAN_REPORT_FID/FAN_REPORT_DFID_NAME is permitted, and in this case a struct fanotify_event_info_pidfd object will likely follow any struct fanotify_event_info_fid object. Currently, the usage of the FAN_REPORT_TID flag is not permitted along with FAN_REPORT_PIDFD as the pidfd API currently only supports the creation of pidfds for thread-group leaders. Additionally, usage of the FAN_REPORT_PIDFD flag is limited to privileged processes only i.e. event listeners that are running with the CAP_SYS_ADMIN capability. Attempting to supply the FAN_REPORT_TID initialization flags with FAN_REPORT_PIDFD or creating a notification group without CAP_SYS_ADMIN will result with -EINVAL being returned to the caller. In the event of a pidfd creation error, there are two types of error values that can be reported back to the listener. There is FAN_NOPIDFD, which will be reported in cases where the process responsible for generating the event has terminated prior to the event listener being able to read the event. Then there is FAN_EPIDFD, which will be reported when a more generic pidfd creation error has occurred when fanotify calls pidfd_create(). Link: https://lore.kernel.org/r/5f9e09cff7ed62bfaa51c1369e0f7ea5f16a91aa.1628398044.git.repnop@google.com Signed-off-by: Matthew Bobrowski <repnop@google.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-08-07 22:26:25 -07:00
#define FANOTIFY_PIDFD_INFO_HDR_LEN \
sizeof(struct fanotify_event_info_pidfd)
#define FANOTIFY_ERROR_INFO_LEN \
(sizeof(struct fanotify_event_info_error))
fanotify: report name info for FAN_DIR_MODIFY event Report event FAN_DIR_MODIFY with name in a variable length record similar to how fid's are reported. With name info reporting implemented, setting FAN_DIR_MODIFY in mark mask is now allowed. When events are reported with name, the reported fid identifies the directory and the name follows the fid. The info record type for this event info is FAN_EVENT_INFO_TYPE_DFID_NAME. For now, all reported events have at most one info record which is either FAN_EVENT_INFO_TYPE_FID or FAN_EVENT_INFO_TYPE_DFID_NAME (for FAN_DIR_MODIFY). Later on, events "on child" will report both records. There are several ways that an application can use this information: 1. When watching a single directory, the name is always relative to the watched directory, so application need to fstatat(2) the name relative to the watched directory. 2. When watching a set of directories, the application could keep a map of dirfd for all watched directories and hash the map by fid obtained with name_to_handle_at(2). When getting a name event, the fid in the event info could be used to lookup the base dirfd in the map and then call fstatat(2) with that dirfd. 3. When watching a filesystem (FAN_MARK_FILESYSTEM) or a large set of directories, the application could use open_by_handle_at(2) with the fid in event info to obtain dirfd for the directory where event happened and call fstatat(2) with this dirfd. The last option scales better for a large number of watched directories. The first two options may be available in the future also for non privileged fanotify watchers, because open_by_handle_at(2) requires the CAP_DAC_READ_SEARCH capability. Link: https://lore.kernel.org/r/20200319151022.31456-15-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2020-03-19 08:10:22 -07:00
static int fanotify_fid_info_len(int fh_len, int name_len)
{
fanotify: report name info for FAN_DIR_MODIFY event Report event FAN_DIR_MODIFY with name in a variable length record similar to how fid's are reported. With name info reporting implemented, setting FAN_DIR_MODIFY in mark mask is now allowed. When events are reported with name, the reported fid identifies the directory and the name follows the fid. The info record type for this event info is FAN_EVENT_INFO_TYPE_DFID_NAME. For now, all reported events have at most one info record which is either FAN_EVENT_INFO_TYPE_FID or FAN_EVENT_INFO_TYPE_DFID_NAME (for FAN_DIR_MODIFY). Later on, events "on child" will report both records. There are several ways that an application can use this information: 1. When watching a single directory, the name is always relative to the watched directory, so application need to fstatat(2) the name relative to the watched directory. 2. When watching a set of directories, the application could keep a map of dirfd for all watched directories and hash the map by fid obtained with name_to_handle_at(2). When getting a name event, the fid in the event info could be used to lookup the base dirfd in the map and then call fstatat(2) with that dirfd. 3. When watching a filesystem (FAN_MARK_FILESYSTEM) or a large set of directories, the application could use open_by_handle_at(2) with the fid in event info to obtain dirfd for the directory where event happened and call fstatat(2) with this dirfd. The last option scales better for a large number of watched directories. The first two options may be available in the future also for non privileged fanotify watchers, because open_by_handle_at(2) requires the CAP_DAC_READ_SEARCH capability. Link: https://lore.kernel.org/r/20200319151022.31456-15-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2020-03-19 08:10:22 -07:00
int info_len = fh_len;
if (name_len)
info_len += name_len + 1;
return roundup(FANOTIFY_FID_INFO_HDR_LEN + info_len,
FANOTIFY_EVENT_ALIGN);
}
/* FAN_RENAME may have one or two dir+name info records */
static int fanotify_dir_name_info_len(struct fanotify_event *event)
{
struct fanotify_info *info = fanotify_event_info(event);
int dir_fh_len = fanotify_event_dir_fh_len(event);
int dir2_fh_len = fanotify_event_dir2_fh_len(event);
int info_len = 0;
if (dir_fh_len)
info_len += fanotify_fid_info_len(dir_fh_len,
info->name_len);
if (dir2_fh_len)
info_len += fanotify_fid_info_len(dir2_fh_len,
info->name2_len);
return info_len;
}
static size_t fanotify_event_len(unsigned int info_mode,
struct fanotify_event *event)
{
size_t event_len = FAN_EVENT_METADATA_LEN;
int fh_len;
int dot_len = 0;
if (!info_mode)
return event_len;
if (fanotify_is_error_event(event->mask))
event_len += FANOTIFY_ERROR_INFO_LEN;
if (fanotify_event_has_any_dir_fh(event)) {
event_len += fanotify_dir_name_info_len(event);
} else if ((info_mode & FAN_REPORT_NAME) &&
(event->mask & FAN_ONDIR)) {
/*
* With group flag FAN_REPORT_NAME, if name was not recorded in
* event on a directory, we will report the name ".".
*/
dot_len = 1;
}
fanotify: add pidfd support to the fanotify API Introduce a new flag FAN_REPORT_PIDFD for fanotify_init(2) which allows userspace applications to control whether a pidfd information record containing a pidfd is to be returned alongside the generic event metadata for each event. If FAN_REPORT_PIDFD is enabled for a notification group, an additional struct fanotify_event_info_pidfd object type will be supplied alongside the generic struct fanotify_event_metadata for a single event. This functionality is analogous to that of FAN_REPORT_FID in terms of how the event structure is supplied to a userspace application. Usage of FAN_REPORT_PIDFD with FAN_REPORT_FID/FAN_REPORT_DFID_NAME is permitted, and in this case a struct fanotify_event_info_pidfd object will likely follow any struct fanotify_event_info_fid object. Currently, the usage of the FAN_REPORT_TID flag is not permitted along with FAN_REPORT_PIDFD as the pidfd API currently only supports the creation of pidfds for thread-group leaders. Additionally, usage of the FAN_REPORT_PIDFD flag is limited to privileged processes only i.e. event listeners that are running with the CAP_SYS_ADMIN capability. Attempting to supply the FAN_REPORT_TID initialization flags with FAN_REPORT_PIDFD or creating a notification group without CAP_SYS_ADMIN will result with -EINVAL being returned to the caller. In the event of a pidfd creation error, there are two types of error values that can be reported back to the listener. There is FAN_NOPIDFD, which will be reported in cases where the process responsible for generating the event has terminated prior to the event listener being able to read the event. Then there is FAN_EPIDFD, which will be reported when a more generic pidfd creation error has occurred when fanotify calls pidfd_create(). Link: https://lore.kernel.org/r/5f9e09cff7ed62bfaa51c1369e0f7ea5f16a91aa.1628398044.git.repnop@google.com Signed-off-by: Matthew Bobrowski <repnop@google.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-08-07 22:26:25 -07:00
if (info_mode & FAN_REPORT_PIDFD)
event_len += FANOTIFY_PIDFD_INFO_HDR_LEN;
fanotify: add pidfd support to the fanotify API Introduce a new flag FAN_REPORT_PIDFD for fanotify_init(2) which allows userspace applications to control whether a pidfd information record containing a pidfd is to be returned alongside the generic event metadata for each event. If FAN_REPORT_PIDFD is enabled for a notification group, an additional struct fanotify_event_info_pidfd object type will be supplied alongside the generic struct fanotify_event_metadata for a single event. This functionality is analogous to that of FAN_REPORT_FID in terms of how the event structure is supplied to a userspace application. Usage of FAN_REPORT_PIDFD with FAN_REPORT_FID/FAN_REPORT_DFID_NAME is permitted, and in this case a struct fanotify_event_info_pidfd object will likely follow any struct fanotify_event_info_fid object. Currently, the usage of the FAN_REPORT_TID flag is not permitted along with FAN_REPORT_PIDFD as the pidfd API currently only supports the creation of pidfds for thread-group leaders. Additionally, usage of the FAN_REPORT_PIDFD flag is limited to privileged processes only i.e. event listeners that are running with the CAP_SYS_ADMIN capability. Attempting to supply the FAN_REPORT_TID initialization flags with FAN_REPORT_PIDFD or creating a notification group without CAP_SYS_ADMIN will result with -EINVAL being returned to the caller. In the event of a pidfd creation error, there are two types of error values that can be reported back to the listener. There is FAN_NOPIDFD, which will be reported in cases where the process responsible for generating the event has terminated prior to the event listener being able to read the event. Then there is FAN_EPIDFD, which will be reported when a more generic pidfd creation error has occurred when fanotify calls pidfd_create(). Link: https://lore.kernel.org/r/5f9e09cff7ed62bfaa51c1369e0f7ea5f16a91aa.1628398044.git.repnop@google.com Signed-off-by: Matthew Bobrowski <repnop@google.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-08-07 22:26:25 -07:00
if (fanotify_event_has_object_fh(event)) {
fh_len = fanotify_event_object_fh_len(event);
event_len += fanotify_fid_info_len(fh_len, dot_len);
}
fanotify: report name info for FAN_DIR_MODIFY event Report event FAN_DIR_MODIFY with name in a variable length record similar to how fid's are reported. With name info reporting implemented, setting FAN_DIR_MODIFY in mark mask is now allowed. When events are reported with name, the reported fid identifies the directory and the name follows the fid. The info record type for this event info is FAN_EVENT_INFO_TYPE_DFID_NAME. For now, all reported events have at most one info record which is either FAN_EVENT_INFO_TYPE_FID or FAN_EVENT_INFO_TYPE_DFID_NAME (for FAN_DIR_MODIFY). Later on, events "on child" will report both records. There are several ways that an application can use this information: 1. When watching a single directory, the name is always relative to the watched directory, so application need to fstatat(2) the name relative to the watched directory. 2. When watching a set of directories, the application could keep a map of dirfd for all watched directories and hash the map by fid obtained with name_to_handle_at(2). When getting a name event, the fid in the event info could be used to lookup the base dirfd in the map and then call fstatat(2) with that dirfd. 3. When watching a filesystem (FAN_MARK_FILESYSTEM) or a large set of directories, the application could use open_by_handle_at(2) with the fid in event info to obtain dirfd for the directory where event happened and call fstatat(2) with this dirfd. The last option scales better for a large number of watched directories. The first two options may be available in the future also for non privileged fanotify watchers, because open_by_handle_at(2) requires the CAP_DAC_READ_SEARCH capability. Link: https://lore.kernel.org/r/20200319151022.31456-15-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2020-03-19 08:10:22 -07:00
return event_len;
}
/*
* Remove an hashed event from merge hash table.
*/
static void fanotify_unhash_event(struct fsnotify_group *group,
struct fanotify_event *event)
{
assert_spin_locked(&group->notification_lock);
pr_debug("%s: group=%p event=%p bucket=%u\n", __func__,
group, event, fanotify_event_hash_bucket(group, event));
if (WARN_ON_ONCE(hlist_unhashed(&event->merge_list)))
return;
hlist_del_init(&event->merge_list);
}
/*
* Get an fanotify notification event if one exists and is small
* enough to fit in "count". Return an error pointer if the count
* is not large enough. When permission event is dequeued, its state is
* updated accordingly.
*/
static struct fanotify_event *get_one_event(struct fsnotify_group *group,
size_t count)
{
size_t event_size;
struct fanotify_event *event = NULL;
struct fsnotify_event *fsn_event;
unsigned int info_mode = FAN_GROUP_FLAG(group, FANOTIFY_INFO_MODES);
pr_debug("%s: group=%p count=%zd\n", __func__, group, count);
spin_lock(&group->notification_lock);
fsn_event = fsnotify_peek_first_event(group);
if (!fsn_event)
goto out;
event = FANOTIFY_E(fsn_event);
event_size = fanotify_event_len(info_mode, event);
if (event_size > count) {
event = ERR_PTR(-EINVAL);
goto out;
}
/*
* Held the notification_lock the whole time, so this is the
* same event we peeked above.
*/
fsnotify_remove_first_event(group);
if (fanotify_is_perm_event(event->mask))
FANOTIFY_PERM(event)->state = FAN_EVENT_REPORTED;
if (fanotify_is_hashed_event(event->mask))
fanotify_unhash_event(group, event);
out:
spin_unlock(&group->notification_lock);
return event;
}
static int create_fd(struct fsnotify_group *group, const struct path *path,
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:48:14 -07:00
struct file **file)
{
int client_fd;
struct file *new_file;
fanotify: enable close-on-exec on events' fd when requested in fanotify_init() According to commit 80af258867648 ("fanotify: groups can specify their f_flags for new fd"), file descriptors created as part of file access notification events inherit flags from the event_f_flags argument passed to syscall fanotify_init(2)[1]. Unfortunately O_CLOEXEC is currently silently ignored. Indeed, event_f_flags are only given to dentry_open(), which only seems to care about O_ACCMODE and O_PATH in do_dentry_open(), O_DIRECT in open_check_o_direct() and O_LARGEFILE in generic_file_open(). It's a pity, since, according to some lookup on various search engines and http://codesearch.debian.net/, there's already some userspace code which use O_CLOEXEC: - in systemd's readahead[2]: fanotify_fd = fanotify_init(FAN_CLOEXEC|FAN_NONBLOCK, O_RDONLY|O_LARGEFILE|O_CLOEXEC|O_NOATIME); - in clsync[3]: #define FANOTIFY_EVFLAGS (O_LARGEFILE|O_RDONLY|O_CLOEXEC) int fanotify_d = fanotify_init(FANOTIFY_FLAGS, FANOTIFY_EVFLAGS); - in examples [4] from "Filesystem monitoring in the Linux kernel" article[5] by Aleksander Morgado: if ((fanotify_fd = fanotify_init (FAN_CLOEXEC, O_RDONLY | O_CLOEXEC | O_LARGEFILE)) < 0) Additionally, since commit 48149e9d3a7e ("fanotify: check file flags passed in fanotify_init"). having O_CLOEXEC as part of fanotify_init() second argument is expressly allowed. So it seems expected to set close-on-exec flag on the file descriptors if userspace is allowed to request it with O_CLOEXEC. But Andrew Morton raised[6] the concern that enabling now close-on-exec might break existing applications which ask for O_CLOEXEC but expect the file descriptor to be inherited across exec(). In the other hand, as reported by Mihai Dontu[7] close-on-exec on the file descriptor returned as part of file access notify can break applications due to deadlock. So close-on-exec is needed for most applications. More, applications asking for close-on-exec are likely expecting it to be enabled, relying on O_CLOEXEC being effective. If not, it might weaken their security, as noted by Jan Kara[8]. So this patch replaces call to macro get_unused_fd() by a call to function get_unused_fd_flags() with event_f_flags value as argument. This way O_CLOEXEC flag in the second argument of fanotify_init(2) syscall is interpreted and close-on-exec get enabled when requested. [1] http://man7.org/linux/man-pages/man2/fanotify_init.2.html [2] http://cgit.freedesktop.org/systemd/systemd/tree/src/readahead/readahead-collect.c?id=v208#n294 [3] https://github.com/xaionaro/clsync/blob/v0.2.1/sync.c#L1631 https://github.com/xaionaro/clsync/blob/v0.2.1/configuration.h#L38 [4] http://www.lanedo.com/~aleksander/fanotify/fanotify-example.c [5] http://www.lanedo.com/2013/filesystem-monitoring-linux-kernel/ [6] http://lkml.kernel.org/r/20141001153621.65e9258e65a6167bf2e4cb50@linux-foundation.org [7] http://lkml.kernel.org/r/20141002095046.3715eb69@mdontu-l [8] http://lkml.kernel.org/r/20141002104410.GB19748@quack.suse.cz Link: http://lkml.kernel.org/r/cover.1411562410.git.ydroneaud@opteya.com Signed-off-by: Yann Droneaud <ydroneaud@opteya.com> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed by: Heinrich Schuchardt <xypron.glpk@gmx.de> Tested-by: Heinrich Schuchardt <xypron.glpk@gmx.de> Cc: Mihai Don\u021bu <mihai.dontu@gmail.com> Cc: Pádraig Brady <P@draigBrady.com> Cc: Heinrich Schuchardt <xypron.glpk@gmx.de> Cc: Jan Kara <jack@suse.cz> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: Michael Kerrisk-manpages <mtk.manpages@gmail.com> Cc: Lino Sanfilippo <LinoSanfilippo@gmx.de> Cc: Richard Guy Briggs <rgb@redhat.com> Cc: Eric Paris <eparis@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 15:24:40 -07:00
client_fd = get_unused_fd_flags(group->fanotify_data.f_flags);
if (client_fd < 0)
return client_fd;
/*
* we need a new file handle for the userspace program so it can read even if it was
* originally opened O_WRONLY.
*/
new_file = dentry_open(path,
group->fanotify_data.f_flags | __FMODE_NONOTIFY,
current_cred());
if (IS_ERR(new_file)) {
/*
* we still send an event even if we can't open the file. this
* can happen when say tasks are gone and we try to open their
* /proc files or we try to open a WRONLY file like in sysfs
* we just send the errno to userspace since there isn't much
* else we can do.
*/
put_unused_fd(client_fd);
client_fd = PTR_ERR(new_file);
} else {
*file = new_file;
}
return client_fd;
}
static int process_access_response_info(const char __user *info,
size_t info_len,
struct fanotify_response_info_audit_rule *friar)
{
if (info_len != sizeof(*friar))
return -EINVAL;
if (copy_from_user(friar, info, sizeof(*friar)))
return -EFAULT;
if (friar->hdr.type != FAN_RESPONSE_INFO_AUDIT_RULE)
return -EINVAL;
if (friar->hdr.pad != 0)
return -EINVAL;
if (friar->hdr.len != sizeof(*friar))
return -EINVAL;
return info_len;
}
/*
* Finish processing of permission event by setting it to ANSWERED state and
* drop group->notification_lock.
*/
static void finish_permission_event(struct fsnotify_group *group,
struct fanotify_perm_event *event, u32 response,
struct fanotify_response_info_audit_rule *friar)
__releases(&group->notification_lock)
{
bool destroy = false;
assert_spin_locked(&group->notification_lock);
event->response = response & ~FAN_INFO;
if (response & FAN_INFO)
memcpy(&event->audit_rule, friar, sizeof(*friar));
if (event->state == FAN_EVENT_CANCELED)
destroy = true;
else
event->state = FAN_EVENT_ANSWERED;
spin_unlock(&group->notification_lock);
if (destroy)
fsnotify_destroy_event(group, &event->fae.fse);
}
static int process_access_response(struct fsnotify_group *group,
struct fanotify_response *response_struct,
const char __user *info,
size_t info_len)
{
struct fanotify_perm_event *event;
int fd = response_struct->fd;
u32 response = response_struct->response;
int ret = info_len;
struct fanotify_response_info_audit_rule friar;
pr_debug("%s: group=%p fd=%d response=%u buf=%p size=%zu\n", __func__,
group, fd, response, info, info_len);
/*
* make sure the response is valid, if invalid we do nothing and either
* userspace can send a valid response or we will clean it up after the
* timeout
*/
if (response & ~FANOTIFY_RESPONSE_VALID_MASK)
return -EINVAL;
switch (response & FANOTIFY_RESPONSE_ACCESS) {
case FAN_ALLOW:
case FAN_DENY:
break;
default:
return -EINVAL;
}
if ((response & FAN_AUDIT) && !FAN_GROUP_FLAG(group, FAN_ENABLE_AUDIT))
return -EINVAL;
if (response & FAN_INFO) {
ret = process_access_response_info(info, info_len, &friar);
if (ret < 0)
return ret;
if (fd == FAN_NOFD)
return ret;
} else {
ret = 0;
}
if (fd < 0)
audit: Record fanotify access control decisions The fanotify interface allows user space daemons to make access control decisions. Under common criteria requirements, we need to optionally record decisions based on policy. This patch adds a bit mask, FAN_AUDIT, that a user space daemon can 'or' into the response decision which will tell the kernel that it made a decision and record it. It would be used something like this in user space code: response.response = FAN_DENY | FAN_AUDIT; write(fd, &response, sizeof(struct fanotify_response)); When the syscall ends, the audit system will record the decision as a AUDIT_FANOTIFY auxiliary record to denote that the reason this event occurred is the result of an access control decision from fanotify rather than DAC or MAC policy. A sample event looks like this: type=PATH msg=audit(1504310584.332:290): item=0 name="./evil-ls" inode=1319561 dev=fc:03 mode=0100755 ouid=1000 ogid=1000 rdev=00:00 obj=unconfined_u:object_r:user_home_t:s0 nametype=NORMAL type=CWD msg=audit(1504310584.332:290): cwd="/home/sgrubb" type=SYSCALL msg=audit(1504310584.332:290): arch=c000003e syscall=2 success=no exit=-1 a0=32cb3fca90 a1=0 a2=43 a3=8 items=1 ppid=901 pid=959 auid=1000 uid=1000 gid=1000 euid=1000 suid=1000 fsuid=1000 egid=1000 sgid=1000 fsgid=1000 tty=pts1 ses=3 comm="bash" exe="/usr/bin/bash" subj=unconfined_u:unconfined_r:unconfined_t: s0-s0:c0.c1023 key=(null) type=FANOTIFY msg=audit(1504310584.332:290): resp=2 Prior to using the audit flag, the developer needs to call fanotify_init or'ing in FAN_ENABLE_AUDIT to ensure that the kernel supports auditing. The calling process must also have the CAP_AUDIT_WRITE capability. Signed-off-by: sgrubb <sgrubb@redhat.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2017-10-02 17:21:39 -07:00
return -EINVAL;
spin_lock(&group->notification_lock);
list_for_each_entry(event, &group->fanotify_data.access_list,
fae.fse.list) {
if (event->fd != fd)
continue;
list_del_init(&event->fae.fse.list);
finish_permission_event(group, event, response, &friar);
wake_up(&group->fanotify_data.access_waitq);
return ret;
}
spin_unlock(&group->notification_lock);
return -ENOENT;
}
static size_t copy_error_info_to_user(struct fanotify_event *event,
char __user *buf, int count)
{
struct fanotify_event_info_error info = { };
struct fanotify_error_event *fee = FANOTIFY_EE(event);
info.hdr.info_type = FAN_EVENT_INFO_TYPE_ERROR;
info.hdr.len = FANOTIFY_ERROR_INFO_LEN;
if (WARN_ON(count < info.hdr.len))
return -EFAULT;
info.error = fee->error;
info.error_count = fee->err_count;
if (copy_to_user(buf, &info, sizeof(info)))
return -EFAULT;
return info.hdr.len;
}
static int copy_fid_info_to_user(__kernel_fsid_t *fsid, struct fanotify_fh *fh,
int info_type, const char *name,
size_t name_len,
char __user *buf, size_t count)
{
struct fanotify_event_info_fid info = { };
struct file_handle handle = { };
unsigned char bounce[FANOTIFY_INLINE_FH_LEN], *fh_buf;
size_t fh_len = fh ? fh->len : 0;
fanotify: report name info for FAN_DIR_MODIFY event Report event FAN_DIR_MODIFY with name in a variable length record similar to how fid's are reported. With name info reporting implemented, setting FAN_DIR_MODIFY in mark mask is now allowed. When events are reported with name, the reported fid identifies the directory and the name follows the fid. The info record type for this event info is FAN_EVENT_INFO_TYPE_DFID_NAME. For now, all reported events have at most one info record which is either FAN_EVENT_INFO_TYPE_FID or FAN_EVENT_INFO_TYPE_DFID_NAME (for FAN_DIR_MODIFY). Later on, events "on child" will report both records. There are several ways that an application can use this information: 1. When watching a single directory, the name is always relative to the watched directory, so application need to fstatat(2) the name relative to the watched directory. 2. When watching a set of directories, the application could keep a map of dirfd for all watched directories and hash the map by fid obtained with name_to_handle_at(2). When getting a name event, the fid in the event info could be used to lookup the base dirfd in the map and then call fstatat(2) with that dirfd. 3. When watching a filesystem (FAN_MARK_FILESYSTEM) or a large set of directories, the application could use open_by_handle_at(2) with the fid in event info to obtain dirfd for the directory where event happened and call fstatat(2) with this dirfd. The last option scales better for a large number of watched directories. The first two options may be available in the future also for non privileged fanotify watchers, because open_by_handle_at(2) requires the CAP_DAC_READ_SEARCH capability. Link: https://lore.kernel.org/r/20200319151022.31456-15-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2020-03-19 08:10:22 -07:00
size_t info_len = fanotify_fid_info_len(fh_len, name_len);
size_t len = info_len;
fanotify: report name info for FAN_DIR_MODIFY event Report event FAN_DIR_MODIFY with name in a variable length record similar to how fid's are reported. With name info reporting implemented, setting FAN_DIR_MODIFY in mark mask is now allowed. When events are reported with name, the reported fid identifies the directory and the name follows the fid. The info record type for this event info is FAN_EVENT_INFO_TYPE_DFID_NAME. For now, all reported events have at most one info record which is either FAN_EVENT_INFO_TYPE_FID or FAN_EVENT_INFO_TYPE_DFID_NAME (for FAN_DIR_MODIFY). Later on, events "on child" will report both records. There are several ways that an application can use this information: 1. When watching a single directory, the name is always relative to the watched directory, so application need to fstatat(2) the name relative to the watched directory. 2. When watching a set of directories, the application could keep a map of dirfd for all watched directories and hash the map by fid obtained with name_to_handle_at(2). When getting a name event, the fid in the event info could be used to lookup the base dirfd in the map and then call fstatat(2) with that dirfd. 3. When watching a filesystem (FAN_MARK_FILESYSTEM) or a large set of directories, the application could use open_by_handle_at(2) with the fid in event info to obtain dirfd for the directory where event happened and call fstatat(2) with this dirfd. The last option scales better for a large number of watched directories. The first two options may be available in the future also for non privileged fanotify watchers, because open_by_handle_at(2) requires the CAP_DAC_READ_SEARCH capability. Link: https://lore.kernel.org/r/20200319151022.31456-15-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2020-03-19 08:10:22 -07:00
pr_debug("%s: fh_len=%zu name_len=%zu, info_len=%zu, count=%zu\n",
__func__, fh_len, name_len, info_len, count);
if (WARN_ON_ONCE(len < sizeof(info) || len > count))
return -EFAULT;
fanotify: report name info for FAN_DIR_MODIFY event Report event FAN_DIR_MODIFY with name in a variable length record similar to how fid's are reported. With name info reporting implemented, setting FAN_DIR_MODIFY in mark mask is now allowed. When events are reported with name, the reported fid identifies the directory and the name follows the fid. The info record type for this event info is FAN_EVENT_INFO_TYPE_DFID_NAME. For now, all reported events have at most one info record which is either FAN_EVENT_INFO_TYPE_FID or FAN_EVENT_INFO_TYPE_DFID_NAME (for FAN_DIR_MODIFY). Later on, events "on child" will report both records. There are several ways that an application can use this information: 1. When watching a single directory, the name is always relative to the watched directory, so application need to fstatat(2) the name relative to the watched directory. 2. When watching a set of directories, the application could keep a map of dirfd for all watched directories and hash the map by fid obtained with name_to_handle_at(2). When getting a name event, the fid in the event info could be used to lookup the base dirfd in the map and then call fstatat(2) with that dirfd. 3. When watching a filesystem (FAN_MARK_FILESYSTEM) or a large set of directories, the application could use open_by_handle_at(2) with the fid in event info to obtain dirfd for the directory where event happened and call fstatat(2) with this dirfd. The last option scales better for a large number of watched directories. The first two options may be available in the future also for non privileged fanotify watchers, because open_by_handle_at(2) requires the CAP_DAC_READ_SEARCH capability. Link: https://lore.kernel.org/r/20200319151022.31456-15-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2020-03-19 08:10:22 -07:00
/*
* Copy event info fid header followed by variable sized file handle
* and optionally followed by variable sized filename.
*/
switch (info_type) {
case FAN_EVENT_INFO_TYPE_FID:
case FAN_EVENT_INFO_TYPE_DFID:
if (WARN_ON_ONCE(name_len))
return -EFAULT;
break;
case FAN_EVENT_INFO_TYPE_DFID_NAME:
case FAN_EVENT_INFO_TYPE_OLD_DFID_NAME:
case FAN_EVENT_INFO_TYPE_NEW_DFID_NAME:
if (WARN_ON_ONCE(!name || !name_len))
return -EFAULT;
break;
default:
return -EFAULT;
}
info.hdr.info_type = info_type;
info.hdr.len = len;
info.fsid = *fsid;
if (copy_to_user(buf, &info, sizeof(info)))
return -EFAULT;
buf += sizeof(info);
len -= sizeof(info);
fanotify: report name info for FAN_DIR_MODIFY event Report event FAN_DIR_MODIFY with name in a variable length record similar to how fid's are reported. With name info reporting implemented, setting FAN_DIR_MODIFY in mark mask is now allowed. When events are reported with name, the reported fid identifies the directory and the name follows the fid. The info record type for this event info is FAN_EVENT_INFO_TYPE_DFID_NAME. For now, all reported events have at most one info record which is either FAN_EVENT_INFO_TYPE_FID or FAN_EVENT_INFO_TYPE_DFID_NAME (for FAN_DIR_MODIFY). Later on, events "on child" will report both records. There are several ways that an application can use this information: 1. When watching a single directory, the name is always relative to the watched directory, so application need to fstatat(2) the name relative to the watched directory. 2. When watching a set of directories, the application could keep a map of dirfd for all watched directories and hash the map by fid obtained with name_to_handle_at(2). When getting a name event, the fid in the event info could be used to lookup the base dirfd in the map and then call fstatat(2) with that dirfd. 3. When watching a filesystem (FAN_MARK_FILESYSTEM) or a large set of directories, the application could use open_by_handle_at(2) with the fid in event info to obtain dirfd for the directory where event happened and call fstatat(2) with this dirfd. The last option scales better for a large number of watched directories. The first two options may be available in the future also for non privileged fanotify watchers, because open_by_handle_at(2) requires the CAP_DAC_READ_SEARCH capability. Link: https://lore.kernel.org/r/20200319151022.31456-15-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2020-03-19 08:10:22 -07:00
if (WARN_ON_ONCE(len < sizeof(handle)))
return -EFAULT;
handle.handle_type = fh->type;
handle.handle_bytes = fh_len;
/* Mangle handle_type for bad file_handle */
if (!fh_len)
handle.handle_type = FILEID_INVALID;
if (copy_to_user(buf, &handle, sizeof(handle)))
return -EFAULT;
buf += sizeof(handle);
len -= sizeof(handle);
fanotify: report name info for FAN_DIR_MODIFY event Report event FAN_DIR_MODIFY with name in a variable length record similar to how fid's are reported. With name info reporting implemented, setting FAN_DIR_MODIFY in mark mask is now allowed. When events are reported with name, the reported fid identifies the directory and the name follows the fid. The info record type for this event info is FAN_EVENT_INFO_TYPE_DFID_NAME. For now, all reported events have at most one info record which is either FAN_EVENT_INFO_TYPE_FID or FAN_EVENT_INFO_TYPE_DFID_NAME (for FAN_DIR_MODIFY). Later on, events "on child" will report both records. There are several ways that an application can use this information: 1. When watching a single directory, the name is always relative to the watched directory, so application need to fstatat(2) the name relative to the watched directory. 2. When watching a set of directories, the application could keep a map of dirfd for all watched directories and hash the map by fid obtained with name_to_handle_at(2). When getting a name event, the fid in the event info could be used to lookup the base dirfd in the map and then call fstatat(2) with that dirfd. 3. When watching a filesystem (FAN_MARK_FILESYSTEM) or a large set of directories, the application could use open_by_handle_at(2) with the fid in event info to obtain dirfd for the directory where event happened and call fstatat(2) with this dirfd. The last option scales better for a large number of watched directories. The first two options may be available in the future also for non privileged fanotify watchers, because open_by_handle_at(2) requires the CAP_DAC_READ_SEARCH capability. Link: https://lore.kernel.org/r/20200319151022.31456-15-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2020-03-19 08:10:22 -07:00
if (WARN_ON_ONCE(len < fh_len))
return -EFAULT;
/*
fanotify: report name info for FAN_DIR_MODIFY event Report event FAN_DIR_MODIFY with name in a variable length record similar to how fid's are reported. With name info reporting implemented, setting FAN_DIR_MODIFY in mark mask is now allowed. When events are reported with name, the reported fid identifies the directory and the name follows the fid. The info record type for this event info is FAN_EVENT_INFO_TYPE_DFID_NAME. For now, all reported events have at most one info record which is either FAN_EVENT_INFO_TYPE_FID or FAN_EVENT_INFO_TYPE_DFID_NAME (for FAN_DIR_MODIFY). Later on, events "on child" will report both records. There are several ways that an application can use this information: 1. When watching a single directory, the name is always relative to the watched directory, so application need to fstatat(2) the name relative to the watched directory. 2. When watching a set of directories, the application could keep a map of dirfd for all watched directories and hash the map by fid obtained with name_to_handle_at(2). When getting a name event, the fid in the event info could be used to lookup the base dirfd in the map and then call fstatat(2) with that dirfd. 3. When watching a filesystem (FAN_MARK_FILESYSTEM) or a large set of directories, the application could use open_by_handle_at(2) with the fid in event info to obtain dirfd for the directory where event happened and call fstatat(2) with this dirfd. The last option scales better for a large number of watched directories. The first two options may be available in the future also for non privileged fanotify watchers, because open_by_handle_at(2) requires the CAP_DAC_READ_SEARCH capability. Link: https://lore.kernel.org/r/20200319151022.31456-15-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2020-03-19 08:10:22 -07:00
* For an inline fh and inline file name, copy through stack to exclude
* the copy from usercopy hardening protections.
*/
fh_buf = fanotify_fh_buf(fh);
if (fh_len <= FANOTIFY_INLINE_FH_LEN) {
memcpy(bounce, fh_buf, fh_len);
fh_buf = bounce;
}
if (copy_to_user(buf, fh_buf, fh_len))
return -EFAULT;
buf += fh_len;
len -= fh_len;
fanotify: report name info for FAN_DIR_MODIFY event Report event FAN_DIR_MODIFY with name in a variable length record similar to how fid's are reported. With name info reporting implemented, setting FAN_DIR_MODIFY in mark mask is now allowed. When events are reported with name, the reported fid identifies the directory and the name follows the fid. The info record type for this event info is FAN_EVENT_INFO_TYPE_DFID_NAME. For now, all reported events have at most one info record which is either FAN_EVENT_INFO_TYPE_FID or FAN_EVENT_INFO_TYPE_DFID_NAME (for FAN_DIR_MODIFY). Later on, events "on child" will report both records. There are several ways that an application can use this information: 1. When watching a single directory, the name is always relative to the watched directory, so application need to fstatat(2) the name relative to the watched directory. 2. When watching a set of directories, the application could keep a map of dirfd for all watched directories and hash the map by fid obtained with name_to_handle_at(2). When getting a name event, the fid in the event info could be used to lookup the base dirfd in the map and then call fstatat(2) with that dirfd. 3. When watching a filesystem (FAN_MARK_FILESYSTEM) or a large set of directories, the application could use open_by_handle_at(2) with the fid in event info to obtain dirfd for the directory where event happened and call fstatat(2) with this dirfd. The last option scales better for a large number of watched directories. The first two options may be available in the future also for non privileged fanotify watchers, because open_by_handle_at(2) requires the CAP_DAC_READ_SEARCH capability. Link: https://lore.kernel.org/r/20200319151022.31456-15-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2020-03-19 08:10:22 -07:00
if (name_len) {
/* Copy the filename with terminating null */
name_len++;
if (WARN_ON_ONCE(len < name_len))
return -EFAULT;
if (copy_to_user(buf, name, name_len))
return -EFAULT;
buf += name_len;
len -= name_len;
}
/* Pad with 0's */
WARN_ON_ONCE(len < 0 || len >= FANOTIFY_EVENT_ALIGN);
if (len > 0 && clear_user(buf, len))
return -EFAULT;
fanotify: report name info for FAN_DIR_MODIFY event Report event FAN_DIR_MODIFY with name in a variable length record similar to how fid's are reported. With name info reporting implemented, setting FAN_DIR_MODIFY in mark mask is now allowed. When events are reported with name, the reported fid identifies the directory and the name follows the fid. The info record type for this event info is FAN_EVENT_INFO_TYPE_DFID_NAME. For now, all reported events have at most one info record which is either FAN_EVENT_INFO_TYPE_FID or FAN_EVENT_INFO_TYPE_DFID_NAME (for FAN_DIR_MODIFY). Later on, events "on child" will report both records. There are several ways that an application can use this information: 1. When watching a single directory, the name is always relative to the watched directory, so application need to fstatat(2) the name relative to the watched directory. 2. When watching a set of directories, the application could keep a map of dirfd for all watched directories and hash the map by fid obtained with name_to_handle_at(2). When getting a name event, the fid in the event info could be used to lookup the base dirfd in the map and then call fstatat(2) with that dirfd. 3. When watching a filesystem (FAN_MARK_FILESYSTEM) or a large set of directories, the application could use open_by_handle_at(2) with the fid in event info to obtain dirfd for the directory where event happened and call fstatat(2) with this dirfd. The last option scales better for a large number of watched directories. The first two options may be available in the future also for non privileged fanotify watchers, because open_by_handle_at(2) requires the CAP_DAC_READ_SEARCH capability. Link: https://lore.kernel.org/r/20200319151022.31456-15-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2020-03-19 08:10:22 -07:00
return info_len;
}
fanotify: add pidfd support to the fanotify API Introduce a new flag FAN_REPORT_PIDFD for fanotify_init(2) which allows userspace applications to control whether a pidfd information record containing a pidfd is to be returned alongside the generic event metadata for each event. If FAN_REPORT_PIDFD is enabled for a notification group, an additional struct fanotify_event_info_pidfd object type will be supplied alongside the generic struct fanotify_event_metadata for a single event. This functionality is analogous to that of FAN_REPORT_FID in terms of how the event structure is supplied to a userspace application. Usage of FAN_REPORT_PIDFD with FAN_REPORT_FID/FAN_REPORT_DFID_NAME is permitted, and in this case a struct fanotify_event_info_pidfd object will likely follow any struct fanotify_event_info_fid object. Currently, the usage of the FAN_REPORT_TID flag is not permitted along with FAN_REPORT_PIDFD as the pidfd API currently only supports the creation of pidfds for thread-group leaders. Additionally, usage of the FAN_REPORT_PIDFD flag is limited to privileged processes only i.e. event listeners that are running with the CAP_SYS_ADMIN capability. Attempting to supply the FAN_REPORT_TID initialization flags with FAN_REPORT_PIDFD or creating a notification group without CAP_SYS_ADMIN will result with -EINVAL being returned to the caller. In the event of a pidfd creation error, there are two types of error values that can be reported back to the listener. There is FAN_NOPIDFD, which will be reported in cases where the process responsible for generating the event has terminated prior to the event listener being able to read the event. Then there is FAN_EPIDFD, which will be reported when a more generic pidfd creation error has occurred when fanotify calls pidfd_create(). Link: https://lore.kernel.org/r/5f9e09cff7ed62bfaa51c1369e0f7ea5f16a91aa.1628398044.git.repnop@google.com Signed-off-by: Matthew Bobrowski <repnop@google.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-08-07 22:26:25 -07:00
static int copy_pidfd_info_to_user(int pidfd,
char __user *buf,
size_t count)
{
struct fanotify_event_info_pidfd info = { };
size_t info_len = FANOTIFY_PIDFD_INFO_HDR_LEN;
if (WARN_ON_ONCE(info_len > count))
return -EFAULT;
info.hdr.info_type = FAN_EVENT_INFO_TYPE_PIDFD;
info.hdr.len = info_len;
info.pidfd = pidfd;
if (copy_to_user(buf, &info, info_len))
return -EFAULT;
return info_len;
}
static int copy_info_records_to_user(struct fanotify_event *event,
struct fanotify_info *info,
fanotify: add pidfd support to the fanotify API Introduce a new flag FAN_REPORT_PIDFD for fanotify_init(2) which allows userspace applications to control whether a pidfd information record containing a pidfd is to be returned alongside the generic event metadata for each event. If FAN_REPORT_PIDFD is enabled for a notification group, an additional struct fanotify_event_info_pidfd object type will be supplied alongside the generic struct fanotify_event_metadata for a single event. This functionality is analogous to that of FAN_REPORT_FID in terms of how the event structure is supplied to a userspace application. Usage of FAN_REPORT_PIDFD with FAN_REPORT_FID/FAN_REPORT_DFID_NAME is permitted, and in this case a struct fanotify_event_info_pidfd object will likely follow any struct fanotify_event_info_fid object. Currently, the usage of the FAN_REPORT_TID flag is not permitted along with FAN_REPORT_PIDFD as the pidfd API currently only supports the creation of pidfds for thread-group leaders. Additionally, usage of the FAN_REPORT_PIDFD flag is limited to privileged processes only i.e. event listeners that are running with the CAP_SYS_ADMIN capability. Attempting to supply the FAN_REPORT_TID initialization flags with FAN_REPORT_PIDFD or creating a notification group without CAP_SYS_ADMIN will result with -EINVAL being returned to the caller. In the event of a pidfd creation error, there are two types of error values that can be reported back to the listener. There is FAN_NOPIDFD, which will be reported in cases where the process responsible for generating the event has terminated prior to the event listener being able to read the event. Then there is FAN_EPIDFD, which will be reported when a more generic pidfd creation error has occurred when fanotify calls pidfd_create(). Link: https://lore.kernel.org/r/5f9e09cff7ed62bfaa51c1369e0f7ea5f16a91aa.1628398044.git.repnop@google.com Signed-off-by: Matthew Bobrowski <repnop@google.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-08-07 22:26:25 -07:00
unsigned int info_mode, int pidfd,
char __user *buf, size_t count)
{
int ret, total_bytes = 0, info_type = 0;
unsigned int fid_mode = info_mode & FANOTIFY_FID_BITS;
fanotify: add pidfd support to the fanotify API Introduce a new flag FAN_REPORT_PIDFD for fanotify_init(2) which allows userspace applications to control whether a pidfd information record containing a pidfd is to be returned alongside the generic event metadata for each event. If FAN_REPORT_PIDFD is enabled for a notification group, an additional struct fanotify_event_info_pidfd object type will be supplied alongside the generic struct fanotify_event_metadata for a single event. This functionality is analogous to that of FAN_REPORT_FID in terms of how the event structure is supplied to a userspace application. Usage of FAN_REPORT_PIDFD with FAN_REPORT_FID/FAN_REPORT_DFID_NAME is permitted, and in this case a struct fanotify_event_info_pidfd object will likely follow any struct fanotify_event_info_fid object. Currently, the usage of the FAN_REPORT_TID flag is not permitted along with FAN_REPORT_PIDFD as the pidfd API currently only supports the creation of pidfds for thread-group leaders. Additionally, usage of the FAN_REPORT_PIDFD flag is limited to privileged processes only i.e. event listeners that are running with the CAP_SYS_ADMIN capability. Attempting to supply the FAN_REPORT_TID initialization flags with FAN_REPORT_PIDFD or creating a notification group without CAP_SYS_ADMIN will result with -EINVAL being returned to the caller. In the event of a pidfd creation error, there are two types of error values that can be reported back to the listener. There is FAN_NOPIDFD, which will be reported in cases where the process responsible for generating the event has terminated prior to the event listener being able to read the event. Then there is FAN_EPIDFD, which will be reported when a more generic pidfd creation error has occurred when fanotify calls pidfd_create(). Link: https://lore.kernel.org/r/5f9e09cff7ed62bfaa51c1369e0f7ea5f16a91aa.1628398044.git.repnop@google.com Signed-off-by: Matthew Bobrowski <repnop@google.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-08-07 22:26:25 -07:00
unsigned int pidfd_mode = info_mode & FAN_REPORT_PIDFD;
/*
* Event info records order is as follows:
* 1. dir fid + name
* 2. (optional) new dir fid + new name
* 3. (optional) child fid
*/
if (fanotify_event_has_dir_fh(event)) {
info_type = info->name_len ? FAN_EVENT_INFO_TYPE_DFID_NAME :
FAN_EVENT_INFO_TYPE_DFID;
/* FAN_RENAME uses special info types */
if (event->mask & FAN_RENAME)
info_type = FAN_EVENT_INFO_TYPE_OLD_DFID_NAME;
ret = copy_fid_info_to_user(fanotify_event_fsid(event),
fanotify_info_dir_fh(info),
info_type,
fanotify_info_name(info),
info->name_len, buf, count);
if (ret < 0)
return ret;
buf += ret;
count -= ret;
total_bytes += ret;
}
/* New dir fid+name may be reported in addition to old dir fid+name */
if (fanotify_event_has_dir2_fh(event)) {
info_type = FAN_EVENT_INFO_TYPE_NEW_DFID_NAME;
ret = copy_fid_info_to_user(fanotify_event_fsid(event),
fanotify_info_dir2_fh(info),
info_type,
fanotify_info_name2(info),
info->name2_len, buf, count);
if (ret < 0)
return ret;
buf += ret;
count -= ret;
total_bytes += ret;
}
if (fanotify_event_has_object_fh(event)) {
const char *dot = NULL;
int dot_len = 0;
if (fid_mode == FAN_REPORT_FID || info_type) {
/*
* With only group flag FAN_REPORT_FID only type FID is
* reported. Second info record type is always FID.
*/
info_type = FAN_EVENT_INFO_TYPE_FID;
} else if ((fid_mode & FAN_REPORT_NAME) &&
(event->mask & FAN_ONDIR)) {
/*
* With group flag FAN_REPORT_NAME, if name was not
* recorded in an event on a directory, report the name
* "." with info type DFID_NAME.
*/
info_type = FAN_EVENT_INFO_TYPE_DFID_NAME;
dot = ".";
dot_len = 1;
} else if ((event->mask & ALL_FSNOTIFY_DIRENT_EVENTS) ||
(event->mask & FAN_ONDIR)) {
/*
* With group flag FAN_REPORT_DIR_FID, a single info
* record has type DFID for directory entry modification
* event and for event on a directory.
*/
info_type = FAN_EVENT_INFO_TYPE_DFID;
} else {
/*
* With group flags FAN_REPORT_DIR_FID|FAN_REPORT_FID,
* a single info record has type FID for event on a
* non-directory, when there is no directory to report.
* For example, on FAN_DELETE_SELF event.
*/
info_type = FAN_EVENT_INFO_TYPE_FID;
}
ret = copy_fid_info_to_user(fanotify_event_fsid(event),
fanotify_event_object_fh(event),
info_type, dot, dot_len,
buf, count);
if (ret < 0)
return ret;
buf += ret;
count -= ret;
total_bytes += ret;
}
fanotify: add pidfd support to the fanotify API Introduce a new flag FAN_REPORT_PIDFD for fanotify_init(2) which allows userspace applications to control whether a pidfd information record containing a pidfd is to be returned alongside the generic event metadata for each event. If FAN_REPORT_PIDFD is enabled for a notification group, an additional struct fanotify_event_info_pidfd object type will be supplied alongside the generic struct fanotify_event_metadata for a single event. This functionality is analogous to that of FAN_REPORT_FID in terms of how the event structure is supplied to a userspace application. Usage of FAN_REPORT_PIDFD with FAN_REPORT_FID/FAN_REPORT_DFID_NAME is permitted, and in this case a struct fanotify_event_info_pidfd object will likely follow any struct fanotify_event_info_fid object. Currently, the usage of the FAN_REPORT_TID flag is not permitted along with FAN_REPORT_PIDFD as the pidfd API currently only supports the creation of pidfds for thread-group leaders. Additionally, usage of the FAN_REPORT_PIDFD flag is limited to privileged processes only i.e. event listeners that are running with the CAP_SYS_ADMIN capability. Attempting to supply the FAN_REPORT_TID initialization flags with FAN_REPORT_PIDFD or creating a notification group without CAP_SYS_ADMIN will result with -EINVAL being returned to the caller. In the event of a pidfd creation error, there are two types of error values that can be reported back to the listener. There is FAN_NOPIDFD, which will be reported in cases where the process responsible for generating the event has terminated prior to the event listener being able to read the event. Then there is FAN_EPIDFD, which will be reported when a more generic pidfd creation error has occurred when fanotify calls pidfd_create(). Link: https://lore.kernel.org/r/5f9e09cff7ed62bfaa51c1369e0f7ea5f16a91aa.1628398044.git.repnop@google.com Signed-off-by: Matthew Bobrowski <repnop@google.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-08-07 22:26:25 -07:00
if (pidfd_mode) {
ret = copy_pidfd_info_to_user(pidfd, buf, count);
if (ret < 0)
return ret;
buf += ret;
count -= ret;
total_bytes += ret;
}
if (fanotify_is_error_event(event->mask)) {
ret = copy_error_info_to_user(event, buf, count);
if (ret < 0)
return ret;
buf += ret;
count -= ret;
total_bytes += ret;
}
return total_bytes;
}
static ssize_t copy_event_to_user(struct fsnotify_group *group,
struct fanotify_event *event,
char __user *buf, size_t count)
{
struct fanotify_event_metadata metadata;
const struct path *path = fanotify_event_path(event);
struct fanotify_info *info = fanotify_event_info(event);
unsigned int info_mode = FAN_GROUP_FLAG(group, FANOTIFY_INFO_MODES);
fanotify: add pidfd support to the fanotify API Introduce a new flag FAN_REPORT_PIDFD for fanotify_init(2) which allows userspace applications to control whether a pidfd information record containing a pidfd is to be returned alongside the generic event metadata for each event. If FAN_REPORT_PIDFD is enabled for a notification group, an additional struct fanotify_event_info_pidfd object type will be supplied alongside the generic struct fanotify_event_metadata for a single event. This functionality is analogous to that of FAN_REPORT_FID in terms of how the event structure is supplied to a userspace application. Usage of FAN_REPORT_PIDFD with FAN_REPORT_FID/FAN_REPORT_DFID_NAME is permitted, and in this case a struct fanotify_event_info_pidfd object will likely follow any struct fanotify_event_info_fid object. Currently, the usage of the FAN_REPORT_TID flag is not permitted along with FAN_REPORT_PIDFD as the pidfd API currently only supports the creation of pidfds for thread-group leaders. Additionally, usage of the FAN_REPORT_PIDFD flag is limited to privileged processes only i.e. event listeners that are running with the CAP_SYS_ADMIN capability. Attempting to supply the FAN_REPORT_TID initialization flags with FAN_REPORT_PIDFD or creating a notification group without CAP_SYS_ADMIN will result with -EINVAL being returned to the caller. In the event of a pidfd creation error, there are two types of error values that can be reported back to the listener. There is FAN_NOPIDFD, which will be reported in cases where the process responsible for generating the event has terminated prior to the event listener being able to read the event. Then there is FAN_EPIDFD, which will be reported when a more generic pidfd creation error has occurred when fanotify calls pidfd_create(). Link: https://lore.kernel.org/r/5f9e09cff7ed62bfaa51c1369e0f7ea5f16a91aa.1628398044.git.repnop@google.com Signed-off-by: Matthew Bobrowski <repnop@google.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-08-07 22:26:25 -07:00
unsigned int pidfd_mode = info_mode & FAN_REPORT_PIDFD;
struct file *f = NULL, *pidfd_file = NULL;
fanotify: add pidfd support to the fanotify API Introduce a new flag FAN_REPORT_PIDFD for fanotify_init(2) which allows userspace applications to control whether a pidfd information record containing a pidfd is to be returned alongside the generic event metadata for each event. If FAN_REPORT_PIDFD is enabled for a notification group, an additional struct fanotify_event_info_pidfd object type will be supplied alongside the generic struct fanotify_event_metadata for a single event. This functionality is analogous to that of FAN_REPORT_FID in terms of how the event structure is supplied to a userspace application. Usage of FAN_REPORT_PIDFD with FAN_REPORT_FID/FAN_REPORT_DFID_NAME is permitted, and in this case a struct fanotify_event_info_pidfd object will likely follow any struct fanotify_event_info_fid object. Currently, the usage of the FAN_REPORT_TID flag is not permitted along with FAN_REPORT_PIDFD as the pidfd API currently only supports the creation of pidfds for thread-group leaders. Additionally, usage of the FAN_REPORT_PIDFD flag is limited to privileged processes only i.e. event listeners that are running with the CAP_SYS_ADMIN capability. Attempting to supply the FAN_REPORT_TID initialization flags with FAN_REPORT_PIDFD or creating a notification group without CAP_SYS_ADMIN will result with -EINVAL being returned to the caller. In the event of a pidfd creation error, there are two types of error values that can be reported back to the listener. There is FAN_NOPIDFD, which will be reported in cases where the process responsible for generating the event has terminated prior to the event listener being able to read the event. Then there is FAN_EPIDFD, which will be reported when a more generic pidfd creation error has occurred when fanotify calls pidfd_create(). Link: https://lore.kernel.org/r/5f9e09cff7ed62bfaa51c1369e0f7ea5f16a91aa.1628398044.git.repnop@google.com Signed-off-by: Matthew Bobrowski <repnop@google.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-08-07 22:26:25 -07:00
int ret, pidfd = FAN_NOPIDFD, fd = FAN_NOFD;
pr_debug("%s: group=%p event=%p\n", __func__, group, event);
metadata.event_len = fanotify_event_len(info_mode, event);
metadata.metadata_len = FAN_EVENT_METADATA_LEN;
metadata.vers = FANOTIFY_METADATA_VERSION;
metadata.reserved = 0;
metadata.mask = event->mask & FANOTIFY_OUTGOING_EVENTS;
metadata.pid = pid_vnr(event->pid);
/*
* For an unprivileged listener, event->pid can be used to identify the
* events generated by the listener process itself, without disclosing
* the pids of other processes.
*/
if (FAN_GROUP_FLAG(group, FANOTIFY_UNPRIV) &&
task_tgid(current) != event->pid)
metadata.pid = 0;
/*
* For now, fid mode is required for an unprivileged listener and
* fid mode does not report fd in events. Keep this check anyway
* for safety in case fid mode requirement is relaxed in the future
* to allow unprivileged listener to get events with no fd and no fid.
*/
if (!FAN_GROUP_FLAG(group, FANOTIFY_UNPRIV) &&
path && path->mnt && path->dentry) {
fd = create_fd(group, path, &f);
if (fd < 0)
return fd;
}
metadata.fd = fd;
fanotify: add pidfd support to the fanotify API Introduce a new flag FAN_REPORT_PIDFD for fanotify_init(2) which allows userspace applications to control whether a pidfd information record containing a pidfd is to be returned alongside the generic event metadata for each event. If FAN_REPORT_PIDFD is enabled for a notification group, an additional struct fanotify_event_info_pidfd object type will be supplied alongside the generic struct fanotify_event_metadata for a single event. This functionality is analogous to that of FAN_REPORT_FID in terms of how the event structure is supplied to a userspace application. Usage of FAN_REPORT_PIDFD with FAN_REPORT_FID/FAN_REPORT_DFID_NAME is permitted, and in this case a struct fanotify_event_info_pidfd object will likely follow any struct fanotify_event_info_fid object. Currently, the usage of the FAN_REPORT_TID flag is not permitted along with FAN_REPORT_PIDFD as the pidfd API currently only supports the creation of pidfds for thread-group leaders. Additionally, usage of the FAN_REPORT_PIDFD flag is limited to privileged processes only i.e. event listeners that are running with the CAP_SYS_ADMIN capability. Attempting to supply the FAN_REPORT_TID initialization flags with FAN_REPORT_PIDFD or creating a notification group without CAP_SYS_ADMIN will result with -EINVAL being returned to the caller. In the event of a pidfd creation error, there are two types of error values that can be reported back to the listener. There is FAN_NOPIDFD, which will be reported in cases where the process responsible for generating the event has terminated prior to the event listener being able to read the event. Then there is FAN_EPIDFD, which will be reported when a more generic pidfd creation error has occurred when fanotify calls pidfd_create(). Link: https://lore.kernel.org/r/5f9e09cff7ed62bfaa51c1369e0f7ea5f16a91aa.1628398044.git.repnop@google.com Signed-off-by: Matthew Bobrowski <repnop@google.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-08-07 22:26:25 -07:00
if (pidfd_mode) {
/*
* Complain if the FAN_REPORT_PIDFD and FAN_REPORT_TID mutual
* exclusion is ever lifted. At the time of incoporating pidfd
* support within fanotify, the pidfd API only supported the
* creation of pidfds for thread-group leaders.
*/
WARN_ON_ONCE(FAN_GROUP_FLAG(group, FAN_REPORT_TID));
/*
* The PIDTYPE_TGID check for an event->pid is performed
* preemptively in an attempt to catch out cases where the event
* listener reads events after the event generating process has
* already terminated. Report FAN_NOPIDFD to the event listener
* in those cases, with all other pidfd creation errors being
* reported as FAN_EPIDFD.
*/
if (metadata.pid == 0 ||
!pid_has_task(event->pid, PIDTYPE_TGID)) {
pidfd = FAN_NOPIDFD;
} else {
pidfd = pidfd_prepare(event->pid, 0, &pidfd_file);
fanotify: add pidfd support to the fanotify API Introduce a new flag FAN_REPORT_PIDFD for fanotify_init(2) which allows userspace applications to control whether a pidfd information record containing a pidfd is to be returned alongside the generic event metadata for each event. If FAN_REPORT_PIDFD is enabled for a notification group, an additional struct fanotify_event_info_pidfd object type will be supplied alongside the generic struct fanotify_event_metadata for a single event. This functionality is analogous to that of FAN_REPORT_FID in terms of how the event structure is supplied to a userspace application. Usage of FAN_REPORT_PIDFD with FAN_REPORT_FID/FAN_REPORT_DFID_NAME is permitted, and in this case a struct fanotify_event_info_pidfd object will likely follow any struct fanotify_event_info_fid object. Currently, the usage of the FAN_REPORT_TID flag is not permitted along with FAN_REPORT_PIDFD as the pidfd API currently only supports the creation of pidfds for thread-group leaders. Additionally, usage of the FAN_REPORT_PIDFD flag is limited to privileged processes only i.e. event listeners that are running with the CAP_SYS_ADMIN capability. Attempting to supply the FAN_REPORT_TID initialization flags with FAN_REPORT_PIDFD or creating a notification group without CAP_SYS_ADMIN will result with -EINVAL being returned to the caller. In the event of a pidfd creation error, there are two types of error values that can be reported back to the listener. There is FAN_NOPIDFD, which will be reported in cases where the process responsible for generating the event has terminated prior to the event listener being able to read the event. Then there is FAN_EPIDFD, which will be reported when a more generic pidfd creation error has occurred when fanotify calls pidfd_create(). Link: https://lore.kernel.org/r/5f9e09cff7ed62bfaa51c1369e0f7ea5f16a91aa.1628398044.git.repnop@google.com Signed-off-by: Matthew Bobrowski <repnop@google.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-08-07 22:26:25 -07:00
if (pidfd < 0)
pidfd = FAN_EPIDFD;
}
}
ret = -EFAULT;
/*
* Sanity check copy size in case get_one_event() and
* event_len sizes ever get out of sync.
*/
if (WARN_ON_ONCE(metadata.event_len > count))
goto out_close_fd;
if (copy_to_user(buf, &metadata, FAN_EVENT_METADATA_LEN))
goto out_close_fd;
fanotify: report name info for FAN_DIR_MODIFY event Report event FAN_DIR_MODIFY with name in a variable length record similar to how fid's are reported. With name info reporting implemented, setting FAN_DIR_MODIFY in mark mask is now allowed. When events are reported with name, the reported fid identifies the directory and the name follows the fid. The info record type for this event info is FAN_EVENT_INFO_TYPE_DFID_NAME. For now, all reported events have at most one info record which is either FAN_EVENT_INFO_TYPE_FID or FAN_EVENT_INFO_TYPE_DFID_NAME (for FAN_DIR_MODIFY). Later on, events "on child" will report both records. There are several ways that an application can use this information: 1. When watching a single directory, the name is always relative to the watched directory, so application need to fstatat(2) the name relative to the watched directory. 2. When watching a set of directories, the application could keep a map of dirfd for all watched directories and hash the map by fid obtained with name_to_handle_at(2). When getting a name event, the fid in the event info could be used to lookup the base dirfd in the map and then call fstatat(2) with that dirfd. 3. When watching a filesystem (FAN_MARK_FILESYSTEM) or a large set of directories, the application could use open_by_handle_at(2) with the fid in event info to obtain dirfd for the directory where event happened and call fstatat(2) with this dirfd. The last option scales better for a large number of watched directories. The first two options may be available in the future also for non privileged fanotify watchers, because open_by_handle_at(2) requires the CAP_DAC_READ_SEARCH capability. Link: https://lore.kernel.org/r/20200319151022.31456-15-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2020-03-19 08:10:22 -07:00
buf += FAN_EVENT_METADATA_LEN;
count -= FAN_EVENT_METADATA_LEN;
if (fanotify_is_perm_event(event->mask))
FANOTIFY_PERM(event)->fd = fd;
if (info_mode) {
fanotify: add pidfd support to the fanotify API Introduce a new flag FAN_REPORT_PIDFD for fanotify_init(2) which allows userspace applications to control whether a pidfd information record containing a pidfd is to be returned alongside the generic event metadata for each event. If FAN_REPORT_PIDFD is enabled for a notification group, an additional struct fanotify_event_info_pidfd object type will be supplied alongside the generic struct fanotify_event_metadata for a single event. This functionality is analogous to that of FAN_REPORT_FID in terms of how the event structure is supplied to a userspace application. Usage of FAN_REPORT_PIDFD with FAN_REPORT_FID/FAN_REPORT_DFID_NAME is permitted, and in this case a struct fanotify_event_info_pidfd object will likely follow any struct fanotify_event_info_fid object. Currently, the usage of the FAN_REPORT_TID flag is not permitted along with FAN_REPORT_PIDFD as the pidfd API currently only supports the creation of pidfds for thread-group leaders. Additionally, usage of the FAN_REPORT_PIDFD flag is limited to privileged processes only i.e. event listeners that are running with the CAP_SYS_ADMIN capability. Attempting to supply the FAN_REPORT_TID initialization flags with FAN_REPORT_PIDFD or creating a notification group without CAP_SYS_ADMIN will result with -EINVAL being returned to the caller. In the event of a pidfd creation error, there are two types of error values that can be reported back to the listener. There is FAN_NOPIDFD, which will be reported in cases where the process responsible for generating the event has terminated prior to the event listener being able to read the event. Then there is FAN_EPIDFD, which will be reported when a more generic pidfd creation error has occurred when fanotify calls pidfd_create(). Link: https://lore.kernel.org/r/5f9e09cff7ed62bfaa51c1369e0f7ea5f16a91aa.1628398044.git.repnop@google.com Signed-off-by: Matthew Bobrowski <repnop@google.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-08-07 22:26:25 -07:00
ret = copy_info_records_to_user(event, info, info_mode, pidfd,
buf, count);
if (ret < 0)
goto out_close_fd;
}
if (f)
fd_install(fd, f);
if (pidfd_file)
fd_install(pidfd, pidfd_file);
return metadata.event_len;
out_close_fd:
if (fd != FAN_NOFD) {
put_unused_fd(fd);
fput(f);
}
fanotify: add pidfd support to the fanotify API Introduce a new flag FAN_REPORT_PIDFD for fanotify_init(2) which allows userspace applications to control whether a pidfd information record containing a pidfd is to be returned alongside the generic event metadata for each event. If FAN_REPORT_PIDFD is enabled for a notification group, an additional struct fanotify_event_info_pidfd object type will be supplied alongside the generic struct fanotify_event_metadata for a single event. This functionality is analogous to that of FAN_REPORT_FID in terms of how the event structure is supplied to a userspace application. Usage of FAN_REPORT_PIDFD with FAN_REPORT_FID/FAN_REPORT_DFID_NAME is permitted, and in this case a struct fanotify_event_info_pidfd object will likely follow any struct fanotify_event_info_fid object. Currently, the usage of the FAN_REPORT_TID flag is not permitted along with FAN_REPORT_PIDFD as the pidfd API currently only supports the creation of pidfds for thread-group leaders. Additionally, usage of the FAN_REPORT_PIDFD flag is limited to privileged processes only i.e. event listeners that are running with the CAP_SYS_ADMIN capability. Attempting to supply the FAN_REPORT_TID initialization flags with FAN_REPORT_PIDFD or creating a notification group without CAP_SYS_ADMIN will result with -EINVAL being returned to the caller. In the event of a pidfd creation error, there are two types of error values that can be reported back to the listener. There is FAN_NOPIDFD, which will be reported in cases where the process responsible for generating the event has terminated prior to the event listener being able to read the event. Then there is FAN_EPIDFD, which will be reported when a more generic pidfd creation error has occurred when fanotify calls pidfd_create(). Link: https://lore.kernel.org/r/5f9e09cff7ed62bfaa51c1369e0f7ea5f16a91aa.1628398044.git.repnop@google.com Signed-off-by: Matthew Bobrowski <repnop@google.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-08-07 22:26:25 -07:00
if (pidfd >= 0) {
put_unused_fd(pidfd);
fput(pidfd_file);
}
fanotify: add pidfd support to the fanotify API Introduce a new flag FAN_REPORT_PIDFD for fanotify_init(2) which allows userspace applications to control whether a pidfd information record containing a pidfd is to be returned alongside the generic event metadata for each event. If FAN_REPORT_PIDFD is enabled for a notification group, an additional struct fanotify_event_info_pidfd object type will be supplied alongside the generic struct fanotify_event_metadata for a single event. This functionality is analogous to that of FAN_REPORT_FID in terms of how the event structure is supplied to a userspace application. Usage of FAN_REPORT_PIDFD with FAN_REPORT_FID/FAN_REPORT_DFID_NAME is permitted, and in this case a struct fanotify_event_info_pidfd object will likely follow any struct fanotify_event_info_fid object. Currently, the usage of the FAN_REPORT_TID flag is not permitted along with FAN_REPORT_PIDFD as the pidfd API currently only supports the creation of pidfds for thread-group leaders. Additionally, usage of the FAN_REPORT_PIDFD flag is limited to privileged processes only i.e. event listeners that are running with the CAP_SYS_ADMIN capability. Attempting to supply the FAN_REPORT_TID initialization flags with FAN_REPORT_PIDFD or creating a notification group without CAP_SYS_ADMIN will result with -EINVAL being returned to the caller. In the event of a pidfd creation error, there are two types of error values that can be reported back to the listener. There is FAN_NOPIDFD, which will be reported in cases where the process responsible for generating the event has terminated prior to the event listener being able to read the event. Then there is FAN_EPIDFD, which will be reported when a more generic pidfd creation error has occurred when fanotify calls pidfd_create(). Link: https://lore.kernel.org/r/5f9e09cff7ed62bfaa51c1369e0f7ea5f16a91aa.1628398044.git.repnop@google.com Signed-off-by: Matthew Bobrowski <repnop@google.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-08-07 22:26:25 -07:00
return ret;
}
/* intofiy userspace file descriptor functions */
static __poll_t fanotify_poll(struct file *file, poll_table *wait)
{
struct fsnotify_group *group = file->private_data;
__poll_t ret = 0;
poll_wait(file, &group->notification_waitq, wait);
spin_lock(&group->notification_lock);
if (!fsnotify_notify_queue_is_empty(group))
ret = EPOLLIN | EPOLLRDNORM;
spin_unlock(&group->notification_lock);
return ret;
}
static ssize_t fanotify_read(struct file *file, char __user *buf,
size_t count, loff_t *pos)
{
struct fsnotify_group *group;
struct fanotify_event *event;
char __user *start;
int ret;
DEFINE_WAIT_FUNC(wait, woken_wake_function);
start = buf;
group = file->private_data;
pr_debug("%s: group=%p\n", __func__, group);
add_wait_queue(&group->notification_waitq, &wait);
while (1) {
/*
* User can supply arbitrarily large buffer. Avoid softlockups
* in case there are lots of available events.
*/
cond_resched();
event = get_one_event(group, count);
if (IS_ERR(event)) {
ret = PTR_ERR(event);
break;
}
if (!event) {
ret = -EAGAIN;
if (file->f_flags & O_NONBLOCK)
break;
ret = -ERESTARTSYS;
if (signal_pending(current))
break;
if (start != buf)
break;
wait_woken(&wait, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
continue;
}
ret = copy_event_to_user(group, event, buf, count);
fanotify: don't expose EOPENSTALE to userspace When delivering an event to userspace for a file on an NFS share, if the file is deleted on server side before user reads the event, user will not get the event. If the event queue contained several events, the stale event is quietly dropped and read() returns to user with events read so far in the buffer. If the event queue contains a single stale event or if the stale event is a permission event, read() returns to user with the kernel internal error code 518 (EOPENSTALE), which is not a POSIX error code. Check the internal return value -EOPENSTALE in fanotify_read(), just the same as it is checked in path_openat() and drop the event in the cases that it is not already dropped. This is a reproducer from Marko Rauhamaa: Just take the example program listed under "man fanotify" ("fantest") and follow these steps: ============================================================== NFS Server NFS Client(1) NFS Client(2) ============================================================== # echo foo >/nfsshare/bar.txt # cat /nfsshare/bar.txt foo # ./fantest /nfsshare Press enter key to terminate. Listening for events. # rm -f /nfsshare/bar.txt # cat /nfsshare/bar.txt read: Unknown error 518 cat: /nfsshare/bar.txt: Operation not permitted ============================================================== where NFS Client (1) and (2) are two terminal sessions on a single NFS Client machine. Reported-by: Marko Rauhamaa <marko.rauhamaa@f-secure.com> Tested-by: Marko Rauhamaa <marko.rauhamaa@f-secure.com> Cc: <linux-api@vger.kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2017-04-25 04:29:35 -07:00
if (unlikely(ret == -EOPENSTALE)) {
/*
* We cannot report events with stale fd so drop it.
* Setting ret to 0 will continue the event loop and
* do the right thing if there are no more events to
* read (i.e. return bytes read, -EAGAIN or wait).
*/
ret = 0;
}
/*
* Permission events get queued to wait for response. Other
* events can be destroyed now.
*/
if (!fanotify_is_perm_event(event->mask)) {
fsnotify_destroy_event(group, &event->fse);
} else {
fanotify: don't expose EOPENSTALE to userspace When delivering an event to userspace for a file on an NFS share, if the file is deleted on server side before user reads the event, user will not get the event. If the event queue contained several events, the stale event is quietly dropped and read() returns to user with events read so far in the buffer. If the event queue contains a single stale event or if the stale event is a permission event, read() returns to user with the kernel internal error code 518 (EOPENSTALE), which is not a POSIX error code. Check the internal return value -EOPENSTALE in fanotify_read(), just the same as it is checked in path_openat() and drop the event in the cases that it is not already dropped. This is a reproducer from Marko Rauhamaa: Just take the example program listed under "man fanotify" ("fantest") and follow these steps: ============================================================== NFS Server NFS Client(1) NFS Client(2) ============================================================== # echo foo >/nfsshare/bar.txt # cat /nfsshare/bar.txt foo # ./fantest /nfsshare Press enter key to terminate. Listening for events. # rm -f /nfsshare/bar.txt # cat /nfsshare/bar.txt read: Unknown error 518 cat: /nfsshare/bar.txt: Operation not permitted ============================================================== where NFS Client (1) and (2) are two terminal sessions on a single NFS Client machine. Reported-by: Marko Rauhamaa <marko.rauhamaa@f-secure.com> Tested-by: Marko Rauhamaa <marko.rauhamaa@f-secure.com> Cc: <linux-api@vger.kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2017-04-25 04:29:35 -07:00
if (ret <= 0) {
spin_lock(&group->notification_lock);
finish_permission_event(group,
FANOTIFY_PERM(event), FAN_DENY, NULL);
wake_up(&group->fanotify_data.access_waitq);
fanotify: don't expose EOPENSTALE to userspace When delivering an event to userspace for a file on an NFS share, if the file is deleted on server side before user reads the event, user will not get the event. If the event queue contained several events, the stale event is quietly dropped and read() returns to user with events read so far in the buffer. If the event queue contains a single stale event or if the stale event is a permission event, read() returns to user with the kernel internal error code 518 (EOPENSTALE), which is not a POSIX error code. Check the internal return value -EOPENSTALE in fanotify_read(), just the same as it is checked in path_openat() and drop the event in the cases that it is not already dropped. This is a reproducer from Marko Rauhamaa: Just take the example program listed under "man fanotify" ("fantest") and follow these steps: ============================================================== NFS Server NFS Client(1) NFS Client(2) ============================================================== # echo foo >/nfsshare/bar.txt # cat /nfsshare/bar.txt foo # ./fantest /nfsshare Press enter key to terminate. Listening for events. # rm -f /nfsshare/bar.txt # cat /nfsshare/bar.txt read: Unknown error 518 cat: /nfsshare/bar.txt: Operation not permitted ============================================================== where NFS Client (1) and (2) are two terminal sessions on a single NFS Client machine. Reported-by: Marko Rauhamaa <marko.rauhamaa@f-secure.com> Tested-by: Marko Rauhamaa <marko.rauhamaa@f-secure.com> Cc: <linux-api@vger.kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2017-04-25 04:29:35 -07:00
} else {
spin_lock(&group->notification_lock);
list_add_tail(&event->fse.list,
fanotify: don't expose EOPENSTALE to userspace When delivering an event to userspace for a file on an NFS share, if the file is deleted on server side before user reads the event, user will not get the event. If the event queue contained several events, the stale event is quietly dropped and read() returns to user with events read so far in the buffer. If the event queue contains a single stale event or if the stale event is a permission event, read() returns to user with the kernel internal error code 518 (EOPENSTALE), which is not a POSIX error code. Check the internal return value -EOPENSTALE in fanotify_read(), just the same as it is checked in path_openat() and drop the event in the cases that it is not already dropped. This is a reproducer from Marko Rauhamaa: Just take the example program listed under "man fanotify" ("fantest") and follow these steps: ============================================================== NFS Server NFS Client(1) NFS Client(2) ============================================================== # echo foo >/nfsshare/bar.txt # cat /nfsshare/bar.txt foo # ./fantest /nfsshare Press enter key to terminate. Listening for events. # rm -f /nfsshare/bar.txt # cat /nfsshare/bar.txt read: Unknown error 518 cat: /nfsshare/bar.txt: Operation not permitted ============================================================== where NFS Client (1) and (2) are two terminal sessions on a single NFS Client machine. Reported-by: Marko Rauhamaa <marko.rauhamaa@f-secure.com> Tested-by: Marko Rauhamaa <marko.rauhamaa@f-secure.com> Cc: <linux-api@vger.kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2017-04-25 04:29:35 -07:00
&group->fanotify_data.access_list);
spin_unlock(&group->notification_lock);
}
}
fanotify: don't expose EOPENSTALE to userspace When delivering an event to userspace for a file on an NFS share, if the file is deleted on server side before user reads the event, user will not get the event. If the event queue contained several events, the stale event is quietly dropped and read() returns to user with events read so far in the buffer. If the event queue contains a single stale event or if the stale event is a permission event, read() returns to user with the kernel internal error code 518 (EOPENSTALE), which is not a POSIX error code. Check the internal return value -EOPENSTALE in fanotify_read(), just the same as it is checked in path_openat() and drop the event in the cases that it is not already dropped. This is a reproducer from Marko Rauhamaa: Just take the example program listed under "man fanotify" ("fantest") and follow these steps: ============================================================== NFS Server NFS Client(1) NFS Client(2) ============================================================== # echo foo >/nfsshare/bar.txt # cat /nfsshare/bar.txt foo # ./fantest /nfsshare Press enter key to terminate. Listening for events. # rm -f /nfsshare/bar.txt # cat /nfsshare/bar.txt read: Unknown error 518 cat: /nfsshare/bar.txt: Operation not permitted ============================================================== where NFS Client (1) and (2) are two terminal sessions on a single NFS Client machine. Reported-by: Marko Rauhamaa <marko.rauhamaa@f-secure.com> Tested-by: Marko Rauhamaa <marko.rauhamaa@f-secure.com> Cc: <linux-api@vger.kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2017-04-25 04:29:35 -07:00
if (ret < 0)
break;
buf += ret;
count -= ret;
}
remove_wait_queue(&group->notification_waitq, &wait);
if (start != buf && ret != -EFAULT)
ret = buf - start;
return ret;
}
static ssize_t fanotify_write(struct file *file, const char __user *buf, size_t count, loff_t *pos)
{
struct fanotify_response response;
struct fsnotify_group *group;
int ret;
const char __user *info_buf = buf + sizeof(struct fanotify_response);
size_t info_len;
if (!IS_ENABLED(CONFIG_FANOTIFY_ACCESS_PERMISSIONS))
return -EINVAL;
group = file->private_data;
pr_debug("%s: group=%p count=%zu\n", __func__, group, count);
if (count < sizeof(response))
return -EINVAL;
if (copy_from_user(&response, buf, sizeof(response)))
return -EFAULT;
info_len = count - sizeof(response);
ret = process_access_response(group, &response, info_buf, info_len);
if (ret < 0)
count = ret;
else
count = sizeof(response) + ret;
return count;
}
static int fanotify_release(struct inode *ignored, struct file *file)
{
struct fsnotify_group *group = file->private_data;
struct fsnotify_event *fsn_event;
/*
* Stop new events from arriving in the notification queue. since
* userspace cannot use fanotify fd anymore, no event can enter or
* leave access_list by now either.
*/
fsnotify_group_stop_queueing(group);
/*
* Process all permission events on access_list and notification queue
* and simulate reply from userspace.
*/
spin_lock(&group->notification_lock);
while (!list_empty(&group->fanotify_data.access_list)) {
struct fanotify_perm_event *event;
event = list_first_entry(&group->fanotify_data.access_list,
struct fanotify_perm_event, fae.fse.list);
list_del_init(&event->fae.fse.list);
finish_permission_event(group, event, FAN_ALLOW, NULL);
spin_lock(&group->notification_lock);
}
/*
* Destroy all non-permission events. For permission events just
* dequeue them and set the response. They will be freed once the
* response is consumed and fanotify_get_response() returns.
*/
while ((fsn_event = fsnotify_remove_first_event(group))) {
struct fanotify_event *event = FANOTIFY_E(fsn_event);
if (!(event->mask & FANOTIFY_PERM_EVENTS)) {
spin_unlock(&group->notification_lock);
fsnotify_destroy_event(group, fsn_event);
} else {
finish_permission_event(group, FANOTIFY_PERM(event),
FAN_ALLOW, NULL);
}
spin_lock(&group->notification_lock);
}
spin_unlock(&group->notification_lock);
/* Response for all permission events it set, wakeup waiters */
wake_up(&group->fanotify_data.access_waitq);
/* matches the fanotify_init->fsnotify_alloc_group */
fsnotify_destroy_group(group);
return 0;
}
static long fanotify_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct fsnotify_group *group;
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:48:14 -07:00
struct fsnotify_event *fsn_event;
void __user *p;
int ret = -ENOTTY;
size_t send_len = 0;
group = file->private_data;
p = (void __user *) arg;
switch (cmd) {
case FIONREAD:
spin_lock(&group->notification_lock);
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:48:14 -07:00
list_for_each_entry(fsn_event, &group->notification_list, list)
send_len += FAN_EVENT_METADATA_LEN;
spin_unlock(&group->notification_lock);
ret = put_user(send_len, (int __user *) p);
break;
}
return ret;
}
static const struct file_operations fanotify_fops = {
fs, notify: add procfs fdinfo helper This allow us to print out fsnotify details such as watchee inode, device, mask and optionally a file handle. For inotify objects if kernel compiled with exportfs support the output will be | pos: 0 | flags: 02000000 | inotify wd:3 ino:9e7e sdev:800013 mask:800afce ignored_mask:0 fhandle-bytes:8 fhandle-type:1 f_handle:7e9e0000640d1b6d | inotify wd:2 ino:a111 sdev:800013 mask:800afce ignored_mask:0 fhandle-bytes:8 fhandle-type:1 f_handle:11a1000020542153 | inotify wd:1 ino:6b149 sdev:800013 mask:800afce ignored_mask:0 fhandle-bytes:8 fhandle-type:1 f_handle:49b1060023552153 If kernel compiled without exportfs support, the file handle won't be provided but inode and device only. | pos: 0 | flags: 02000000 | inotify wd:3 ino:9e7e sdev:800013 mask:800afce ignored_mask:0 | inotify wd:2 ino:a111 sdev:800013 mask:800afce ignored_mask:0 | inotify wd:1 ino:6b149 sdev:800013 mask:800afce ignored_mask:0 For fanotify the output is like | pos: 0 | flags: 04002 | fanotify flags:10 event-flags:0 | fanotify mnt_id:12 mask:3b ignored_mask:0 | fanotify ino:50205 sdev:800013 mask:3b ignored_mask:40000000 fhandle-bytes:8 fhandle-type:1 f_handle:05020500fb1d47e7 To minimize impact on general fsnotify code the new functionality is gathered in fs/notify/fdinfo.c file. Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> Acked-by: Pavel Emelyanov <xemul@parallels.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andrey Vagin <avagin@openvz.org> Cc: Al Viro <viro@ZenIV.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: James Bottomley <jbottomley@parallels.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Matthew Helsley <matt.helsley@gmail.com> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@onelan.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-17 17:05:12 -07:00
.show_fdinfo = fanotify_show_fdinfo,
.poll = fanotify_poll,
.read = fanotify_read,
.write = fanotify_write,
.fasync = NULL,
.release = fanotify_release,
.unlocked_ioctl = fanotify_ioctl,
.compat_ioctl = compat_ptr_ioctl,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 09:52:59 -07:00
.llseek = noop_llseek,
};
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
static int fanotify_find_path(int dfd, const char __user *filename,
fanotify, inotify, dnotify, security: add security hook for fs notifications As of now, setting watches on filesystem objects has, at most, applied a check for read access to the inode, and in the case of fanotify, requires CAP_SYS_ADMIN. No specific security hook or permission check has been provided to control the setting of watches. Using any of inotify, dnotify, or fanotify, it is possible to observe, not only write-like operations, but even read access to a file. Modeling the watch as being merely a read from the file is insufficient for the needs of SELinux. This is due to the fact that read access should not necessarily imply access to information about when another process reads from a file. Furthermore, fanotify watches grant more power to an application in the form of permission events. While notification events are solely, unidirectional (i.e. they only pass information to the receiving application), permission events are blocking. Permission events make a request to the receiving application which will then reply with a decision as to whether or not that action may be completed. This causes the issue of the watching application having the ability to exercise control over the triggering process. Without drawing a distinction within the permission check, the ability to read would imply the greater ability to control an application. Additionally, mount and superblock watches apply to all files within the same mount or superblock. Read access to one file should not necessarily imply the ability to watch all files accessed within a given mount or superblock. In order to solve these issues, a new LSM hook is implemented and has been placed within the system calls for marking filesystem objects with inotify, fanotify, and dnotify watches. These calls to the hook are placed at the point at which the target path has been resolved and are provided with the path struct, the mask of requested notification events, and the type of object on which the mark is being set (inode, superblock, or mount). The mask and obj_type have already been translated into common FS_* values shared by the entirety of the fs notification infrastructure. The path struct is passed rather than just the inode so that the mount is available, particularly for mount watches. This also allows for use of the hook by pathname-based security modules. However, since the hook is intended for use even by inode based security modules, it is not placed under the CONFIG_SECURITY_PATH conditional. Otherwise, the inode-based security modules would need to enable all of the path hooks, even though they do not use any of them. This only provides a hook at the point of setting a watch, and presumes that permission to set a particular watch implies the ability to receive all notification about that object which match the mask. This is all that is required for SELinux. If other security modules require additional hooks or infrastructure to control delivery of notification, these can be added by them. It does not make sense for us to propose hooks for which we have no implementation. The understanding that all notifications received by the requesting application are all strictly of a type for which the application has been granted permission shows that this implementation is sufficient in its coverage. Security modules wishing to provide complete control over fanotify must also implement a security_file_open hook that validates that the access requested by the watching application is authorized. Fanotify has the issue that it returns a file descriptor with the file mode specified during fanotify_init() to the watching process on event. This is already covered by the LSM security_file_open hook if the security module implements checking of the requested file mode there. Otherwise, a watching process can obtain escalated access to a file for which it has not been authorized. The selinux_path_notify hook implementation works by adding five new file permissions: watch, watch_mount, watch_sb, watch_reads, and watch_with_perm (descriptions about which will follow), and one new filesystem permission: watch (which is applied to superblock checks). The hook then decides which subset of these permissions must be held by the requesting application based on the contents of the provided mask and the obj_type. The selinux_file_open hook already checks the requested file mode and therefore ensures that a watching process cannot escalate its access through fanotify. The watch, watch_mount, and watch_sb permissions are the baseline permissions for setting a watch on an object and each are a requirement for any watch to be set on a file, mount, or superblock respectively. It should be noted that having either of the other two permissions (watch_reads and watch_with_perm) does not imply the watch, watch_mount, or watch_sb permission. Superblock watches further require the filesystem watch permission to the superblock. As there is no labeled object in view for mounts, there is no specific check for mount watches beyond watch_mount to the inode. Such a check could be added in the future, if a suitable labeled object existed representing the mount. The watch_reads permission is required to receive notifications from read-exclusive events on filesystem objects. These events include accessing a file for the purpose of reading and closing a file which has been opened read-only. This distinction has been drawn in order to provide a direct indication in the policy for this otherwise not obvious capability. Read access to a file should not necessarily imply the ability to observe read events on a file. Finally, watch_with_perm only applies to fanotify masks since it is the only way to set a mask which allows for the blocking, permission event. This permission is needed for any watch which is of this type. Though fanotify requires CAP_SYS_ADMIN, this is insufficient as it gives implicit trust to root, which we do not do, and does not support least privilege. Signed-off-by: Aaron Goidel <acgoide@tycho.nsa.gov> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Paul Moore <paul@paul-moore.com>
2019-08-12 08:20:00 -07:00
struct path *path, unsigned int flags, __u64 mask,
unsigned int obj_type)
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
{
int ret;
pr_debug("%s: dfd=%d filename=%p flags=%x\n", __func__,
dfd, filename, flags);
if (filename == NULL) {
struct fd f = fdget(dfd);
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
ret = -EBADF;
if (!fd_file(f))
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
goto out;
ret = -ENOTDIR;
if ((flags & FAN_MARK_ONLYDIR) &&
!(S_ISDIR(file_inode(fd_file(f))->i_mode))) {
fdput(f);
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
goto out;
}
*path = fd_file(f)->f_path;
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
path_get(path);
fdput(f);
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
} else {
unsigned int lookup_flags = 0;
if (!(flags & FAN_MARK_DONT_FOLLOW))
lookup_flags |= LOOKUP_FOLLOW;
if (flags & FAN_MARK_ONLYDIR)
lookup_flags |= LOOKUP_DIRECTORY;
ret = user_path_at(dfd, filename, lookup_flags, path);
if (ret)
goto out;
}
/* you can only watch an inode if you have read permissions on it */
ret = path_permission(path, MAY_READ);
fanotify, inotify, dnotify, security: add security hook for fs notifications As of now, setting watches on filesystem objects has, at most, applied a check for read access to the inode, and in the case of fanotify, requires CAP_SYS_ADMIN. No specific security hook or permission check has been provided to control the setting of watches. Using any of inotify, dnotify, or fanotify, it is possible to observe, not only write-like operations, but even read access to a file. Modeling the watch as being merely a read from the file is insufficient for the needs of SELinux. This is due to the fact that read access should not necessarily imply access to information about when another process reads from a file. Furthermore, fanotify watches grant more power to an application in the form of permission events. While notification events are solely, unidirectional (i.e. they only pass information to the receiving application), permission events are blocking. Permission events make a request to the receiving application which will then reply with a decision as to whether or not that action may be completed. This causes the issue of the watching application having the ability to exercise control over the triggering process. Without drawing a distinction within the permission check, the ability to read would imply the greater ability to control an application. Additionally, mount and superblock watches apply to all files within the same mount or superblock. Read access to one file should not necessarily imply the ability to watch all files accessed within a given mount or superblock. In order to solve these issues, a new LSM hook is implemented and has been placed within the system calls for marking filesystem objects with inotify, fanotify, and dnotify watches. These calls to the hook are placed at the point at which the target path has been resolved and are provided with the path struct, the mask of requested notification events, and the type of object on which the mark is being set (inode, superblock, or mount). The mask and obj_type have already been translated into common FS_* values shared by the entirety of the fs notification infrastructure. The path struct is passed rather than just the inode so that the mount is available, particularly for mount watches. This also allows for use of the hook by pathname-based security modules. However, since the hook is intended for use even by inode based security modules, it is not placed under the CONFIG_SECURITY_PATH conditional. Otherwise, the inode-based security modules would need to enable all of the path hooks, even though they do not use any of them. This only provides a hook at the point of setting a watch, and presumes that permission to set a particular watch implies the ability to receive all notification about that object which match the mask. This is all that is required for SELinux. If other security modules require additional hooks or infrastructure to control delivery of notification, these can be added by them. It does not make sense for us to propose hooks for which we have no implementation. The understanding that all notifications received by the requesting application are all strictly of a type for which the application has been granted permission shows that this implementation is sufficient in its coverage. Security modules wishing to provide complete control over fanotify must also implement a security_file_open hook that validates that the access requested by the watching application is authorized. Fanotify has the issue that it returns a file descriptor with the file mode specified during fanotify_init() to the watching process on event. This is already covered by the LSM security_file_open hook if the security module implements checking of the requested file mode there. Otherwise, a watching process can obtain escalated access to a file for which it has not been authorized. The selinux_path_notify hook implementation works by adding five new file permissions: watch, watch_mount, watch_sb, watch_reads, and watch_with_perm (descriptions about which will follow), and one new filesystem permission: watch (which is applied to superblock checks). The hook then decides which subset of these permissions must be held by the requesting application based on the contents of the provided mask and the obj_type. The selinux_file_open hook already checks the requested file mode and therefore ensures that a watching process cannot escalate its access through fanotify. The watch, watch_mount, and watch_sb permissions are the baseline permissions for setting a watch on an object and each are a requirement for any watch to be set on a file, mount, or superblock respectively. It should be noted that having either of the other two permissions (watch_reads and watch_with_perm) does not imply the watch, watch_mount, or watch_sb permission. Superblock watches further require the filesystem watch permission to the superblock. As there is no labeled object in view for mounts, there is no specific check for mount watches beyond watch_mount to the inode. Such a check could be added in the future, if a suitable labeled object existed representing the mount. The watch_reads permission is required to receive notifications from read-exclusive events on filesystem objects. These events include accessing a file for the purpose of reading and closing a file which has been opened read-only. This distinction has been drawn in order to provide a direct indication in the policy for this otherwise not obvious capability. Read access to a file should not necessarily imply the ability to observe read events on a file. Finally, watch_with_perm only applies to fanotify masks since it is the only way to set a mask which allows for the blocking, permission event. This permission is needed for any watch which is of this type. Though fanotify requires CAP_SYS_ADMIN, this is insufficient as it gives implicit trust to root, which we do not do, and does not support least privilege. Signed-off-by: Aaron Goidel <acgoide@tycho.nsa.gov> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Paul Moore <paul@paul-moore.com>
2019-08-12 08:20:00 -07:00
if (ret) {
path_put(path);
goto out;
}
ret = security_path_notify(path, mask, obj_type);
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
if (ret)
path_put(path);
fanotify, inotify, dnotify, security: add security hook for fs notifications As of now, setting watches on filesystem objects has, at most, applied a check for read access to the inode, and in the case of fanotify, requires CAP_SYS_ADMIN. No specific security hook or permission check has been provided to control the setting of watches. Using any of inotify, dnotify, or fanotify, it is possible to observe, not only write-like operations, but even read access to a file. Modeling the watch as being merely a read from the file is insufficient for the needs of SELinux. This is due to the fact that read access should not necessarily imply access to information about when another process reads from a file. Furthermore, fanotify watches grant more power to an application in the form of permission events. While notification events are solely, unidirectional (i.e. they only pass information to the receiving application), permission events are blocking. Permission events make a request to the receiving application which will then reply with a decision as to whether or not that action may be completed. This causes the issue of the watching application having the ability to exercise control over the triggering process. Without drawing a distinction within the permission check, the ability to read would imply the greater ability to control an application. Additionally, mount and superblock watches apply to all files within the same mount or superblock. Read access to one file should not necessarily imply the ability to watch all files accessed within a given mount or superblock. In order to solve these issues, a new LSM hook is implemented and has been placed within the system calls for marking filesystem objects with inotify, fanotify, and dnotify watches. These calls to the hook are placed at the point at which the target path has been resolved and are provided with the path struct, the mask of requested notification events, and the type of object on which the mark is being set (inode, superblock, or mount). The mask and obj_type have already been translated into common FS_* values shared by the entirety of the fs notification infrastructure. The path struct is passed rather than just the inode so that the mount is available, particularly for mount watches. This also allows for use of the hook by pathname-based security modules. However, since the hook is intended for use even by inode based security modules, it is not placed under the CONFIG_SECURITY_PATH conditional. Otherwise, the inode-based security modules would need to enable all of the path hooks, even though they do not use any of them. This only provides a hook at the point of setting a watch, and presumes that permission to set a particular watch implies the ability to receive all notification about that object which match the mask. This is all that is required for SELinux. If other security modules require additional hooks or infrastructure to control delivery of notification, these can be added by them. It does not make sense for us to propose hooks for which we have no implementation. The understanding that all notifications received by the requesting application are all strictly of a type for which the application has been granted permission shows that this implementation is sufficient in its coverage. Security modules wishing to provide complete control over fanotify must also implement a security_file_open hook that validates that the access requested by the watching application is authorized. Fanotify has the issue that it returns a file descriptor with the file mode specified during fanotify_init() to the watching process on event. This is already covered by the LSM security_file_open hook if the security module implements checking of the requested file mode there. Otherwise, a watching process can obtain escalated access to a file for which it has not been authorized. The selinux_path_notify hook implementation works by adding five new file permissions: watch, watch_mount, watch_sb, watch_reads, and watch_with_perm (descriptions about which will follow), and one new filesystem permission: watch (which is applied to superblock checks). The hook then decides which subset of these permissions must be held by the requesting application based on the contents of the provided mask and the obj_type. The selinux_file_open hook already checks the requested file mode and therefore ensures that a watching process cannot escalate its access through fanotify. The watch, watch_mount, and watch_sb permissions are the baseline permissions for setting a watch on an object and each are a requirement for any watch to be set on a file, mount, or superblock respectively. It should be noted that having either of the other two permissions (watch_reads and watch_with_perm) does not imply the watch, watch_mount, or watch_sb permission. Superblock watches further require the filesystem watch permission to the superblock. As there is no labeled object in view for mounts, there is no specific check for mount watches beyond watch_mount to the inode. Such a check could be added in the future, if a suitable labeled object existed representing the mount. The watch_reads permission is required to receive notifications from read-exclusive events on filesystem objects. These events include accessing a file for the purpose of reading and closing a file which has been opened read-only. This distinction has been drawn in order to provide a direct indication in the policy for this otherwise not obvious capability. Read access to a file should not necessarily imply the ability to observe read events on a file. Finally, watch_with_perm only applies to fanotify masks since it is the only way to set a mask which allows for the blocking, permission event. This permission is needed for any watch which is of this type. Though fanotify requires CAP_SYS_ADMIN, this is insufficient as it gives implicit trust to root, which we do not do, and does not support least privilege. Signed-off-by: Aaron Goidel <acgoide@tycho.nsa.gov> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Paul Moore <paul@paul-moore.com>
2019-08-12 08:20:00 -07:00
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
out:
return ret;
}
static __u32 fanotify_mark_remove_from_mask(struct fsnotify_mark *fsn_mark,
__u32 mask, unsigned int flags,
__u32 umask, int *destroy)
{
__u32 oldmask, newmask;
/* umask bits cannot be removed by user */
mask &= ~umask;
spin_lock(&fsn_mark->lock);
oldmask = fsnotify_calc_mask(fsn_mark);
fanotify: introduce FAN_MARK_IGNORE This flag is a new way to configure ignore mask which allows adding and removing the event flags FAN_ONDIR and FAN_EVENT_ON_CHILD in ignore mask. The legacy FAN_MARK_IGNORED_MASK flag would always ignore events on directories and would ignore events on children depending on whether the FAN_EVENT_ON_CHILD flag was set in the (non ignored) mask. FAN_MARK_IGNORE can be used to ignore events on children without setting FAN_EVENT_ON_CHILD in the mark's mask and will not ignore events on directories unconditionally, only when FAN_ONDIR is set in ignore mask. The new behavior is non-downgradable. After calling fanotify_mark() with FAN_MARK_IGNORE once, calling fanotify_mark() with FAN_MARK_IGNORED_MASK on the same object will return EEXIST error. Setting the event flags with FAN_MARK_IGNORE on a non-dir inode mark has no meaning and will return ENOTDIR error. The meaning of FAN_MARK_IGNORED_SURV_MODIFY is preserved with the new FAN_MARK_IGNORE flag, but with a few semantic differences: 1. FAN_MARK_IGNORED_SURV_MODIFY is required for filesystem and mount marks and on an inode mark on a directory. Omitting this flag will return EINVAL or EISDIR error. 2. An ignore mask on a non-directory inode that survives modify could never be downgraded to an ignore mask that does not survive modify. With new FAN_MARK_IGNORE semantics we make that rule explicit - trying to update a surviving ignore mask without the flag FAN_MARK_IGNORED_SURV_MODIFY will return EEXIST error. The conveniene macro FAN_MARK_IGNORE_SURV is added for (FAN_MARK_IGNORE | FAN_MARK_IGNORED_SURV_MODIFY), because the common case should use short constant names. Link: https://lore.kernel.org/r/20220629144210.2983229-4-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2022-06-29 07:42:10 -07:00
if (!(flags & FANOTIFY_MARK_IGNORE_BITS)) {
fsn_mark->mask &= ~mask;
} else {
fsn_mark->ignore_mask &= ~mask;
}
newmask = fsnotify_calc_mask(fsn_mark);
/*
* We need to keep the mark around even if remaining mask cannot
* result in any events (e.g. mask == FAN_ONDIR) to support incremenal
* changes to the mask.
* Destroy mark when only umask bits remain.
*/
*destroy = !((fsn_mark->mask | fsn_mark->ignore_mask) & ~umask);
spin_unlock(&fsn_mark->lock);
return oldmask & ~newmask;
}
static int fanotify_remove_mark(struct fsnotify_group *group,
void *obj, unsigned int obj_type, __u32 mask,
unsigned int flags, __u32 umask)
{
struct fsnotify_mark *fsn_mark = NULL;
__u32 removed;
int destroy_mark;
fsnotify_group_lock(group);
fsn_mark = fsnotify_find_mark(obj, obj_type, group);
if (!fsn_mark) {
fsnotify_group_unlock(group);
return -ENOENT;
}
removed = fanotify_mark_remove_from_mask(fsn_mark, mask, flags,
umask, &destroy_mark);
if (removed & fsnotify_conn_mask(fsn_mark->connector))
fsnotify_recalc_mask(fsn_mark->connector);
if (destroy_mark)
fsnotify_detach_mark(fsn_mark);
fsnotify_group_unlock(group);
if (destroy_mark)
fsnotify_free_mark(fsn_mark);
/* matches the fsnotify_find_mark() */
fsnotify_put_mark(fsn_mark);
return 0;
}
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
static bool fanotify_mark_update_flags(struct fsnotify_mark *fsn_mark,
unsigned int fan_flags)
fsnotify: optimize FS_MODIFY events with no ignored masks fsnotify() treats FS_MODIFY events specially - it does not skip them even if the FS_MODIFY event does not apear in the object's fsnotify mask. This is because send_to_group() checks if FS_MODIFY needs to clear ignored mask of marks. The common case is that an object does not have any mark with ignored mask and in particular, that it does not have a mark with ignored mask and without the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag. Set FS_MODIFY in object's fsnotify mask during fsnotify_recalc_mask() if object has a mark with an ignored mask and without the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag and remove the special treatment of FS_MODIFY in fsnotify(), so that FS_MODIFY events could be optimized in the common case. Call fsnotify_recalc_mask() from fanotify after adding or removing an ignored mask from a mark without FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY or when adding the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag to a mark with ignored mask (the flag cannot be removed by fanotify uapi). Performance results for doing 10000000 write(2)s to tmpfs: vanilla patched without notification mark 25.486+-1.054 24.965+-0.244 with notification mark 30.111+-0.139 26.891+-1.355 So we can see the overhead of notification subsystem has been drastically reduced. Link: https://lore.kernel.org/r/20220223151438.790268-3-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2022-02-23 08:14:38 -07:00
{
bool want_iref = !(fan_flags & FAN_MARK_EVICTABLE);
fanotify: introduce FAN_MARK_IGNORE This flag is a new way to configure ignore mask which allows adding and removing the event flags FAN_ONDIR and FAN_EVENT_ON_CHILD in ignore mask. The legacy FAN_MARK_IGNORED_MASK flag would always ignore events on directories and would ignore events on children depending on whether the FAN_EVENT_ON_CHILD flag was set in the (non ignored) mask. FAN_MARK_IGNORE can be used to ignore events on children without setting FAN_EVENT_ON_CHILD in the mark's mask and will not ignore events on directories unconditionally, only when FAN_ONDIR is set in ignore mask. The new behavior is non-downgradable. After calling fanotify_mark() with FAN_MARK_IGNORE once, calling fanotify_mark() with FAN_MARK_IGNORED_MASK on the same object will return EEXIST error. Setting the event flags with FAN_MARK_IGNORE on a non-dir inode mark has no meaning and will return ENOTDIR error. The meaning of FAN_MARK_IGNORED_SURV_MODIFY is preserved with the new FAN_MARK_IGNORE flag, but with a few semantic differences: 1. FAN_MARK_IGNORED_SURV_MODIFY is required for filesystem and mount marks and on an inode mark on a directory. Omitting this flag will return EINVAL or EISDIR error. 2. An ignore mask on a non-directory inode that survives modify could never be downgraded to an ignore mask that does not survive modify. With new FAN_MARK_IGNORE semantics we make that rule explicit - trying to update a surviving ignore mask without the flag FAN_MARK_IGNORED_SURV_MODIFY will return EEXIST error. The conveniene macro FAN_MARK_IGNORE_SURV is added for (FAN_MARK_IGNORE | FAN_MARK_IGNORED_SURV_MODIFY), because the common case should use short constant names. Link: https://lore.kernel.org/r/20220629144210.2983229-4-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2022-06-29 07:42:10 -07:00
unsigned int ignore = fan_flags & FANOTIFY_MARK_IGNORE_BITS;
bool recalc = false;
fsnotify: optimize FS_MODIFY events with no ignored masks fsnotify() treats FS_MODIFY events specially - it does not skip them even if the FS_MODIFY event does not apear in the object's fsnotify mask. This is because send_to_group() checks if FS_MODIFY needs to clear ignored mask of marks. The common case is that an object does not have any mark with ignored mask and in particular, that it does not have a mark with ignored mask and without the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag. Set FS_MODIFY in object's fsnotify mask during fsnotify_recalc_mask() if object has a mark with an ignored mask and without the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag and remove the special treatment of FS_MODIFY in fsnotify(), so that FS_MODIFY events could be optimized in the common case. Call fsnotify_recalc_mask() from fanotify after adding or removing an ignored mask from a mark without FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY or when adding the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag to a mark with ignored mask (the flag cannot be removed by fanotify uapi). Performance results for doing 10000000 write(2)s to tmpfs: vanilla patched without notification mark 25.486+-1.054 24.965+-0.244 with notification mark 30.111+-0.139 26.891+-1.355 So we can see the overhead of notification subsystem has been drastically reduced. Link: https://lore.kernel.org/r/20220223151438.790268-3-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2022-02-23 08:14:38 -07:00
fanotify: introduce FAN_MARK_IGNORE This flag is a new way to configure ignore mask which allows adding and removing the event flags FAN_ONDIR and FAN_EVENT_ON_CHILD in ignore mask. The legacy FAN_MARK_IGNORED_MASK flag would always ignore events on directories and would ignore events on children depending on whether the FAN_EVENT_ON_CHILD flag was set in the (non ignored) mask. FAN_MARK_IGNORE can be used to ignore events on children without setting FAN_EVENT_ON_CHILD in the mark's mask and will not ignore events on directories unconditionally, only when FAN_ONDIR is set in ignore mask. The new behavior is non-downgradable. After calling fanotify_mark() with FAN_MARK_IGNORE once, calling fanotify_mark() with FAN_MARK_IGNORED_MASK on the same object will return EEXIST error. Setting the event flags with FAN_MARK_IGNORE on a non-dir inode mark has no meaning and will return ENOTDIR error. The meaning of FAN_MARK_IGNORED_SURV_MODIFY is preserved with the new FAN_MARK_IGNORE flag, but with a few semantic differences: 1. FAN_MARK_IGNORED_SURV_MODIFY is required for filesystem and mount marks and on an inode mark on a directory. Omitting this flag will return EINVAL or EISDIR error. 2. An ignore mask on a non-directory inode that survives modify could never be downgraded to an ignore mask that does not survive modify. With new FAN_MARK_IGNORE semantics we make that rule explicit - trying to update a surviving ignore mask without the flag FAN_MARK_IGNORED_SURV_MODIFY will return EEXIST error. The conveniene macro FAN_MARK_IGNORE_SURV is added for (FAN_MARK_IGNORE | FAN_MARK_IGNORED_SURV_MODIFY), because the common case should use short constant names. Link: https://lore.kernel.org/r/20220629144210.2983229-4-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2022-06-29 07:42:10 -07:00
/*
* When using FAN_MARK_IGNORE for the first time, mark starts using
* independent event flags in ignore mask. After that, trying to
* update the ignore mask with the old FAN_MARK_IGNORED_MASK API
* will result in EEXIST error.
*/
if (ignore == FAN_MARK_IGNORE)
fsn_mark->flags |= FSNOTIFY_MARK_FLAG_HAS_IGNORE_FLAGS;
fsnotify: optimize FS_MODIFY events with no ignored masks fsnotify() treats FS_MODIFY events specially - it does not skip them even if the FS_MODIFY event does not apear in the object's fsnotify mask. This is because send_to_group() checks if FS_MODIFY needs to clear ignored mask of marks. The common case is that an object does not have any mark with ignored mask and in particular, that it does not have a mark with ignored mask and without the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag. Set FS_MODIFY in object's fsnotify mask during fsnotify_recalc_mask() if object has a mark with an ignored mask and without the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag and remove the special treatment of FS_MODIFY in fsnotify(), so that FS_MODIFY events could be optimized in the common case. Call fsnotify_recalc_mask() from fanotify after adding or removing an ignored mask from a mark without FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY or when adding the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag to a mark with ignored mask (the flag cannot be removed by fanotify uapi). Performance results for doing 10000000 write(2)s to tmpfs: vanilla patched without notification mark 25.486+-1.054 24.965+-0.244 with notification mark 30.111+-0.139 26.891+-1.355 So we can see the overhead of notification subsystem has been drastically reduced. Link: https://lore.kernel.org/r/20220223151438.790268-3-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2022-02-23 08:14:38 -07:00
/*
* Setting FAN_MARK_IGNORED_SURV_MODIFY for the first time may lead to
* the removal of the FS_MODIFY bit in calculated mask if it was set
* because of an ignore mask that is now going to survive FS_MODIFY.
fsnotify: optimize FS_MODIFY events with no ignored masks fsnotify() treats FS_MODIFY events specially - it does not skip them even if the FS_MODIFY event does not apear in the object's fsnotify mask. This is because send_to_group() checks if FS_MODIFY needs to clear ignored mask of marks. The common case is that an object does not have any mark with ignored mask and in particular, that it does not have a mark with ignored mask and without the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag. Set FS_MODIFY in object's fsnotify mask during fsnotify_recalc_mask() if object has a mark with an ignored mask and without the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag and remove the special treatment of FS_MODIFY in fsnotify(), so that FS_MODIFY events could be optimized in the common case. Call fsnotify_recalc_mask() from fanotify after adding or removing an ignored mask from a mark without FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY or when adding the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag to a mark with ignored mask (the flag cannot be removed by fanotify uapi). Performance results for doing 10000000 write(2)s to tmpfs: vanilla patched without notification mark 25.486+-1.054 24.965+-0.244 with notification mark 30.111+-0.139 26.891+-1.355 So we can see the overhead of notification subsystem has been drastically reduced. Link: https://lore.kernel.org/r/20220223151438.790268-3-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2022-02-23 08:14:38 -07:00
*/
fanotify: introduce FAN_MARK_IGNORE This flag is a new way to configure ignore mask which allows adding and removing the event flags FAN_ONDIR and FAN_EVENT_ON_CHILD in ignore mask. The legacy FAN_MARK_IGNORED_MASK flag would always ignore events on directories and would ignore events on children depending on whether the FAN_EVENT_ON_CHILD flag was set in the (non ignored) mask. FAN_MARK_IGNORE can be used to ignore events on children without setting FAN_EVENT_ON_CHILD in the mark's mask and will not ignore events on directories unconditionally, only when FAN_ONDIR is set in ignore mask. The new behavior is non-downgradable. After calling fanotify_mark() with FAN_MARK_IGNORE once, calling fanotify_mark() with FAN_MARK_IGNORED_MASK on the same object will return EEXIST error. Setting the event flags with FAN_MARK_IGNORE on a non-dir inode mark has no meaning and will return ENOTDIR error. The meaning of FAN_MARK_IGNORED_SURV_MODIFY is preserved with the new FAN_MARK_IGNORE flag, but with a few semantic differences: 1. FAN_MARK_IGNORED_SURV_MODIFY is required for filesystem and mount marks and on an inode mark on a directory. Omitting this flag will return EINVAL or EISDIR error. 2. An ignore mask on a non-directory inode that survives modify could never be downgraded to an ignore mask that does not survive modify. With new FAN_MARK_IGNORE semantics we make that rule explicit - trying to update a surviving ignore mask without the flag FAN_MARK_IGNORED_SURV_MODIFY will return EEXIST error. The conveniene macro FAN_MARK_IGNORE_SURV is added for (FAN_MARK_IGNORE | FAN_MARK_IGNORED_SURV_MODIFY), because the common case should use short constant names. Link: https://lore.kernel.org/r/20220629144210.2983229-4-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2022-06-29 07:42:10 -07:00
if (ignore && (fan_flags & FAN_MARK_IGNORED_SURV_MODIFY) &&
fsnotify: optimize FS_MODIFY events with no ignored masks fsnotify() treats FS_MODIFY events specially - it does not skip them even if the FS_MODIFY event does not apear in the object's fsnotify mask. This is because send_to_group() checks if FS_MODIFY needs to clear ignored mask of marks. The common case is that an object does not have any mark with ignored mask and in particular, that it does not have a mark with ignored mask and without the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag. Set FS_MODIFY in object's fsnotify mask during fsnotify_recalc_mask() if object has a mark with an ignored mask and without the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag and remove the special treatment of FS_MODIFY in fsnotify(), so that FS_MODIFY events could be optimized in the common case. Call fsnotify_recalc_mask() from fanotify after adding or removing an ignored mask from a mark without FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY or when adding the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag to a mark with ignored mask (the flag cannot be removed by fanotify uapi). Performance results for doing 10000000 write(2)s to tmpfs: vanilla patched without notification mark 25.486+-1.054 24.965+-0.244 with notification mark 30.111+-0.139 26.891+-1.355 So we can see the overhead of notification subsystem has been drastically reduced. Link: https://lore.kernel.org/r/20220223151438.790268-3-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2022-02-23 08:14:38 -07:00
!(fsn_mark->flags & FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY)) {
fsn_mark->flags |= FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY;
if (!(fsn_mark->mask & FS_MODIFY))
recalc = true;
fsnotify: optimize FS_MODIFY events with no ignored masks fsnotify() treats FS_MODIFY events specially - it does not skip them even if the FS_MODIFY event does not apear in the object's fsnotify mask. This is because send_to_group() checks if FS_MODIFY needs to clear ignored mask of marks. The common case is that an object does not have any mark with ignored mask and in particular, that it does not have a mark with ignored mask and without the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag. Set FS_MODIFY in object's fsnotify mask during fsnotify_recalc_mask() if object has a mark with an ignored mask and without the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag and remove the special treatment of FS_MODIFY in fsnotify(), so that FS_MODIFY events could be optimized in the common case. Call fsnotify_recalc_mask() from fanotify after adding or removing an ignored mask from a mark without FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY or when adding the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag to a mark with ignored mask (the flag cannot be removed by fanotify uapi). Performance results for doing 10000000 write(2)s to tmpfs: vanilla patched without notification mark 25.486+-1.054 24.965+-0.244 with notification mark 30.111+-0.139 26.891+-1.355 So we can see the overhead of notification subsystem has been drastically reduced. Link: https://lore.kernel.org/r/20220223151438.790268-3-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2022-02-23 08:14:38 -07:00
}
if (fsn_mark->connector->type != FSNOTIFY_OBJ_TYPE_INODE ||
want_iref == !(fsn_mark->flags & FSNOTIFY_MARK_FLAG_NO_IREF))
return recalc;
/*
* NO_IREF may be removed from a mark, but not added.
* When removed, fsnotify_recalc_mask() will take the inode ref.
*/
WARN_ON_ONCE(!want_iref);
fsn_mark->flags &= ~FSNOTIFY_MARK_FLAG_NO_IREF;
return true;
fsnotify: optimize FS_MODIFY events with no ignored masks fsnotify() treats FS_MODIFY events specially - it does not skip them even if the FS_MODIFY event does not apear in the object's fsnotify mask. This is because send_to_group() checks if FS_MODIFY needs to clear ignored mask of marks. The common case is that an object does not have any mark with ignored mask and in particular, that it does not have a mark with ignored mask and without the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag. Set FS_MODIFY in object's fsnotify mask during fsnotify_recalc_mask() if object has a mark with an ignored mask and without the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag and remove the special treatment of FS_MODIFY in fsnotify(), so that FS_MODIFY events could be optimized in the common case. Call fsnotify_recalc_mask() from fanotify after adding or removing an ignored mask from a mark without FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY or when adding the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag to a mark with ignored mask (the flag cannot be removed by fanotify uapi). Performance results for doing 10000000 write(2)s to tmpfs: vanilla patched without notification mark 25.486+-1.054 24.965+-0.244 with notification mark 30.111+-0.139 26.891+-1.355 So we can see the overhead of notification subsystem has been drastically reduced. Link: https://lore.kernel.org/r/20220223151438.790268-3-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2022-02-23 08:14:38 -07:00
}
static bool fanotify_mark_add_to_mask(struct fsnotify_mark *fsn_mark,
__u32 mask, unsigned int fan_flags)
{
bool recalc;
spin_lock(&fsn_mark->lock);
fanotify: introduce FAN_MARK_IGNORE This flag is a new way to configure ignore mask which allows adding and removing the event flags FAN_ONDIR and FAN_EVENT_ON_CHILD in ignore mask. The legacy FAN_MARK_IGNORED_MASK flag would always ignore events on directories and would ignore events on children depending on whether the FAN_EVENT_ON_CHILD flag was set in the (non ignored) mask. FAN_MARK_IGNORE can be used to ignore events on children without setting FAN_EVENT_ON_CHILD in the mark's mask and will not ignore events on directories unconditionally, only when FAN_ONDIR is set in ignore mask. The new behavior is non-downgradable. After calling fanotify_mark() with FAN_MARK_IGNORE once, calling fanotify_mark() with FAN_MARK_IGNORED_MASK on the same object will return EEXIST error. Setting the event flags with FAN_MARK_IGNORE on a non-dir inode mark has no meaning and will return ENOTDIR error. The meaning of FAN_MARK_IGNORED_SURV_MODIFY is preserved with the new FAN_MARK_IGNORE flag, but with a few semantic differences: 1. FAN_MARK_IGNORED_SURV_MODIFY is required for filesystem and mount marks and on an inode mark on a directory. Omitting this flag will return EINVAL or EISDIR error. 2. An ignore mask on a non-directory inode that survives modify could never be downgraded to an ignore mask that does not survive modify. With new FAN_MARK_IGNORE semantics we make that rule explicit - trying to update a surviving ignore mask without the flag FAN_MARK_IGNORED_SURV_MODIFY will return EEXIST error. The conveniene macro FAN_MARK_IGNORE_SURV is added for (FAN_MARK_IGNORE | FAN_MARK_IGNORED_SURV_MODIFY), because the common case should use short constant names. Link: https://lore.kernel.org/r/20220629144210.2983229-4-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2022-06-29 07:42:10 -07:00
if (!(fan_flags & FANOTIFY_MARK_IGNORE_BITS))
fsn_mark->mask |= mask;
else
fsn_mark->ignore_mask |= mask;
recalc = fsnotify_calc_mask(fsn_mark) &
~fsnotify_conn_mask(fsn_mark->connector);
recalc |= fanotify_mark_update_flags(fsn_mark, fan_flags);
spin_unlock(&fsn_mark->lock);
return recalc;
}
struct fan_fsid {
struct super_block *sb;
__kernel_fsid_t id;
bool weak;
};
static int fanotify_set_mark_fsid(struct fsnotify_group *group,
struct fsnotify_mark *mark,
struct fan_fsid *fsid)
{
struct fsnotify_mark_connector *conn;
struct fsnotify_mark *old;
struct super_block *old_sb = NULL;
FANOTIFY_MARK(mark)->fsid = fsid->id;
mark->flags |= FSNOTIFY_MARK_FLAG_HAS_FSID;
if (fsid->weak)
mark->flags |= FSNOTIFY_MARK_FLAG_WEAK_FSID;
/* First mark added will determine if group is single or multi fsid */
if (list_empty(&group->marks_list))
return 0;
/* Find sb of an existing mark */
list_for_each_entry(old, &group->marks_list, g_list) {
conn = READ_ONCE(old->connector);
if (!conn)
continue;
old_sb = fsnotify_connector_sb(conn);
if (old_sb)
break;
}
/* Only detached marks left? */
if (!old_sb)
return 0;
/* Do not allow mixing of marks with weak and strong fsid */
if ((mark->flags ^ old->flags) & FSNOTIFY_MARK_FLAG_WEAK_FSID)
return -EXDEV;
/* Allow mixing of marks with strong fsid from different fs */
if (!fsid->weak)
return 0;
/* Do not allow mixing marks with weak fsid from different fs */
if (old_sb != fsid->sb)
return -EXDEV;
/* Do not allow mixing marks from different btrfs sub-volumes */
if (!fanotify_fsid_equal(&FANOTIFY_MARK(old)->fsid,
&FANOTIFY_MARK(mark)->fsid))
return -EXDEV;
return 0;
}
static struct fsnotify_mark *fanotify_add_new_mark(struct fsnotify_group *group,
void *obj,
unsigned int obj_type,
unsigned int fan_flags,
struct fan_fsid *fsid)
{
fanotify: configurable limits via sysfs fanotify has some hardcoded limits. The only APIs to escape those limits are FAN_UNLIMITED_QUEUE and FAN_UNLIMITED_MARKS. Allow finer grained tuning of the system limits via sysfs tunables under /proc/sys/fs/fanotify, similar to tunables under /proc/sys/fs/inotify, with some minor differences. - max_queued_events - global system tunable for group queue size limit. Like the inotify tunable with the same name, it defaults to 16384 and applies on initialization of a new group. - max_user_marks - user ns tunable for marks limit per user. Like the inotify tunable named max_user_watches, on a machine with sufficient RAM and it defaults to 1048576 in init userns and can be further limited per containing user ns. - max_user_groups - user ns tunable for number of groups per user. Like the inotify tunable named max_user_instances, it defaults to 128 in init userns and can be further limited per containing user ns. The slightly different tunable names used for fanotify are derived from the "group" and "mark" terminology used in the fanotify man pages and throughout the code. Considering the fact that the default value for max_user_instances was increased in kernel v5.10 from 8192 to 1048576, leaving the legacy fanotify limit of 8192 marks per group in addition to the max_user_marks limit makes little sense, so the per group marks limit has been removed. Note that when a group is initialized with FAN_UNLIMITED_MARKS, its own marks are not accounted in the per user marks account, so in effect the limit of max_user_marks is only for the collection of groups that are not initialized with FAN_UNLIMITED_MARKS. Link: https://lore.kernel.org/r/20210304112921.3996419-2-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-03-04 04:29:20 -07:00
struct ucounts *ucounts = group->fanotify_data.ucounts;
struct fanotify_mark *fan_mark;
struct fsnotify_mark *mark;
int ret;
fanotify: configurable limits via sysfs fanotify has some hardcoded limits. The only APIs to escape those limits are FAN_UNLIMITED_QUEUE and FAN_UNLIMITED_MARKS. Allow finer grained tuning of the system limits via sysfs tunables under /proc/sys/fs/fanotify, similar to tunables under /proc/sys/fs/inotify, with some minor differences. - max_queued_events - global system tunable for group queue size limit. Like the inotify tunable with the same name, it defaults to 16384 and applies on initialization of a new group. - max_user_marks - user ns tunable for marks limit per user. Like the inotify tunable named max_user_watches, on a machine with sufficient RAM and it defaults to 1048576 in init userns and can be further limited per containing user ns. - max_user_groups - user ns tunable for number of groups per user. Like the inotify tunable named max_user_instances, it defaults to 128 in init userns and can be further limited per containing user ns. The slightly different tunable names used for fanotify are derived from the "group" and "mark" terminology used in the fanotify man pages and throughout the code. Considering the fact that the default value for max_user_instances was increased in kernel v5.10 from 8192 to 1048576, leaving the legacy fanotify limit of 8192 marks per group in addition to the max_user_marks limit makes little sense, so the per group marks limit has been removed. Note that when a group is initialized with FAN_UNLIMITED_MARKS, its own marks are not accounted in the per user marks account, so in effect the limit of max_user_marks is only for the collection of groups that are not initialized with FAN_UNLIMITED_MARKS. Link: https://lore.kernel.org/r/20210304112921.3996419-2-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-03-04 04:29:20 -07:00
/*
* Enforce per user marks limits per user in all containing user ns.
* A group with FAN_UNLIMITED_MARKS does not contribute to mark count
* in the limited groups account.
*/
if (!FAN_GROUP_FLAG(group, FAN_UNLIMITED_MARKS) &&
!inc_ucount(ucounts->ns, ucounts->uid, UCOUNT_FANOTIFY_MARKS))
return ERR_PTR(-ENOSPC);
fan_mark = kmem_cache_alloc(fanotify_mark_cache, GFP_KERNEL);
if (!fan_mark) {
fanotify: configurable limits via sysfs fanotify has some hardcoded limits. The only APIs to escape those limits are FAN_UNLIMITED_QUEUE and FAN_UNLIMITED_MARKS. Allow finer grained tuning of the system limits via sysfs tunables under /proc/sys/fs/fanotify, similar to tunables under /proc/sys/fs/inotify, with some minor differences. - max_queued_events - global system tunable for group queue size limit. Like the inotify tunable with the same name, it defaults to 16384 and applies on initialization of a new group. - max_user_marks - user ns tunable for marks limit per user. Like the inotify tunable named max_user_watches, on a machine with sufficient RAM and it defaults to 1048576 in init userns and can be further limited per containing user ns. - max_user_groups - user ns tunable for number of groups per user. Like the inotify tunable named max_user_instances, it defaults to 128 in init userns and can be further limited per containing user ns. The slightly different tunable names used for fanotify are derived from the "group" and "mark" terminology used in the fanotify man pages and throughout the code. Considering the fact that the default value for max_user_instances was increased in kernel v5.10 from 8192 to 1048576, leaving the legacy fanotify limit of 8192 marks per group in addition to the max_user_marks limit makes little sense, so the per group marks limit has been removed. Note that when a group is initialized with FAN_UNLIMITED_MARKS, its own marks are not accounted in the per user marks account, so in effect the limit of max_user_marks is only for the collection of groups that are not initialized with FAN_UNLIMITED_MARKS. Link: https://lore.kernel.org/r/20210304112921.3996419-2-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-03-04 04:29:20 -07:00
ret = -ENOMEM;
goto out_dec_ucounts;
}
mark = &fan_mark->fsn_mark;
fsnotify_init_mark(mark, group);
if (fan_flags & FAN_MARK_EVICTABLE)
mark->flags |= FSNOTIFY_MARK_FLAG_NO_IREF;
/* Cache fsid of filesystem containing the marked object */
if (fsid) {
ret = fanotify_set_mark_fsid(group, mark, fsid);
if (ret)
goto out_put_mark;
} else {
fan_mark->fsid.val[0] = fan_mark->fsid.val[1] = 0;
}
ret = fsnotify_add_mark_locked(mark, obj, obj_type, 0);
if (ret)
goto out_put_mark;
return mark;
fanotify: configurable limits via sysfs fanotify has some hardcoded limits. The only APIs to escape those limits are FAN_UNLIMITED_QUEUE and FAN_UNLIMITED_MARKS. Allow finer grained tuning of the system limits via sysfs tunables under /proc/sys/fs/fanotify, similar to tunables under /proc/sys/fs/inotify, with some minor differences. - max_queued_events - global system tunable for group queue size limit. Like the inotify tunable with the same name, it defaults to 16384 and applies on initialization of a new group. - max_user_marks - user ns tunable for marks limit per user. Like the inotify tunable named max_user_watches, on a machine with sufficient RAM and it defaults to 1048576 in init userns and can be further limited per containing user ns. - max_user_groups - user ns tunable for number of groups per user. Like the inotify tunable named max_user_instances, it defaults to 128 in init userns and can be further limited per containing user ns. The slightly different tunable names used for fanotify are derived from the "group" and "mark" terminology used in the fanotify man pages and throughout the code. Considering the fact that the default value for max_user_instances was increased in kernel v5.10 from 8192 to 1048576, leaving the legacy fanotify limit of 8192 marks per group in addition to the max_user_marks limit makes little sense, so the per group marks limit has been removed. Note that when a group is initialized with FAN_UNLIMITED_MARKS, its own marks are not accounted in the per user marks account, so in effect the limit of max_user_marks is only for the collection of groups that are not initialized with FAN_UNLIMITED_MARKS. Link: https://lore.kernel.org/r/20210304112921.3996419-2-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-03-04 04:29:20 -07:00
out_put_mark:
fsnotify_put_mark(mark);
fanotify: configurable limits via sysfs fanotify has some hardcoded limits. The only APIs to escape those limits are FAN_UNLIMITED_QUEUE and FAN_UNLIMITED_MARKS. Allow finer grained tuning of the system limits via sysfs tunables under /proc/sys/fs/fanotify, similar to tunables under /proc/sys/fs/inotify, with some minor differences. - max_queued_events - global system tunable for group queue size limit. Like the inotify tunable with the same name, it defaults to 16384 and applies on initialization of a new group. - max_user_marks - user ns tunable for marks limit per user. Like the inotify tunable named max_user_watches, on a machine with sufficient RAM and it defaults to 1048576 in init userns and can be further limited per containing user ns. - max_user_groups - user ns tunable for number of groups per user. Like the inotify tunable named max_user_instances, it defaults to 128 in init userns and can be further limited per containing user ns. The slightly different tunable names used for fanotify are derived from the "group" and "mark" terminology used in the fanotify man pages and throughout the code. Considering the fact that the default value for max_user_instances was increased in kernel v5.10 from 8192 to 1048576, leaving the legacy fanotify limit of 8192 marks per group in addition to the max_user_marks limit makes little sense, so the per group marks limit has been removed. Note that when a group is initialized with FAN_UNLIMITED_MARKS, its own marks are not accounted in the per user marks account, so in effect the limit of max_user_marks is only for the collection of groups that are not initialized with FAN_UNLIMITED_MARKS. Link: https://lore.kernel.org/r/20210304112921.3996419-2-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-03-04 04:29:20 -07:00
out_dec_ucounts:
if (!FAN_GROUP_FLAG(group, FAN_UNLIMITED_MARKS))
dec_ucount(ucounts, UCOUNT_FANOTIFY_MARKS);
return ERR_PTR(ret);
}
static int fanotify_group_init_error_pool(struct fsnotify_group *group)
{
if (mempool_initialized(&group->fanotify_data.error_events_pool))
return 0;
return mempool_init_kmalloc_pool(&group->fanotify_data.error_events_pool,
FANOTIFY_DEFAULT_FEE_POOL_SIZE,
sizeof(struct fanotify_error_event));
}
static int fanotify_may_update_existing_mark(struct fsnotify_mark *fsn_mark,
unsigned int fan_flags)
{
/*
* Non evictable mark cannot be downgraded to evictable mark.
*/
if (fan_flags & FAN_MARK_EVICTABLE &&
!(fsn_mark->flags & FSNOTIFY_MARK_FLAG_NO_IREF))
return -EEXIST;
fanotify: introduce FAN_MARK_IGNORE This flag is a new way to configure ignore mask which allows adding and removing the event flags FAN_ONDIR and FAN_EVENT_ON_CHILD in ignore mask. The legacy FAN_MARK_IGNORED_MASK flag would always ignore events on directories and would ignore events on children depending on whether the FAN_EVENT_ON_CHILD flag was set in the (non ignored) mask. FAN_MARK_IGNORE can be used to ignore events on children without setting FAN_EVENT_ON_CHILD in the mark's mask and will not ignore events on directories unconditionally, only when FAN_ONDIR is set in ignore mask. The new behavior is non-downgradable. After calling fanotify_mark() with FAN_MARK_IGNORE once, calling fanotify_mark() with FAN_MARK_IGNORED_MASK on the same object will return EEXIST error. Setting the event flags with FAN_MARK_IGNORE on a non-dir inode mark has no meaning and will return ENOTDIR error. The meaning of FAN_MARK_IGNORED_SURV_MODIFY is preserved with the new FAN_MARK_IGNORE flag, but with a few semantic differences: 1. FAN_MARK_IGNORED_SURV_MODIFY is required for filesystem and mount marks and on an inode mark on a directory. Omitting this flag will return EINVAL or EISDIR error. 2. An ignore mask on a non-directory inode that survives modify could never be downgraded to an ignore mask that does not survive modify. With new FAN_MARK_IGNORE semantics we make that rule explicit - trying to update a surviving ignore mask without the flag FAN_MARK_IGNORED_SURV_MODIFY will return EEXIST error. The conveniene macro FAN_MARK_IGNORE_SURV is added for (FAN_MARK_IGNORE | FAN_MARK_IGNORED_SURV_MODIFY), because the common case should use short constant names. Link: https://lore.kernel.org/r/20220629144210.2983229-4-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2022-06-29 07:42:10 -07:00
/*
* New ignore mask semantics cannot be downgraded to old semantics.
*/
if (fan_flags & FAN_MARK_IGNORED_MASK &&
fsn_mark->flags & FSNOTIFY_MARK_FLAG_HAS_IGNORE_FLAGS)
return -EEXIST;
/*
* An ignore mask that survives modify could never be downgraded to not
* survive modify. With new FAN_MARK_IGNORE semantics we make that rule
* explicit and return an error when trying to update the ignore mask
* without the original FAN_MARK_IGNORED_SURV_MODIFY value.
*/
if (fan_flags & FAN_MARK_IGNORE &&
!(fan_flags & FAN_MARK_IGNORED_SURV_MODIFY) &&
fsn_mark->flags & FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY)
return -EEXIST;
return 0;
}
static int fanotify_add_mark(struct fsnotify_group *group,
void *obj, unsigned int obj_type,
__u32 mask, unsigned int fan_flags,
struct fan_fsid *fsid)
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
{
struct fsnotify_mark *fsn_mark;
bool recalc;
int ret = 0;
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
fsnotify_group_lock(group);
fsn_mark = fsnotify_find_mark(obj, obj_type, group);
if (!fsn_mark) {
fsn_mark = fanotify_add_new_mark(group, obj, obj_type,
fan_flags, fsid);
if (IS_ERR(fsn_mark)) {
fsnotify_group_unlock(group);
return PTR_ERR(fsn_mark);
}
}
/*
* Check if requested mark flags conflict with an existing mark flags.
*/
ret = fanotify_may_update_existing_mark(fsn_mark, fan_flags);
if (ret)
goto out;
/*
* Error events are pre-allocated per group, only if strictly
* needed (i.e. FAN_FS_ERROR was requested).
*/
fanotify: introduce FAN_MARK_IGNORE This flag is a new way to configure ignore mask which allows adding and removing the event flags FAN_ONDIR and FAN_EVENT_ON_CHILD in ignore mask. The legacy FAN_MARK_IGNORED_MASK flag would always ignore events on directories and would ignore events on children depending on whether the FAN_EVENT_ON_CHILD flag was set in the (non ignored) mask. FAN_MARK_IGNORE can be used to ignore events on children without setting FAN_EVENT_ON_CHILD in the mark's mask and will not ignore events on directories unconditionally, only when FAN_ONDIR is set in ignore mask. The new behavior is non-downgradable. After calling fanotify_mark() with FAN_MARK_IGNORE once, calling fanotify_mark() with FAN_MARK_IGNORED_MASK on the same object will return EEXIST error. Setting the event flags with FAN_MARK_IGNORE on a non-dir inode mark has no meaning and will return ENOTDIR error. The meaning of FAN_MARK_IGNORED_SURV_MODIFY is preserved with the new FAN_MARK_IGNORE flag, but with a few semantic differences: 1. FAN_MARK_IGNORED_SURV_MODIFY is required for filesystem and mount marks and on an inode mark on a directory. Omitting this flag will return EINVAL or EISDIR error. 2. An ignore mask on a non-directory inode that survives modify could never be downgraded to an ignore mask that does not survive modify. With new FAN_MARK_IGNORE semantics we make that rule explicit - trying to update a surviving ignore mask without the flag FAN_MARK_IGNORED_SURV_MODIFY will return EEXIST error. The conveniene macro FAN_MARK_IGNORE_SURV is added for (FAN_MARK_IGNORE | FAN_MARK_IGNORED_SURV_MODIFY), because the common case should use short constant names. Link: https://lore.kernel.org/r/20220629144210.2983229-4-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2022-06-29 07:42:10 -07:00
if (!(fan_flags & FANOTIFY_MARK_IGNORE_BITS) &&
(mask & FAN_FS_ERROR)) {
ret = fanotify_group_init_error_pool(group);
if (ret)
goto out;
}
recalc = fanotify_mark_add_to_mask(fsn_mark, mask, fan_flags);
if (recalc)
fsnotify_recalc_mask(fsn_mark->connector);
out:
fsnotify_group_unlock(group);
fsnotify_put_mark(fsn_mark);
return ret;
}
static struct fsnotify_event *fanotify_alloc_overflow_event(void)
{
struct fanotify_event *oevent;
oevent = kmalloc(sizeof(*oevent), GFP_KERNEL_ACCOUNT);
if (!oevent)
return NULL;
fanotify_init_event(oevent, 0, FS_Q_OVERFLOW);
oevent->type = FANOTIFY_EVENT_TYPE_OVERFLOW;
return &oevent->fse;
}
static struct hlist_head *fanotify_alloc_merge_hash(void)
{
struct hlist_head *hash;
hash = kmalloc(sizeof(struct hlist_head) << FANOTIFY_HTABLE_BITS,
GFP_KERNEL_ACCOUNT);
if (!hash)
return NULL;
__hash_init(hash, FANOTIFY_HTABLE_SIZE);
return hash;
}
/* fanotify syscalls */
SYSCALL_DEFINE2(fanotify_init, unsigned int, flags, unsigned int, event_f_flags)
{
struct fsnotify_group *group;
int f_flags, fd;
unsigned int fid_mode = flags & FANOTIFY_FID_BITS;
unsigned int class = flags & FANOTIFY_CLASS_BITS;
unsigned int internal_flags = 0;
pr_debug("%s: flags=%x event_f_flags=%x\n",
__func__, flags, event_f_flags);
if (!capable(CAP_SYS_ADMIN)) {
/*
* An unprivileged user can setup an fanotify group with
* limited functionality - an unprivileged group is limited to
* notification events with file handles and it cannot use
* unlimited queue/marks.
*/
if ((flags & FANOTIFY_ADMIN_INIT_FLAGS) || !fid_mode)
return -EPERM;
/*
* Setting the internal flag FANOTIFY_UNPRIV on the group
* prevents setting mount/filesystem marks on this group and
* prevents reporting pid and open fd in events.
*/
internal_flags |= FANOTIFY_UNPRIV;
}
audit: Record fanotify access control decisions The fanotify interface allows user space daemons to make access control decisions. Under common criteria requirements, we need to optionally record decisions based on policy. This patch adds a bit mask, FAN_AUDIT, that a user space daemon can 'or' into the response decision which will tell the kernel that it made a decision and record it. It would be used something like this in user space code: response.response = FAN_DENY | FAN_AUDIT; write(fd, &response, sizeof(struct fanotify_response)); When the syscall ends, the audit system will record the decision as a AUDIT_FANOTIFY auxiliary record to denote that the reason this event occurred is the result of an access control decision from fanotify rather than DAC or MAC policy. A sample event looks like this: type=PATH msg=audit(1504310584.332:290): item=0 name="./evil-ls" inode=1319561 dev=fc:03 mode=0100755 ouid=1000 ogid=1000 rdev=00:00 obj=unconfined_u:object_r:user_home_t:s0 nametype=NORMAL type=CWD msg=audit(1504310584.332:290): cwd="/home/sgrubb" type=SYSCALL msg=audit(1504310584.332:290): arch=c000003e syscall=2 success=no exit=-1 a0=32cb3fca90 a1=0 a2=43 a3=8 items=1 ppid=901 pid=959 auid=1000 uid=1000 gid=1000 euid=1000 suid=1000 fsuid=1000 egid=1000 sgid=1000 fsgid=1000 tty=pts1 ses=3 comm="bash" exe="/usr/bin/bash" subj=unconfined_u:unconfined_r:unconfined_t: s0-s0:c0.c1023 key=(null) type=FANOTIFY msg=audit(1504310584.332:290): resp=2 Prior to using the audit flag, the developer needs to call fanotify_init or'ing in FAN_ENABLE_AUDIT to ensure that the kernel supports auditing. The calling process must also have the CAP_AUDIT_WRITE capability. Signed-off-by: sgrubb <sgrubb@redhat.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2017-10-02 17:21:39 -07:00
#ifdef CONFIG_AUDITSYSCALL
if (flags & ~(FANOTIFY_INIT_FLAGS | FAN_ENABLE_AUDIT))
audit: Record fanotify access control decisions The fanotify interface allows user space daemons to make access control decisions. Under common criteria requirements, we need to optionally record decisions based on policy. This patch adds a bit mask, FAN_AUDIT, that a user space daemon can 'or' into the response decision which will tell the kernel that it made a decision and record it. It would be used something like this in user space code: response.response = FAN_DENY | FAN_AUDIT; write(fd, &response, sizeof(struct fanotify_response)); When the syscall ends, the audit system will record the decision as a AUDIT_FANOTIFY auxiliary record to denote that the reason this event occurred is the result of an access control decision from fanotify rather than DAC or MAC policy. A sample event looks like this: type=PATH msg=audit(1504310584.332:290): item=0 name="./evil-ls" inode=1319561 dev=fc:03 mode=0100755 ouid=1000 ogid=1000 rdev=00:00 obj=unconfined_u:object_r:user_home_t:s0 nametype=NORMAL type=CWD msg=audit(1504310584.332:290): cwd="/home/sgrubb" type=SYSCALL msg=audit(1504310584.332:290): arch=c000003e syscall=2 success=no exit=-1 a0=32cb3fca90 a1=0 a2=43 a3=8 items=1 ppid=901 pid=959 auid=1000 uid=1000 gid=1000 euid=1000 suid=1000 fsuid=1000 egid=1000 sgid=1000 fsgid=1000 tty=pts1 ses=3 comm="bash" exe="/usr/bin/bash" subj=unconfined_u:unconfined_r:unconfined_t: s0-s0:c0.c1023 key=(null) type=FANOTIFY msg=audit(1504310584.332:290): resp=2 Prior to using the audit flag, the developer needs to call fanotify_init or'ing in FAN_ENABLE_AUDIT to ensure that the kernel supports auditing. The calling process must also have the CAP_AUDIT_WRITE capability. Signed-off-by: sgrubb <sgrubb@redhat.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2017-10-02 17:21:39 -07:00
#else
if (flags & ~FANOTIFY_INIT_FLAGS)
audit: Record fanotify access control decisions The fanotify interface allows user space daemons to make access control decisions. Under common criteria requirements, we need to optionally record decisions based on policy. This patch adds a bit mask, FAN_AUDIT, that a user space daemon can 'or' into the response decision which will tell the kernel that it made a decision and record it. It would be used something like this in user space code: response.response = FAN_DENY | FAN_AUDIT; write(fd, &response, sizeof(struct fanotify_response)); When the syscall ends, the audit system will record the decision as a AUDIT_FANOTIFY auxiliary record to denote that the reason this event occurred is the result of an access control decision from fanotify rather than DAC or MAC policy. A sample event looks like this: type=PATH msg=audit(1504310584.332:290): item=0 name="./evil-ls" inode=1319561 dev=fc:03 mode=0100755 ouid=1000 ogid=1000 rdev=00:00 obj=unconfined_u:object_r:user_home_t:s0 nametype=NORMAL type=CWD msg=audit(1504310584.332:290): cwd="/home/sgrubb" type=SYSCALL msg=audit(1504310584.332:290): arch=c000003e syscall=2 success=no exit=-1 a0=32cb3fca90 a1=0 a2=43 a3=8 items=1 ppid=901 pid=959 auid=1000 uid=1000 gid=1000 euid=1000 suid=1000 fsuid=1000 egid=1000 sgid=1000 fsgid=1000 tty=pts1 ses=3 comm="bash" exe="/usr/bin/bash" subj=unconfined_u:unconfined_r:unconfined_t: s0-s0:c0.c1023 key=(null) type=FANOTIFY msg=audit(1504310584.332:290): resp=2 Prior to using the audit flag, the developer needs to call fanotify_init or'ing in FAN_ENABLE_AUDIT to ensure that the kernel supports auditing. The calling process must also have the CAP_AUDIT_WRITE capability. Signed-off-by: sgrubb <sgrubb@redhat.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2017-10-02 17:21:39 -07:00
#endif
return -EINVAL;
fanotify: add pidfd support to the fanotify API Introduce a new flag FAN_REPORT_PIDFD for fanotify_init(2) which allows userspace applications to control whether a pidfd information record containing a pidfd is to be returned alongside the generic event metadata for each event. If FAN_REPORT_PIDFD is enabled for a notification group, an additional struct fanotify_event_info_pidfd object type will be supplied alongside the generic struct fanotify_event_metadata for a single event. This functionality is analogous to that of FAN_REPORT_FID in terms of how the event structure is supplied to a userspace application. Usage of FAN_REPORT_PIDFD with FAN_REPORT_FID/FAN_REPORT_DFID_NAME is permitted, and in this case a struct fanotify_event_info_pidfd object will likely follow any struct fanotify_event_info_fid object. Currently, the usage of the FAN_REPORT_TID flag is not permitted along with FAN_REPORT_PIDFD as the pidfd API currently only supports the creation of pidfds for thread-group leaders. Additionally, usage of the FAN_REPORT_PIDFD flag is limited to privileged processes only i.e. event listeners that are running with the CAP_SYS_ADMIN capability. Attempting to supply the FAN_REPORT_TID initialization flags with FAN_REPORT_PIDFD or creating a notification group without CAP_SYS_ADMIN will result with -EINVAL being returned to the caller. In the event of a pidfd creation error, there are two types of error values that can be reported back to the listener. There is FAN_NOPIDFD, which will be reported in cases where the process responsible for generating the event has terminated prior to the event listener being able to read the event. Then there is FAN_EPIDFD, which will be reported when a more generic pidfd creation error has occurred when fanotify calls pidfd_create(). Link: https://lore.kernel.org/r/5f9e09cff7ed62bfaa51c1369e0f7ea5f16a91aa.1628398044.git.repnop@google.com Signed-off-by: Matthew Bobrowski <repnop@google.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-08-07 22:26:25 -07:00
/*
* A pidfd can only be returned for a thread-group leader; thus
* FAN_REPORT_PIDFD and FAN_REPORT_TID need to remain mutually
* exclusive.
*/
if ((flags & FAN_REPORT_PIDFD) && (flags & FAN_REPORT_TID))
return -EINVAL;
fanotify: check file flags passed in fanotify_init Without this patch fanotify_init does not validate the value passed in event_f_flags. When a fanotify event is read from the fanotify file descriptor a new file descriptor is created where file.f_flags = event_f_flags. Internal and external open flags are stored together in field f_flags of struct file. Hence, an application might create file descriptors with internal flags like FMODE_EXEC, FMODE_NOCMTIME set. Jan Kara and Eric Paris both aggreed that this is a bug and the value of event_f_flags should be checked: https://lkml.org/lkml/2014/4/29/522 https://lkml.org/lkml/2014/4/29/539 This updated patch version considers the comments by Michael Kerrisk in https://lkml.org/lkml/2014/5/4/10 With the patch the value of event_f_flags is checked. When specifying an invalid value error EINVAL is returned. Internal flags are disallowed. File creation flags are disallowed: O_CREAT, O_DIRECTORY, O_EXCL, O_NOCTTY, O_NOFOLLOW, O_TRUNC, and O_TTY_INIT. Flags which do not make sense with fanotify are disallowed: __O_TMPFILE, O_PATH, FASYNC, and O_DIRECT. This leaves us with the following allowed values: O_RDONLY, O_WRONLY, O_RDWR are basic functionality. The are stored in the bits given by O_ACCMODE. O_APPEND is working as expected. The value might be useful in a logging application which appends the current status each time the log is opened. O_LARGEFILE is needed for files exceeding 4GB on 32bit systems. O_NONBLOCK may be useful when monitoring slow devices like tapes. O_NDELAY is equal to O_NONBLOCK except for platform parisc. To avoid code breaking on parisc either both flags should be allowed or none. The patch allows both. __O_SYNC and O_DSYNC may be used to avoid data loss on power disruption. O_NOATIME may be useful to reduce disk activity. O_CLOEXEC may be useful, if separate processes shall be used to scan files. Once this patch is accepted, the fanotify_init.2 manpage has to be updated. Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:05:44 -07:00
if (event_f_flags & ~FANOTIFY_INIT_ALL_EVENT_F_BITS)
return -EINVAL;
switch (event_f_flags & O_ACCMODE) {
case O_RDONLY:
case O_RDWR:
case O_WRONLY:
break;
default:
return -EINVAL;
}
if (fid_mode && class != FAN_CLASS_NOTIF)
return -EINVAL;
/*
* Child name is reported with parent fid so requires dir fid.
* We can report both child fid and dir fid with or without name.
*/
if ((fid_mode & FAN_REPORT_NAME) && !(fid_mode & FAN_REPORT_DIR_FID))
return -EINVAL;
/*
* FAN_REPORT_TARGET_FID requires FAN_REPORT_NAME and FAN_REPORT_FID
* and is used as an indication to report both dir and child fid on all
* dirent events.
*/
if ((fid_mode & FAN_REPORT_TARGET_FID) &&
(!(fid_mode & FAN_REPORT_NAME) || !(fid_mode & FAN_REPORT_FID)))
return -EINVAL;
f_flags = O_RDWR | __FMODE_NONOTIFY;
if (flags & FAN_CLOEXEC)
f_flags |= O_CLOEXEC;
if (flags & FAN_NONBLOCK)
f_flags |= O_NONBLOCK;
/* fsnotify_alloc_group takes a ref. Dropped in fanotify_release */
group = fsnotify_alloc_group(&fanotify_fsnotify_ops,
inotify: Fix possible deadlock in fsnotify_destroy_mark [Syzbot reported] WARNING: possible circular locking dependency detected 6.11.0-rc4-syzkaller-00019-gb311c1b497e5 #0 Not tainted ------------------------------------------------------ kswapd0/78 is trying to acquire lock: ffff88801b8d8930 (&group->mark_mutex){+.+.}-{3:3}, at: fsnotify_group_lock include/linux/fsnotify_backend.h:270 [inline] ffff88801b8d8930 (&group->mark_mutex){+.+.}-{3:3}, at: fsnotify_destroy_mark+0x38/0x3c0 fs/notify/mark.c:578 but task is already holding lock: ffffffff8ea2fd60 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat mm/vmscan.c:6841 [inline] ffffffff8ea2fd60 (fs_reclaim){+.+.}-{0:0}, at: kswapd+0xbb4/0x35a0 mm/vmscan.c:7223 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (fs_reclaim){+.+.}-{0:0}: ... kmem_cache_alloc_noprof+0x3d/0x2a0 mm/slub.c:4044 inotify_new_watch fs/notify/inotify/inotify_user.c:599 [inline] inotify_update_watch fs/notify/inotify/inotify_user.c:647 [inline] __do_sys_inotify_add_watch fs/notify/inotify/inotify_user.c:786 [inline] __se_sys_inotify_add_watch+0x72e/0x1070 fs/notify/inotify/inotify_user.c:729 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f -> #0 (&group->mark_mutex){+.+.}-{3:3}: ... __mutex_lock+0x136/0xd70 kernel/locking/mutex.c:752 fsnotify_group_lock include/linux/fsnotify_backend.h:270 [inline] fsnotify_destroy_mark+0x38/0x3c0 fs/notify/mark.c:578 fsnotify_destroy_marks+0x14a/0x660 fs/notify/mark.c:934 fsnotify_inoderemove include/linux/fsnotify.h:264 [inline] dentry_unlink_inode+0x2e0/0x430 fs/dcache.c:403 __dentry_kill+0x20d/0x630 fs/dcache.c:610 shrink_kill+0xa9/0x2c0 fs/dcache.c:1055 shrink_dentry_list+0x2c0/0x5b0 fs/dcache.c:1082 prune_dcache_sb+0x10f/0x180 fs/dcache.c:1163 super_cache_scan+0x34f/0x4b0 fs/super.c:221 do_shrink_slab+0x701/0x1160 mm/shrinker.c:435 shrink_slab+0x1093/0x14d0 mm/shrinker.c:662 shrink_one+0x43b/0x850 mm/vmscan.c:4815 shrink_many mm/vmscan.c:4876 [inline] lru_gen_shrink_node mm/vmscan.c:4954 [inline] shrink_node+0x3799/0x3de0 mm/vmscan.c:5934 kswapd_shrink_node mm/vmscan.c:6762 [inline] balance_pgdat mm/vmscan.c:6954 [inline] kswapd+0x1bcd/0x35a0 mm/vmscan.c:7223 [Analysis] The problem is that inotify_new_watch() is using GFP_KERNEL to allocate new watches under group->mark_mutex, however if dentry reclaim races with unlinking of an inode, it can end up dropping the last dentry reference for an unlinked inode resulting in removal of fsnotify mark from reclaim context which wants to acquire group->mark_mutex as well. This scenario shows that all notification groups are in principle prone to this kind of a deadlock (previously, we considered only fanotify and dnotify to be problematic for other reasons) so make sure all allocations under group->mark_mutex happen with GFP_NOFS. Reported-and-tested-by: syzbot+c679f13773f295d2da53@syzkaller.appspotmail.com Closes: https://syzkaller.appspot.com/bug?extid=c679f13773f295d2da53 Signed-off-by: Lizhi Xu <lizhi.xu@windriver.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz> Link: https://patch.msgid.link/20240927143642.2369508-1-lizhi.xu@windriver.com
2024-09-27 07:36:42 -07:00
FSNOTIFY_GROUP_USER);
if (IS_ERR(group)) {
return PTR_ERR(group);
}
fanotify: configurable limits via sysfs fanotify has some hardcoded limits. The only APIs to escape those limits are FAN_UNLIMITED_QUEUE and FAN_UNLIMITED_MARKS. Allow finer grained tuning of the system limits via sysfs tunables under /proc/sys/fs/fanotify, similar to tunables under /proc/sys/fs/inotify, with some minor differences. - max_queued_events - global system tunable for group queue size limit. Like the inotify tunable with the same name, it defaults to 16384 and applies on initialization of a new group. - max_user_marks - user ns tunable for marks limit per user. Like the inotify tunable named max_user_watches, on a machine with sufficient RAM and it defaults to 1048576 in init userns and can be further limited per containing user ns. - max_user_groups - user ns tunable for number of groups per user. Like the inotify tunable named max_user_instances, it defaults to 128 in init userns and can be further limited per containing user ns. The slightly different tunable names used for fanotify are derived from the "group" and "mark" terminology used in the fanotify man pages and throughout the code. Considering the fact that the default value for max_user_instances was increased in kernel v5.10 from 8192 to 1048576, leaving the legacy fanotify limit of 8192 marks per group in addition to the max_user_marks limit makes little sense, so the per group marks limit has been removed. Note that when a group is initialized with FAN_UNLIMITED_MARKS, its own marks are not accounted in the per user marks account, so in effect the limit of max_user_marks is only for the collection of groups that are not initialized with FAN_UNLIMITED_MARKS. Link: https://lore.kernel.org/r/20210304112921.3996419-2-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-03-04 04:29:20 -07:00
/* Enforce groups limits per user in all containing user ns */
group->fanotify_data.ucounts = inc_ucount(current_user_ns(),
current_euid(),
UCOUNT_FANOTIFY_GROUPS);
if (!group->fanotify_data.ucounts) {
fd = -EMFILE;
goto out_destroy_group;
}
group->fanotify_data.flags = flags | internal_flags;
fs: fsnotify: account fsnotify metadata to kmemcg Patch series "Directed kmem charging", v8. The Linux kernel's memory cgroup allows limiting the memory usage of the jobs running on the system to provide isolation between the jobs. All the kernel memory allocated in the context of the job and marked with __GFP_ACCOUNT will also be included in the memory usage and be limited by the job's limit. The kernel memory can only be charged to the memcg of the process in whose context kernel memory was allocated. However there are cases where the allocated kernel memory should be charged to the memcg different from the current processes's memcg. This patch series contains two such concrete use-cases i.e. fsnotify and buffer_head. The fsnotify event objects can consume a lot of system memory for large or unlimited queues if there is either no or slow listener. The events are allocated in the context of the event producer. However they should be charged to the event consumer. Similarly the buffer_head objects can be allocated in a memcg different from the memcg of the page for which buffer_head objects are being allocated. To solve this issue, this patch series introduces mechanism to charge kernel memory to a given memcg. In case of fsnotify events, the memcg of the consumer can be used for charging and for buffer_head, the memcg of the page can be charged. For directed charging, the caller can use the scope API memalloc_[un]use_memcg() to specify the memcg to charge for all the __GFP_ACCOUNT allocations within the scope. This patch (of 2): A lot of memory can be consumed by the events generated for the huge or unlimited queues if there is either no or slow listener. This can cause system level memory pressure or OOMs. So, it's better to account the fsnotify kmem caches to the memcg of the listener. However the listener can be in a different memcg than the memcg of the producer and these allocations happen in the context of the event producer. This patch introduces remote memcg charging API which the producer can use to charge the allocations to the memcg of the listener. There are seven fsnotify kmem caches and among them allocations from dnotify_struct_cache, dnotify_mark_cache, fanotify_mark_cache and inotify_inode_mark_cachep happens in the context of syscall from the listener. So, SLAB_ACCOUNT is enough for these caches. The objects from fsnotify_mark_connector_cachep are not accounted as they are small compared to the notification mark or events and it is unclear whom to account connector to since it is shared by all events attached to the inode. The allocations from the event caches happen in the context of the event producer. For such caches we will need to remote charge the allocations to the listener's memcg. Thus we save the memcg reference in the fsnotify_group structure of the listener. This patch has also moved the members of fsnotify_group to keep the size same, at least for 64 bit build, even with additional member by filling the holes. [shakeelb@google.com: use GFP_KERNEL_ACCOUNT rather than open-coding it] Link: http://lkml.kernel.org/r/20180702215439.211597-1-shakeelb@google.com Link: http://lkml.kernel.org/r/20180627191250.209150-2-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 15:46:39 -07:00
group->memcg = get_mem_cgroup_from_mm(current->mm);
group->fanotify_data.merge_hash = fanotify_alloc_merge_hash();
if (!group->fanotify_data.merge_hash) {
fd = -ENOMEM;
goto out_destroy_group;
}
group->overflow_event = fanotify_alloc_overflow_event();
if (unlikely(!group->overflow_event)) {
fd = -ENOMEM;
goto out_destroy_group;
}
if (force_o_largefile())
event_f_flags |= O_LARGEFILE;
group->fanotify_data.f_flags = event_f_flags;
init_waitqueue_head(&group->fanotify_data.access_waitq);
INIT_LIST_HEAD(&group->fanotify_data.access_list);
switch (class) {
case FAN_CLASS_NOTIF:
group->priority = FSNOTIFY_PRIO_NORMAL;
break;
case FAN_CLASS_CONTENT:
group->priority = FSNOTIFY_PRIO_CONTENT;
break;
case FAN_CLASS_PRE_CONTENT:
group->priority = FSNOTIFY_PRIO_PRE_CONTENT;
break;
default:
fd = -EINVAL;
goto out_destroy_group;
}
if (flags & FAN_UNLIMITED_QUEUE) {
fd = -EPERM;
if (!capable(CAP_SYS_ADMIN))
goto out_destroy_group;
group->max_events = UINT_MAX;
} else {
fanotify: configurable limits via sysfs fanotify has some hardcoded limits. The only APIs to escape those limits are FAN_UNLIMITED_QUEUE and FAN_UNLIMITED_MARKS. Allow finer grained tuning of the system limits via sysfs tunables under /proc/sys/fs/fanotify, similar to tunables under /proc/sys/fs/inotify, with some minor differences. - max_queued_events - global system tunable for group queue size limit. Like the inotify tunable with the same name, it defaults to 16384 and applies on initialization of a new group. - max_user_marks - user ns tunable for marks limit per user. Like the inotify tunable named max_user_watches, on a machine with sufficient RAM and it defaults to 1048576 in init userns and can be further limited per containing user ns. - max_user_groups - user ns tunable for number of groups per user. Like the inotify tunable named max_user_instances, it defaults to 128 in init userns and can be further limited per containing user ns. The slightly different tunable names used for fanotify are derived from the "group" and "mark" terminology used in the fanotify man pages and throughout the code. Considering the fact that the default value for max_user_instances was increased in kernel v5.10 from 8192 to 1048576, leaving the legacy fanotify limit of 8192 marks per group in addition to the max_user_marks limit makes little sense, so the per group marks limit has been removed. Note that when a group is initialized with FAN_UNLIMITED_MARKS, its own marks are not accounted in the per user marks account, so in effect the limit of max_user_marks is only for the collection of groups that are not initialized with FAN_UNLIMITED_MARKS. Link: https://lore.kernel.org/r/20210304112921.3996419-2-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-03-04 04:29:20 -07:00
group->max_events = fanotify_max_queued_events;
}
if (flags & FAN_UNLIMITED_MARKS) {
fd = -EPERM;
if (!capable(CAP_SYS_ADMIN))
goto out_destroy_group;
}
audit: Record fanotify access control decisions The fanotify interface allows user space daemons to make access control decisions. Under common criteria requirements, we need to optionally record decisions based on policy. This patch adds a bit mask, FAN_AUDIT, that a user space daemon can 'or' into the response decision which will tell the kernel that it made a decision and record it. It would be used something like this in user space code: response.response = FAN_DENY | FAN_AUDIT; write(fd, &response, sizeof(struct fanotify_response)); When the syscall ends, the audit system will record the decision as a AUDIT_FANOTIFY auxiliary record to denote that the reason this event occurred is the result of an access control decision from fanotify rather than DAC or MAC policy. A sample event looks like this: type=PATH msg=audit(1504310584.332:290): item=0 name="./evil-ls" inode=1319561 dev=fc:03 mode=0100755 ouid=1000 ogid=1000 rdev=00:00 obj=unconfined_u:object_r:user_home_t:s0 nametype=NORMAL type=CWD msg=audit(1504310584.332:290): cwd="/home/sgrubb" type=SYSCALL msg=audit(1504310584.332:290): arch=c000003e syscall=2 success=no exit=-1 a0=32cb3fca90 a1=0 a2=43 a3=8 items=1 ppid=901 pid=959 auid=1000 uid=1000 gid=1000 euid=1000 suid=1000 fsuid=1000 egid=1000 sgid=1000 fsgid=1000 tty=pts1 ses=3 comm="bash" exe="/usr/bin/bash" subj=unconfined_u:unconfined_r:unconfined_t: s0-s0:c0.c1023 key=(null) type=FANOTIFY msg=audit(1504310584.332:290): resp=2 Prior to using the audit flag, the developer needs to call fanotify_init or'ing in FAN_ENABLE_AUDIT to ensure that the kernel supports auditing. The calling process must also have the CAP_AUDIT_WRITE capability. Signed-off-by: sgrubb <sgrubb@redhat.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2017-10-02 17:21:39 -07:00
if (flags & FAN_ENABLE_AUDIT) {
fd = -EPERM;
if (!capable(CAP_AUDIT_WRITE))
goto out_destroy_group;
}
fd = anon_inode_getfd("[fanotify]", &fanotify_fops, group, f_flags);
if (fd < 0)
goto out_destroy_group;
return fd;
out_destroy_group:
fsnotify_destroy_group(group);
return fd;
}
static int fanotify_test_fsid(struct dentry *dentry, unsigned int flags,
struct fan_fsid *fsid)
{
unsigned int mark_type = flags & FANOTIFY_MARK_TYPE_BITS;
__kernel_fsid_t root_fsid;
int err;
/*
* Make sure dentry is not of a filesystem with zero fsid (e.g. fuse).
*/
err = vfs_get_fsid(dentry, &fsid->id);
if (err)
return err;
fsid->sb = dentry->d_sb;
if (!fsid->id.val[0] && !fsid->id.val[1]) {
err = -ENODEV;
goto weak;
}
/*
* Make sure dentry is not of a filesystem subvolume (e.g. btrfs)
* which uses a different fsid than sb root.
*/
err = vfs_get_fsid(dentry->d_sb->s_root, &root_fsid);
if (err)
return err;
if (!fanotify_fsid_equal(&root_fsid, &fsid->id)) {
err = -EXDEV;
goto weak;
}
fsid->weak = false;
return 0;
weak:
/* Allow weak fsid when marking inodes */
fsid->weak = true;
return (mark_type == FAN_MARK_INODE) ? 0 : err;
}
/* Check if filesystem can encode a unique fid */
static int fanotify_test_fid(struct dentry *dentry, unsigned int flags)
{
unsigned int mark_type = flags & FANOTIFY_MARK_TYPE_BITS;
const struct export_operations *nop = dentry->d_sb->s_export_op;
/*
* We need to make sure that the filesystem supports encoding of
* file handles so user can use name_to_handle_at() to compare fids
* reported with events to the file handle of watched objects.
*/
if (!exportfs_can_encode_fid(nop))
return -EOPNOTSUPP;
/*
* For sb/mount mark, we also need to make sure that the filesystem
* supports decoding file handles, so user has a way to map back the
* reported fids to filesystem objects.
*/
if (mark_type != FAN_MARK_INODE && !exportfs_can_decode_fh(nop))
return -EOPNOTSUPP;
return 0;
}
static int fanotify_events_supported(struct fsnotify_group *group,
const struct path *path, __u64 mask,
unsigned int flags)
{
unsigned int mark_type = flags & FANOTIFY_MARK_TYPE_BITS;
/* Strict validation of events in non-dir inode mask with v5.17+ APIs */
bool strict_dir_events = FAN_GROUP_FLAG(group, FAN_REPORT_TARGET_FID) ||
fanotify: introduce FAN_MARK_IGNORE This flag is a new way to configure ignore mask which allows adding and removing the event flags FAN_ONDIR and FAN_EVENT_ON_CHILD in ignore mask. The legacy FAN_MARK_IGNORED_MASK flag would always ignore events on directories and would ignore events on children depending on whether the FAN_EVENT_ON_CHILD flag was set in the (non ignored) mask. FAN_MARK_IGNORE can be used to ignore events on children without setting FAN_EVENT_ON_CHILD in the mark's mask and will not ignore events on directories unconditionally, only when FAN_ONDIR is set in ignore mask. The new behavior is non-downgradable. After calling fanotify_mark() with FAN_MARK_IGNORE once, calling fanotify_mark() with FAN_MARK_IGNORED_MASK on the same object will return EEXIST error. Setting the event flags with FAN_MARK_IGNORE on a non-dir inode mark has no meaning and will return ENOTDIR error. The meaning of FAN_MARK_IGNORED_SURV_MODIFY is preserved with the new FAN_MARK_IGNORE flag, but with a few semantic differences: 1. FAN_MARK_IGNORED_SURV_MODIFY is required for filesystem and mount marks and on an inode mark on a directory. Omitting this flag will return EINVAL or EISDIR error. 2. An ignore mask on a non-directory inode that survives modify could never be downgraded to an ignore mask that does not survive modify. With new FAN_MARK_IGNORE semantics we make that rule explicit - trying to update a surviving ignore mask without the flag FAN_MARK_IGNORED_SURV_MODIFY will return EEXIST error. The conveniene macro FAN_MARK_IGNORE_SURV is added for (FAN_MARK_IGNORE | FAN_MARK_IGNORED_SURV_MODIFY), because the common case should use short constant names. Link: https://lore.kernel.org/r/20220629144210.2983229-4-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2022-06-29 07:42:10 -07:00
(mask & FAN_RENAME) ||
(flags & FAN_MARK_IGNORE);
/*
* Some filesystems such as 'proc' acquire unusual locks when opening
* files. For them fanotify permission events have high chances of
* deadlocking the system - open done when reporting fanotify event
* blocks on this "unusual" lock while another process holding the lock
* waits for fanotify permission event to be answered. Just disallow
* permission events for such filesystems.
*/
if (mask & FANOTIFY_PERM_EVENTS &&
path->mnt->mnt_sb->s_type->fs_flags & FS_DISALLOW_NOTIFY_PERM)
return -EINVAL;
/*
* mount and sb marks are not allowed on kernel internal pseudo fs,
* like pipe_mnt, because that would subscribe to events on all the
* anonynous pipes in the system.
*
* SB_NOUSER covers all of the internal pseudo fs whose objects are not
* exposed to user's mount namespace, but there are other SB_KERNMOUNT
* fs, like nsfs, debugfs, for which the value of allowing sb and mount
* mark is questionable. For now we leave them alone.
*/
if (mark_type != FAN_MARK_INODE &&
path->mnt->mnt_sb->s_flags & SB_NOUSER)
return -EINVAL;
/*
* We shouldn't have allowed setting dirent events and the directory
* flags FAN_ONDIR and FAN_EVENT_ON_CHILD in mask of non-dir inode,
* but because we always allowed it, error only when using new APIs.
*/
if (strict_dir_events && mark_type == FAN_MARK_INODE &&
!d_is_dir(path->dentry) && (mask & FANOTIFY_DIRONLY_EVENT_BITS))
return -ENOTDIR;
return 0;
}
static int do_fanotify_mark(int fanotify_fd, unsigned int flags, __u64 mask,
int dfd, const char __user *pathname)
{
struct inode *inode = NULL;
struct vfsmount *mnt = NULL;
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
struct fsnotify_group *group;
struct fd f;
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
struct path path;
struct fan_fsid __fsid, *fsid = NULL;
u32 valid_mask = FANOTIFY_EVENTS | FANOTIFY_EVENT_FLAGS;
unsigned int mark_type = flags & FANOTIFY_MARK_TYPE_BITS;
unsigned int mark_cmd = flags & FANOTIFY_MARK_CMD_BITS;
fanotify: introduce FAN_MARK_IGNORE This flag is a new way to configure ignore mask which allows adding and removing the event flags FAN_ONDIR and FAN_EVENT_ON_CHILD in ignore mask. The legacy FAN_MARK_IGNORED_MASK flag would always ignore events on directories and would ignore events on children depending on whether the FAN_EVENT_ON_CHILD flag was set in the (non ignored) mask. FAN_MARK_IGNORE can be used to ignore events on children without setting FAN_EVENT_ON_CHILD in the mark's mask and will not ignore events on directories unconditionally, only when FAN_ONDIR is set in ignore mask. The new behavior is non-downgradable. After calling fanotify_mark() with FAN_MARK_IGNORE once, calling fanotify_mark() with FAN_MARK_IGNORED_MASK on the same object will return EEXIST error. Setting the event flags with FAN_MARK_IGNORE on a non-dir inode mark has no meaning and will return ENOTDIR error. The meaning of FAN_MARK_IGNORED_SURV_MODIFY is preserved with the new FAN_MARK_IGNORE flag, but with a few semantic differences: 1. FAN_MARK_IGNORED_SURV_MODIFY is required for filesystem and mount marks and on an inode mark on a directory. Omitting this flag will return EINVAL or EISDIR error. 2. An ignore mask on a non-directory inode that survives modify could never be downgraded to an ignore mask that does not survive modify. With new FAN_MARK_IGNORE semantics we make that rule explicit - trying to update a surviving ignore mask without the flag FAN_MARK_IGNORED_SURV_MODIFY will return EEXIST error. The conveniene macro FAN_MARK_IGNORE_SURV is added for (FAN_MARK_IGNORE | FAN_MARK_IGNORED_SURV_MODIFY), because the common case should use short constant names. Link: https://lore.kernel.org/r/20220629144210.2983229-4-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2022-06-29 07:42:10 -07:00
unsigned int ignore = flags & FANOTIFY_MARK_IGNORE_BITS;
unsigned int obj_type, fid_mode;
void *obj;
u32 umask = 0;
int ret;
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
pr_debug("%s: fanotify_fd=%d flags=%x dfd=%d pathname=%p mask=%llx\n",
__func__, fanotify_fd, flags, dfd, pathname, mask);
/* we only use the lower 32 bits as of right now. */
if (upper_32_bits(mask))
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
return -EINVAL;
if (flags & ~FANOTIFY_MARK_FLAGS)
return -EINVAL;
switch (mark_type) {
case FAN_MARK_INODE:
fanotify, inotify, dnotify, security: add security hook for fs notifications As of now, setting watches on filesystem objects has, at most, applied a check for read access to the inode, and in the case of fanotify, requires CAP_SYS_ADMIN. No specific security hook or permission check has been provided to control the setting of watches. Using any of inotify, dnotify, or fanotify, it is possible to observe, not only write-like operations, but even read access to a file. Modeling the watch as being merely a read from the file is insufficient for the needs of SELinux. This is due to the fact that read access should not necessarily imply access to information about when another process reads from a file. Furthermore, fanotify watches grant more power to an application in the form of permission events. While notification events are solely, unidirectional (i.e. they only pass information to the receiving application), permission events are blocking. Permission events make a request to the receiving application which will then reply with a decision as to whether or not that action may be completed. This causes the issue of the watching application having the ability to exercise control over the triggering process. Without drawing a distinction within the permission check, the ability to read would imply the greater ability to control an application. Additionally, mount and superblock watches apply to all files within the same mount or superblock. Read access to one file should not necessarily imply the ability to watch all files accessed within a given mount or superblock. In order to solve these issues, a new LSM hook is implemented and has been placed within the system calls for marking filesystem objects with inotify, fanotify, and dnotify watches. These calls to the hook are placed at the point at which the target path has been resolved and are provided with the path struct, the mask of requested notification events, and the type of object on which the mark is being set (inode, superblock, or mount). The mask and obj_type have already been translated into common FS_* values shared by the entirety of the fs notification infrastructure. The path struct is passed rather than just the inode so that the mount is available, particularly for mount watches. This also allows for use of the hook by pathname-based security modules. However, since the hook is intended for use even by inode based security modules, it is not placed under the CONFIG_SECURITY_PATH conditional. Otherwise, the inode-based security modules would need to enable all of the path hooks, even though they do not use any of them. This only provides a hook at the point of setting a watch, and presumes that permission to set a particular watch implies the ability to receive all notification about that object which match the mask. This is all that is required for SELinux. If other security modules require additional hooks or infrastructure to control delivery of notification, these can be added by them. It does not make sense for us to propose hooks for which we have no implementation. The understanding that all notifications received by the requesting application are all strictly of a type for which the application has been granted permission shows that this implementation is sufficient in its coverage. Security modules wishing to provide complete control over fanotify must also implement a security_file_open hook that validates that the access requested by the watching application is authorized. Fanotify has the issue that it returns a file descriptor with the file mode specified during fanotify_init() to the watching process on event. This is already covered by the LSM security_file_open hook if the security module implements checking of the requested file mode there. Otherwise, a watching process can obtain escalated access to a file for which it has not been authorized. The selinux_path_notify hook implementation works by adding five new file permissions: watch, watch_mount, watch_sb, watch_reads, and watch_with_perm (descriptions about which will follow), and one new filesystem permission: watch (which is applied to superblock checks). The hook then decides which subset of these permissions must be held by the requesting application based on the contents of the provided mask and the obj_type. The selinux_file_open hook already checks the requested file mode and therefore ensures that a watching process cannot escalate its access through fanotify. The watch, watch_mount, and watch_sb permissions are the baseline permissions for setting a watch on an object and each are a requirement for any watch to be set on a file, mount, or superblock respectively. It should be noted that having either of the other two permissions (watch_reads and watch_with_perm) does not imply the watch, watch_mount, or watch_sb permission. Superblock watches further require the filesystem watch permission to the superblock. As there is no labeled object in view for mounts, there is no specific check for mount watches beyond watch_mount to the inode. Such a check could be added in the future, if a suitable labeled object existed representing the mount. The watch_reads permission is required to receive notifications from read-exclusive events on filesystem objects. These events include accessing a file for the purpose of reading and closing a file which has been opened read-only. This distinction has been drawn in order to provide a direct indication in the policy for this otherwise not obvious capability. Read access to a file should not necessarily imply the ability to observe read events on a file. Finally, watch_with_perm only applies to fanotify masks since it is the only way to set a mask which allows for the blocking, permission event. This permission is needed for any watch which is of this type. Though fanotify requires CAP_SYS_ADMIN, this is insufficient as it gives implicit trust to root, which we do not do, and does not support least privilege. Signed-off-by: Aaron Goidel <acgoide@tycho.nsa.gov> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Paul Moore <paul@paul-moore.com>
2019-08-12 08:20:00 -07:00
obj_type = FSNOTIFY_OBJ_TYPE_INODE;
break;
case FAN_MARK_MOUNT:
fanotify, inotify, dnotify, security: add security hook for fs notifications As of now, setting watches on filesystem objects has, at most, applied a check for read access to the inode, and in the case of fanotify, requires CAP_SYS_ADMIN. No specific security hook or permission check has been provided to control the setting of watches. Using any of inotify, dnotify, or fanotify, it is possible to observe, not only write-like operations, but even read access to a file. Modeling the watch as being merely a read from the file is insufficient for the needs of SELinux. This is due to the fact that read access should not necessarily imply access to information about when another process reads from a file. Furthermore, fanotify watches grant more power to an application in the form of permission events. While notification events are solely, unidirectional (i.e. they only pass information to the receiving application), permission events are blocking. Permission events make a request to the receiving application which will then reply with a decision as to whether or not that action may be completed. This causes the issue of the watching application having the ability to exercise control over the triggering process. Without drawing a distinction within the permission check, the ability to read would imply the greater ability to control an application. Additionally, mount and superblock watches apply to all files within the same mount or superblock. Read access to one file should not necessarily imply the ability to watch all files accessed within a given mount or superblock. In order to solve these issues, a new LSM hook is implemented and has been placed within the system calls for marking filesystem objects with inotify, fanotify, and dnotify watches. These calls to the hook are placed at the point at which the target path has been resolved and are provided with the path struct, the mask of requested notification events, and the type of object on which the mark is being set (inode, superblock, or mount). The mask and obj_type have already been translated into common FS_* values shared by the entirety of the fs notification infrastructure. The path struct is passed rather than just the inode so that the mount is available, particularly for mount watches. This also allows for use of the hook by pathname-based security modules. However, since the hook is intended for use even by inode based security modules, it is not placed under the CONFIG_SECURITY_PATH conditional. Otherwise, the inode-based security modules would need to enable all of the path hooks, even though they do not use any of them. This only provides a hook at the point of setting a watch, and presumes that permission to set a particular watch implies the ability to receive all notification about that object which match the mask. This is all that is required for SELinux. If other security modules require additional hooks or infrastructure to control delivery of notification, these can be added by them. It does not make sense for us to propose hooks for which we have no implementation. The understanding that all notifications received by the requesting application are all strictly of a type for which the application has been granted permission shows that this implementation is sufficient in its coverage. Security modules wishing to provide complete control over fanotify must also implement a security_file_open hook that validates that the access requested by the watching application is authorized. Fanotify has the issue that it returns a file descriptor with the file mode specified during fanotify_init() to the watching process on event. This is already covered by the LSM security_file_open hook if the security module implements checking of the requested file mode there. Otherwise, a watching process can obtain escalated access to a file for which it has not been authorized. The selinux_path_notify hook implementation works by adding five new file permissions: watch, watch_mount, watch_sb, watch_reads, and watch_with_perm (descriptions about which will follow), and one new filesystem permission: watch (which is applied to superblock checks). The hook then decides which subset of these permissions must be held by the requesting application based on the contents of the provided mask and the obj_type. The selinux_file_open hook already checks the requested file mode and therefore ensures that a watching process cannot escalate its access through fanotify. The watch, watch_mount, and watch_sb permissions are the baseline permissions for setting a watch on an object and each are a requirement for any watch to be set on a file, mount, or superblock respectively. It should be noted that having either of the other two permissions (watch_reads and watch_with_perm) does not imply the watch, watch_mount, or watch_sb permission. Superblock watches further require the filesystem watch permission to the superblock. As there is no labeled object in view for mounts, there is no specific check for mount watches beyond watch_mount to the inode. Such a check could be added in the future, if a suitable labeled object existed representing the mount. The watch_reads permission is required to receive notifications from read-exclusive events on filesystem objects. These events include accessing a file for the purpose of reading and closing a file which has been opened read-only. This distinction has been drawn in order to provide a direct indication in the policy for this otherwise not obvious capability. Read access to a file should not necessarily imply the ability to observe read events on a file. Finally, watch_with_perm only applies to fanotify masks since it is the only way to set a mask which allows for the blocking, permission event. This permission is needed for any watch which is of this type. Though fanotify requires CAP_SYS_ADMIN, this is insufficient as it gives implicit trust to root, which we do not do, and does not support least privilege. Signed-off-by: Aaron Goidel <acgoide@tycho.nsa.gov> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Paul Moore <paul@paul-moore.com>
2019-08-12 08:20:00 -07:00
obj_type = FSNOTIFY_OBJ_TYPE_VFSMOUNT;
break;
case FAN_MARK_FILESYSTEM:
fanotify, inotify, dnotify, security: add security hook for fs notifications As of now, setting watches on filesystem objects has, at most, applied a check for read access to the inode, and in the case of fanotify, requires CAP_SYS_ADMIN. No specific security hook or permission check has been provided to control the setting of watches. Using any of inotify, dnotify, or fanotify, it is possible to observe, not only write-like operations, but even read access to a file. Modeling the watch as being merely a read from the file is insufficient for the needs of SELinux. This is due to the fact that read access should not necessarily imply access to information about when another process reads from a file. Furthermore, fanotify watches grant more power to an application in the form of permission events. While notification events are solely, unidirectional (i.e. they only pass information to the receiving application), permission events are blocking. Permission events make a request to the receiving application which will then reply with a decision as to whether or not that action may be completed. This causes the issue of the watching application having the ability to exercise control over the triggering process. Without drawing a distinction within the permission check, the ability to read would imply the greater ability to control an application. Additionally, mount and superblock watches apply to all files within the same mount or superblock. Read access to one file should not necessarily imply the ability to watch all files accessed within a given mount or superblock. In order to solve these issues, a new LSM hook is implemented and has been placed within the system calls for marking filesystem objects with inotify, fanotify, and dnotify watches. These calls to the hook are placed at the point at which the target path has been resolved and are provided with the path struct, the mask of requested notification events, and the type of object on which the mark is being set (inode, superblock, or mount). The mask and obj_type have already been translated into common FS_* values shared by the entirety of the fs notification infrastructure. The path struct is passed rather than just the inode so that the mount is available, particularly for mount watches. This also allows for use of the hook by pathname-based security modules. However, since the hook is intended for use even by inode based security modules, it is not placed under the CONFIG_SECURITY_PATH conditional. Otherwise, the inode-based security modules would need to enable all of the path hooks, even though they do not use any of them. This only provides a hook at the point of setting a watch, and presumes that permission to set a particular watch implies the ability to receive all notification about that object which match the mask. This is all that is required for SELinux. If other security modules require additional hooks or infrastructure to control delivery of notification, these can be added by them. It does not make sense for us to propose hooks for which we have no implementation. The understanding that all notifications received by the requesting application are all strictly of a type for which the application has been granted permission shows that this implementation is sufficient in its coverage. Security modules wishing to provide complete control over fanotify must also implement a security_file_open hook that validates that the access requested by the watching application is authorized. Fanotify has the issue that it returns a file descriptor with the file mode specified during fanotify_init() to the watching process on event. This is already covered by the LSM security_file_open hook if the security module implements checking of the requested file mode there. Otherwise, a watching process can obtain escalated access to a file for which it has not been authorized. The selinux_path_notify hook implementation works by adding five new file permissions: watch, watch_mount, watch_sb, watch_reads, and watch_with_perm (descriptions about which will follow), and one new filesystem permission: watch (which is applied to superblock checks). The hook then decides which subset of these permissions must be held by the requesting application based on the contents of the provided mask and the obj_type. The selinux_file_open hook already checks the requested file mode and therefore ensures that a watching process cannot escalate its access through fanotify. The watch, watch_mount, and watch_sb permissions are the baseline permissions for setting a watch on an object and each are a requirement for any watch to be set on a file, mount, or superblock respectively. It should be noted that having either of the other two permissions (watch_reads and watch_with_perm) does not imply the watch, watch_mount, or watch_sb permission. Superblock watches further require the filesystem watch permission to the superblock. As there is no labeled object in view for mounts, there is no specific check for mount watches beyond watch_mount to the inode. Such a check could be added in the future, if a suitable labeled object existed representing the mount. The watch_reads permission is required to receive notifications from read-exclusive events on filesystem objects. These events include accessing a file for the purpose of reading and closing a file which has been opened read-only. This distinction has been drawn in order to provide a direct indication in the policy for this otherwise not obvious capability. Read access to a file should not necessarily imply the ability to observe read events on a file. Finally, watch_with_perm only applies to fanotify masks since it is the only way to set a mask which allows for the blocking, permission event. This permission is needed for any watch which is of this type. Though fanotify requires CAP_SYS_ADMIN, this is insufficient as it gives implicit trust to root, which we do not do, and does not support least privilege. Signed-off-by: Aaron Goidel <acgoide@tycho.nsa.gov> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Paul Moore <paul@paul-moore.com>
2019-08-12 08:20:00 -07:00
obj_type = FSNOTIFY_OBJ_TYPE_SB;
break;
default:
return -EINVAL;
}
switch (mark_cmd) {
case FAN_MARK_ADD:
case FAN_MARK_REMOVE:
if (!mask)
return -EINVAL;
break;
case FAN_MARK_FLUSH:
if (flags & ~(FANOTIFY_MARK_TYPE_BITS | FAN_MARK_FLUSH))
return -EINVAL;
break;
default:
return -EINVAL;
}
if (IS_ENABLED(CONFIG_FANOTIFY_ACCESS_PERMISSIONS))
valid_mask |= FANOTIFY_PERM_EVENTS;
if (mask & ~valid_mask)
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
return -EINVAL;
fanotify: introduce FAN_MARK_IGNORE This flag is a new way to configure ignore mask which allows adding and removing the event flags FAN_ONDIR and FAN_EVENT_ON_CHILD in ignore mask. The legacy FAN_MARK_IGNORED_MASK flag would always ignore events on directories and would ignore events on children depending on whether the FAN_EVENT_ON_CHILD flag was set in the (non ignored) mask. FAN_MARK_IGNORE can be used to ignore events on children without setting FAN_EVENT_ON_CHILD in the mark's mask and will not ignore events on directories unconditionally, only when FAN_ONDIR is set in ignore mask. The new behavior is non-downgradable. After calling fanotify_mark() with FAN_MARK_IGNORE once, calling fanotify_mark() with FAN_MARK_IGNORED_MASK on the same object will return EEXIST error. Setting the event flags with FAN_MARK_IGNORE on a non-dir inode mark has no meaning and will return ENOTDIR error. The meaning of FAN_MARK_IGNORED_SURV_MODIFY is preserved with the new FAN_MARK_IGNORE flag, but with a few semantic differences: 1. FAN_MARK_IGNORED_SURV_MODIFY is required for filesystem and mount marks and on an inode mark on a directory. Omitting this flag will return EINVAL or EISDIR error. 2. An ignore mask on a non-directory inode that survives modify could never be downgraded to an ignore mask that does not survive modify. With new FAN_MARK_IGNORE semantics we make that rule explicit - trying to update a surviving ignore mask without the flag FAN_MARK_IGNORED_SURV_MODIFY will return EEXIST error. The conveniene macro FAN_MARK_IGNORE_SURV is added for (FAN_MARK_IGNORE | FAN_MARK_IGNORED_SURV_MODIFY), because the common case should use short constant names. Link: https://lore.kernel.org/r/20220629144210.2983229-4-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2022-06-29 07:42:10 -07:00
/* We don't allow FAN_MARK_IGNORE & FAN_MARK_IGNORED_MASK together */
if (ignore == (FAN_MARK_IGNORE | FAN_MARK_IGNORED_MASK))
return -EINVAL;
/*
* Event flags (FAN_ONDIR, FAN_EVENT_ON_CHILD) have no effect with
* FAN_MARK_IGNORED_MASK.
*/
fanotify: introduce FAN_MARK_IGNORE This flag is a new way to configure ignore mask which allows adding and removing the event flags FAN_ONDIR and FAN_EVENT_ON_CHILD in ignore mask. The legacy FAN_MARK_IGNORED_MASK flag would always ignore events on directories and would ignore events on children depending on whether the FAN_EVENT_ON_CHILD flag was set in the (non ignored) mask. FAN_MARK_IGNORE can be used to ignore events on children without setting FAN_EVENT_ON_CHILD in the mark's mask and will not ignore events on directories unconditionally, only when FAN_ONDIR is set in ignore mask. The new behavior is non-downgradable. After calling fanotify_mark() with FAN_MARK_IGNORE once, calling fanotify_mark() with FAN_MARK_IGNORED_MASK on the same object will return EEXIST error. Setting the event flags with FAN_MARK_IGNORE on a non-dir inode mark has no meaning and will return ENOTDIR error. The meaning of FAN_MARK_IGNORED_SURV_MODIFY is preserved with the new FAN_MARK_IGNORE flag, but with a few semantic differences: 1. FAN_MARK_IGNORED_SURV_MODIFY is required for filesystem and mount marks and on an inode mark on a directory. Omitting this flag will return EINVAL or EISDIR error. 2. An ignore mask on a non-directory inode that survives modify could never be downgraded to an ignore mask that does not survive modify. With new FAN_MARK_IGNORE semantics we make that rule explicit - trying to update a surviving ignore mask without the flag FAN_MARK_IGNORED_SURV_MODIFY will return EEXIST error. The conveniene macro FAN_MARK_IGNORE_SURV is added for (FAN_MARK_IGNORE | FAN_MARK_IGNORED_SURV_MODIFY), because the common case should use short constant names. Link: https://lore.kernel.org/r/20220629144210.2983229-4-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2022-06-29 07:42:10 -07:00
if (ignore == FAN_MARK_IGNORED_MASK) {
mask &= ~FANOTIFY_EVENT_FLAGS;
fanotify: introduce FAN_MARK_IGNORE This flag is a new way to configure ignore mask which allows adding and removing the event flags FAN_ONDIR and FAN_EVENT_ON_CHILD in ignore mask. The legacy FAN_MARK_IGNORED_MASK flag would always ignore events on directories and would ignore events on children depending on whether the FAN_EVENT_ON_CHILD flag was set in the (non ignored) mask. FAN_MARK_IGNORE can be used to ignore events on children without setting FAN_EVENT_ON_CHILD in the mark's mask and will not ignore events on directories unconditionally, only when FAN_ONDIR is set in ignore mask. The new behavior is non-downgradable. After calling fanotify_mark() with FAN_MARK_IGNORE once, calling fanotify_mark() with FAN_MARK_IGNORED_MASK on the same object will return EEXIST error. Setting the event flags with FAN_MARK_IGNORE on a non-dir inode mark has no meaning and will return ENOTDIR error. The meaning of FAN_MARK_IGNORED_SURV_MODIFY is preserved with the new FAN_MARK_IGNORE flag, but with a few semantic differences: 1. FAN_MARK_IGNORED_SURV_MODIFY is required for filesystem and mount marks and on an inode mark on a directory. Omitting this flag will return EINVAL or EISDIR error. 2. An ignore mask on a non-directory inode that survives modify could never be downgraded to an ignore mask that does not survive modify. With new FAN_MARK_IGNORE semantics we make that rule explicit - trying to update a surviving ignore mask without the flag FAN_MARK_IGNORED_SURV_MODIFY will return EEXIST error. The conveniene macro FAN_MARK_IGNORE_SURV is added for (FAN_MARK_IGNORE | FAN_MARK_IGNORED_SURV_MODIFY), because the common case should use short constant names. Link: https://lore.kernel.org/r/20220629144210.2983229-4-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2022-06-29 07:42:10 -07:00
umask = FANOTIFY_EVENT_FLAGS;
}
f = fdget(fanotify_fd);
if (unlikely(!fd_file(f)))
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
return -EBADF;
/* verify that this is indeed an fanotify instance */
ret = -EINVAL;
if (unlikely(fd_file(f)->f_op != &fanotify_fops))
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
goto fput_and_out;
group = fd_file(f)->private_data;
/*
* An unprivileged user is not allowed to setup mount nor filesystem
* marks. This also includes setting up such marks by a group that
* was initialized by an unprivileged user.
*/
ret = -EPERM;
if ((!capable(CAP_SYS_ADMIN) ||
FAN_GROUP_FLAG(group, FANOTIFY_UNPRIV)) &&
mark_type != FAN_MARK_INODE)
goto fput_and_out;
/*
* Permission events require minimum priority FAN_CLASS_CONTENT.
*/
ret = -EINVAL;
if (mask & FANOTIFY_PERM_EVENTS &&
group->priority < FSNOTIFY_PRIO_CONTENT)
goto fput_and_out;
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
if (mask & FAN_FS_ERROR &&
mark_type != FAN_MARK_FILESYSTEM)
goto fput_and_out;
/*
* Evictable is only relevant for inode marks, because only inode object
* can be evicted on memory pressure.
*/
if (flags & FAN_MARK_EVICTABLE &&
mark_type != FAN_MARK_INODE)
goto fput_and_out;
/*
* Events that do not carry enough information to report
* event->fd require a group that supports reporting fid. Those
* events are not supported on a mount mark, because they do not
* carry enough information (i.e. path) to be filtered by mount
* point.
*/
fid_mode = FAN_GROUP_FLAG(group, FANOTIFY_FID_BITS);
if (mask & ~(FANOTIFY_FD_EVENTS|FANOTIFY_EVENT_FLAGS) &&
(!fid_mode || mark_type == FAN_MARK_MOUNT))
goto fput_and_out;
/*
* FAN_RENAME uses special info type records to report the old and
* new parent+name. Reporting only old and new parent id is less
* useful and was not implemented.
*/
if (mask & FAN_RENAME && !(fid_mode & FAN_REPORT_NAME))
goto fput_and_out;
if (mark_cmd == FAN_MARK_FLUSH) {
ret = 0;
if (mark_type == FAN_MARK_MOUNT)
fsnotify_clear_vfsmount_marks_by_group(group);
else if (mark_type == FAN_MARK_FILESYSTEM)
fsnotify_clear_sb_marks_by_group(group);
else
fsnotify_clear_inode_marks_by_group(group);
goto fput_and_out;
}
fanotify, inotify, dnotify, security: add security hook for fs notifications As of now, setting watches on filesystem objects has, at most, applied a check for read access to the inode, and in the case of fanotify, requires CAP_SYS_ADMIN. No specific security hook or permission check has been provided to control the setting of watches. Using any of inotify, dnotify, or fanotify, it is possible to observe, not only write-like operations, but even read access to a file. Modeling the watch as being merely a read from the file is insufficient for the needs of SELinux. This is due to the fact that read access should not necessarily imply access to information about when another process reads from a file. Furthermore, fanotify watches grant more power to an application in the form of permission events. While notification events are solely, unidirectional (i.e. they only pass information to the receiving application), permission events are blocking. Permission events make a request to the receiving application which will then reply with a decision as to whether or not that action may be completed. This causes the issue of the watching application having the ability to exercise control over the triggering process. Without drawing a distinction within the permission check, the ability to read would imply the greater ability to control an application. Additionally, mount and superblock watches apply to all files within the same mount or superblock. Read access to one file should not necessarily imply the ability to watch all files accessed within a given mount or superblock. In order to solve these issues, a new LSM hook is implemented and has been placed within the system calls for marking filesystem objects with inotify, fanotify, and dnotify watches. These calls to the hook are placed at the point at which the target path has been resolved and are provided with the path struct, the mask of requested notification events, and the type of object on which the mark is being set (inode, superblock, or mount). The mask and obj_type have already been translated into common FS_* values shared by the entirety of the fs notification infrastructure. The path struct is passed rather than just the inode so that the mount is available, particularly for mount watches. This also allows for use of the hook by pathname-based security modules. However, since the hook is intended for use even by inode based security modules, it is not placed under the CONFIG_SECURITY_PATH conditional. Otherwise, the inode-based security modules would need to enable all of the path hooks, even though they do not use any of them. This only provides a hook at the point of setting a watch, and presumes that permission to set a particular watch implies the ability to receive all notification about that object which match the mask. This is all that is required for SELinux. If other security modules require additional hooks or infrastructure to control delivery of notification, these can be added by them. It does not make sense for us to propose hooks for which we have no implementation. The understanding that all notifications received by the requesting application are all strictly of a type for which the application has been granted permission shows that this implementation is sufficient in its coverage. Security modules wishing to provide complete control over fanotify must also implement a security_file_open hook that validates that the access requested by the watching application is authorized. Fanotify has the issue that it returns a file descriptor with the file mode specified during fanotify_init() to the watching process on event. This is already covered by the LSM security_file_open hook if the security module implements checking of the requested file mode there. Otherwise, a watching process can obtain escalated access to a file for which it has not been authorized. The selinux_path_notify hook implementation works by adding five new file permissions: watch, watch_mount, watch_sb, watch_reads, and watch_with_perm (descriptions about which will follow), and one new filesystem permission: watch (which is applied to superblock checks). The hook then decides which subset of these permissions must be held by the requesting application based on the contents of the provided mask and the obj_type. The selinux_file_open hook already checks the requested file mode and therefore ensures that a watching process cannot escalate its access through fanotify. The watch, watch_mount, and watch_sb permissions are the baseline permissions for setting a watch on an object and each are a requirement for any watch to be set on a file, mount, or superblock respectively. It should be noted that having either of the other two permissions (watch_reads and watch_with_perm) does not imply the watch, watch_mount, or watch_sb permission. Superblock watches further require the filesystem watch permission to the superblock. As there is no labeled object in view for mounts, there is no specific check for mount watches beyond watch_mount to the inode. Such a check could be added in the future, if a suitable labeled object existed representing the mount. The watch_reads permission is required to receive notifications from read-exclusive events on filesystem objects. These events include accessing a file for the purpose of reading and closing a file which has been opened read-only. This distinction has been drawn in order to provide a direct indication in the policy for this otherwise not obvious capability. Read access to a file should not necessarily imply the ability to observe read events on a file. Finally, watch_with_perm only applies to fanotify masks since it is the only way to set a mask which allows for the blocking, permission event. This permission is needed for any watch which is of this type. Though fanotify requires CAP_SYS_ADMIN, this is insufficient as it gives implicit trust to root, which we do not do, and does not support least privilege. Signed-off-by: Aaron Goidel <acgoide@tycho.nsa.gov> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Paul Moore <paul@paul-moore.com>
2019-08-12 08:20:00 -07:00
ret = fanotify_find_path(dfd, pathname, &path, flags,
(mask & ALL_FSNOTIFY_EVENTS), obj_type);
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
if (ret)
goto fput_and_out;
if (mark_cmd == FAN_MARK_ADD) {
ret = fanotify_events_supported(group, &path, mask, flags);
if (ret)
goto path_put_and_out;
}
if (fid_mode) {
ret = fanotify_test_fsid(path.dentry, flags, &__fsid);
if (ret)
goto path_put_and_out;
ret = fanotify_test_fid(path.dentry, flags);
if (ret)
goto path_put_and_out;
fsid = &__fsid;
}
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
/* inode held in place by reference to path; group by fget on fd */
if (mark_type == FAN_MARK_INODE) {
inode = path.dentry->d_inode;
obj = inode;
} else {
mnt = path.mnt;
if (mark_type == FAN_MARK_MOUNT)
obj = mnt;
else
obj = mnt->mnt_sb;
}
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
/*
* If some other task has this inode open for write we should not add
* an ignore mask, unless that ignore mask is supposed to survive
* modification changes anyway.
*/
if (mark_cmd == FAN_MARK_ADD && (flags & FANOTIFY_MARK_IGNORE_BITS) &&
!(flags & FAN_MARK_IGNORED_SURV_MODIFY)) {
ret = mnt ? -EINVAL : -EISDIR;
/* FAN_MARK_IGNORE requires SURV_MODIFY for sb/mount/dir marks */
if (ignore == FAN_MARK_IGNORE &&
(mnt || S_ISDIR(inode->i_mode)))
goto path_put_and_out;
ret = 0;
if (inode && inode_is_open_for_write(inode))
goto path_put_and_out;
}
fanotify: introduce FAN_MARK_IGNORE This flag is a new way to configure ignore mask which allows adding and removing the event flags FAN_ONDIR and FAN_EVENT_ON_CHILD in ignore mask. The legacy FAN_MARK_IGNORED_MASK flag would always ignore events on directories and would ignore events on children depending on whether the FAN_EVENT_ON_CHILD flag was set in the (non ignored) mask. FAN_MARK_IGNORE can be used to ignore events on children without setting FAN_EVENT_ON_CHILD in the mark's mask and will not ignore events on directories unconditionally, only when FAN_ONDIR is set in ignore mask. The new behavior is non-downgradable. After calling fanotify_mark() with FAN_MARK_IGNORE once, calling fanotify_mark() with FAN_MARK_IGNORED_MASK on the same object will return EEXIST error. Setting the event flags with FAN_MARK_IGNORE on a non-dir inode mark has no meaning and will return ENOTDIR error. The meaning of FAN_MARK_IGNORED_SURV_MODIFY is preserved with the new FAN_MARK_IGNORE flag, but with a few semantic differences: 1. FAN_MARK_IGNORED_SURV_MODIFY is required for filesystem and mount marks and on an inode mark on a directory. Omitting this flag will return EINVAL or EISDIR error. 2. An ignore mask on a non-directory inode that survives modify could never be downgraded to an ignore mask that does not survive modify. With new FAN_MARK_IGNORE semantics we make that rule explicit - trying to update a surviving ignore mask without the flag FAN_MARK_IGNORED_SURV_MODIFY will return EEXIST error. The conveniene macro FAN_MARK_IGNORE_SURV is added for (FAN_MARK_IGNORE | FAN_MARK_IGNORED_SURV_MODIFY), because the common case should use short constant names. Link: https://lore.kernel.org/r/20220629144210.2983229-4-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2022-06-29 07:42:10 -07:00
/* Mask out FAN_EVENT_ON_CHILD flag for sb/mount/non-dir marks */
if (mnt || !S_ISDIR(inode->i_mode)) {
mask &= ~FAN_EVENT_ON_CHILD;
umask = FAN_EVENT_ON_CHILD;
/*
* If group needs to report parent fid, register for getting
* events with parent/name info for non-directory.
*/
if ((fid_mode & FAN_REPORT_DIR_FID) &&
(flags & FAN_MARK_ADD) && !ignore)
mask |= FAN_EVENT_ON_CHILD;
}
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
/* create/update an inode mark */
switch (mark_cmd) {
case FAN_MARK_ADD:
ret = fanotify_add_mark(group, obj, obj_type, mask, flags,
fsid);
break;
case FAN_MARK_REMOVE:
ret = fanotify_remove_mark(group, obj, obj_type, mask, flags,
umask);
break;
default:
ret = -EINVAL;
}
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
path_put_and_out:
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
path_put(&path);
fput_and_out:
fdput(f);
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
return ret;
}
#ifndef CONFIG_ARCH_SPLIT_ARG64
SYSCALL_DEFINE5(fanotify_mark, int, fanotify_fd, unsigned int, flags,
__u64, mask, int, dfd,
const char __user *, pathname)
{
return do_fanotify_mark(fanotify_fd, flags, mask, dfd, pathname);
}
#endif
#if defined(CONFIG_ARCH_SPLIT_ARG64) || defined(CONFIG_COMPAT)
SYSCALL32_DEFINE6(fanotify_mark,
int, fanotify_fd, unsigned int, flags,
SC_ARG64(mask), int, dfd,
const char __user *, pathname)
{
return do_fanotify_mark(fanotify_fd, flags, SC_VAL64(__u64, mask),
dfd, pathname);
}
#endif
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
/*
* fanotify_user_setup - Our initialization function. Note that we cannot return
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
* error because we have compiled-in VFS hooks. So an (unlikely) failure here
* must result in panic().
*/
static int __init fanotify_user_setup(void)
{
fanotify: configurable limits via sysfs fanotify has some hardcoded limits. The only APIs to escape those limits are FAN_UNLIMITED_QUEUE and FAN_UNLIMITED_MARKS. Allow finer grained tuning of the system limits via sysfs tunables under /proc/sys/fs/fanotify, similar to tunables under /proc/sys/fs/inotify, with some minor differences. - max_queued_events - global system tunable for group queue size limit. Like the inotify tunable with the same name, it defaults to 16384 and applies on initialization of a new group. - max_user_marks - user ns tunable for marks limit per user. Like the inotify tunable named max_user_watches, on a machine with sufficient RAM and it defaults to 1048576 in init userns and can be further limited per containing user ns. - max_user_groups - user ns tunable for number of groups per user. Like the inotify tunable named max_user_instances, it defaults to 128 in init userns and can be further limited per containing user ns. The slightly different tunable names used for fanotify are derived from the "group" and "mark" terminology used in the fanotify man pages and throughout the code. Considering the fact that the default value for max_user_instances was increased in kernel v5.10 from 8192 to 1048576, leaving the legacy fanotify limit of 8192 marks per group in addition to the max_user_marks limit makes little sense, so the per group marks limit has been removed. Note that when a group is initialized with FAN_UNLIMITED_MARKS, its own marks are not accounted in the per user marks account, so in effect the limit of max_user_marks is only for the collection of groups that are not initialized with FAN_UNLIMITED_MARKS. Link: https://lore.kernel.org/r/20210304112921.3996419-2-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-03-04 04:29:20 -07:00
struct sysinfo si;
int max_marks;
si_meminfo(&si);
/*
* Allow up to 1% of addressable memory to be accounted for per user
* marks limited to the range [8192, 1048576]. mount and sb marks are
* a lot cheaper than inode marks, but there is no reason for a user
* to have many of those, so calculate by the cost of inode marks.
*/
max_marks = (((si.totalram - si.totalhigh) / 100) << PAGE_SHIFT) /
INODE_MARK_COST;
max_marks = clamp(max_marks, FANOTIFY_OLD_DEFAULT_MAX_MARKS,
FANOTIFY_DEFAULT_MAX_USER_MARKS);
BUILD_BUG_ON(FANOTIFY_INIT_FLAGS & FANOTIFY_INTERNAL_GROUP_FLAGS);
BUILD_BUG_ON(HWEIGHT32(FANOTIFY_INIT_FLAGS) != 12);
fanotify: introduce FAN_MARK_IGNORE This flag is a new way to configure ignore mask which allows adding and removing the event flags FAN_ONDIR and FAN_EVENT_ON_CHILD in ignore mask. The legacy FAN_MARK_IGNORED_MASK flag would always ignore events on directories and would ignore events on children depending on whether the FAN_EVENT_ON_CHILD flag was set in the (non ignored) mask. FAN_MARK_IGNORE can be used to ignore events on children without setting FAN_EVENT_ON_CHILD in the mark's mask and will not ignore events on directories unconditionally, only when FAN_ONDIR is set in ignore mask. The new behavior is non-downgradable. After calling fanotify_mark() with FAN_MARK_IGNORE once, calling fanotify_mark() with FAN_MARK_IGNORED_MASK on the same object will return EEXIST error. Setting the event flags with FAN_MARK_IGNORE on a non-dir inode mark has no meaning and will return ENOTDIR error. The meaning of FAN_MARK_IGNORED_SURV_MODIFY is preserved with the new FAN_MARK_IGNORE flag, but with a few semantic differences: 1. FAN_MARK_IGNORED_SURV_MODIFY is required for filesystem and mount marks and on an inode mark on a directory. Omitting this flag will return EINVAL or EISDIR error. 2. An ignore mask on a non-directory inode that survives modify could never be downgraded to an ignore mask that does not survive modify. With new FAN_MARK_IGNORE semantics we make that rule explicit - trying to update a surviving ignore mask without the flag FAN_MARK_IGNORED_SURV_MODIFY will return EEXIST error. The conveniene macro FAN_MARK_IGNORE_SURV is added for (FAN_MARK_IGNORE | FAN_MARK_IGNORED_SURV_MODIFY), because the common case should use short constant names. Link: https://lore.kernel.org/r/20220629144210.2983229-4-amir73il@gmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2022-06-29 07:42:10 -07:00
BUILD_BUG_ON(HWEIGHT32(FANOTIFY_MARK_FLAGS) != 11);
fanotify_mark_cache = KMEM_CACHE(fanotify_mark,
fs: fsnotify: account fsnotify metadata to kmemcg Patch series "Directed kmem charging", v8. The Linux kernel's memory cgroup allows limiting the memory usage of the jobs running on the system to provide isolation between the jobs. All the kernel memory allocated in the context of the job and marked with __GFP_ACCOUNT will also be included in the memory usage and be limited by the job's limit. The kernel memory can only be charged to the memcg of the process in whose context kernel memory was allocated. However there are cases where the allocated kernel memory should be charged to the memcg different from the current processes's memcg. This patch series contains two such concrete use-cases i.e. fsnotify and buffer_head. The fsnotify event objects can consume a lot of system memory for large or unlimited queues if there is either no or slow listener. The events are allocated in the context of the event producer. However they should be charged to the event consumer. Similarly the buffer_head objects can be allocated in a memcg different from the memcg of the page for which buffer_head objects are being allocated. To solve this issue, this patch series introduces mechanism to charge kernel memory to a given memcg. In case of fsnotify events, the memcg of the consumer can be used for charging and for buffer_head, the memcg of the page can be charged. For directed charging, the caller can use the scope API memalloc_[un]use_memcg() to specify the memcg to charge for all the __GFP_ACCOUNT allocations within the scope. This patch (of 2): A lot of memory can be consumed by the events generated for the huge or unlimited queues if there is either no or slow listener. This can cause system level memory pressure or OOMs. So, it's better to account the fsnotify kmem caches to the memcg of the listener. However the listener can be in a different memcg than the memcg of the producer and these allocations happen in the context of the event producer. This patch introduces remote memcg charging API which the producer can use to charge the allocations to the memcg of the listener. There are seven fsnotify kmem caches and among them allocations from dnotify_struct_cache, dnotify_mark_cache, fanotify_mark_cache and inotify_inode_mark_cachep happens in the context of syscall from the listener. So, SLAB_ACCOUNT is enough for these caches. The objects from fsnotify_mark_connector_cachep are not accounted as they are small compared to the notification mark or events and it is unclear whom to account connector to since it is shared by all events attached to the inode. The allocations from the event caches happen in the context of the event producer. For such caches we will need to remote charge the allocations to the listener's memcg. Thus we save the memcg reference in the fsnotify_group structure of the listener. This patch has also moved the members of fsnotify_group to keep the size same, at least for 64 bit build, even with additional member by filling the holes. [shakeelb@google.com: use GFP_KERNEL_ACCOUNT rather than open-coding it] Link: http://lkml.kernel.org/r/20180702215439.211597-1-shakeelb@google.com Link: http://lkml.kernel.org/r/20180627191250.209150-2-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 15:46:39 -07:00
SLAB_PANIC|SLAB_ACCOUNT);
fanotify_fid_event_cachep = KMEM_CACHE(fanotify_fid_event,
SLAB_PANIC);
fanotify_path_event_cachep = KMEM_CACHE(fanotify_path_event,
SLAB_PANIC);
if (IS_ENABLED(CONFIG_FANOTIFY_ACCESS_PERMISSIONS)) {
fanotify_perm_event_cachep =
KMEM_CACHE(fanotify_perm_event, SLAB_PANIC);
}
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
fanotify: configurable limits via sysfs fanotify has some hardcoded limits. The only APIs to escape those limits are FAN_UNLIMITED_QUEUE and FAN_UNLIMITED_MARKS. Allow finer grained tuning of the system limits via sysfs tunables under /proc/sys/fs/fanotify, similar to tunables under /proc/sys/fs/inotify, with some minor differences. - max_queued_events - global system tunable for group queue size limit. Like the inotify tunable with the same name, it defaults to 16384 and applies on initialization of a new group. - max_user_marks - user ns tunable for marks limit per user. Like the inotify tunable named max_user_watches, on a machine with sufficient RAM and it defaults to 1048576 in init userns and can be further limited per containing user ns. - max_user_groups - user ns tunable for number of groups per user. Like the inotify tunable named max_user_instances, it defaults to 128 in init userns and can be further limited per containing user ns. The slightly different tunable names used for fanotify are derived from the "group" and "mark" terminology used in the fanotify man pages and throughout the code. Considering the fact that the default value for max_user_instances was increased in kernel v5.10 from 8192 to 1048576, leaving the legacy fanotify limit of 8192 marks per group in addition to the max_user_marks limit makes little sense, so the per group marks limit has been removed. Note that when a group is initialized with FAN_UNLIMITED_MARKS, its own marks are not accounted in the per user marks account, so in effect the limit of max_user_marks is only for the collection of groups that are not initialized with FAN_UNLIMITED_MARKS. Link: https://lore.kernel.org/r/20210304112921.3996419-2-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-03-04 04:29:20 -07:00
fanotify_max_queued_events = FANOTIFY_DEFAULT_MAX_EVENTS;
init_user_ns.ucount_max[UCOUNT_FANOTIFY_GROUPS] =
FANOTIFY_DEFAULT_MAX_GROUPS;
init_user_ns.ucount_max[UCOUNT_FANOTIFY_MARKS] = max_marks;
inotify: simplify subdirectory registration with register_sysctl() There is no need to user boiler plate code to specify a set of base directories we're going to stuff sysctls under. Simplify this by using register_sysctl() and specifying the directory path directly. Move inotify_user sysctl to inotify_user.c while at it to remove clutter from kernel/sysctl.c. [mcgrof@kernel.org: remember to register fanotify_table] Link: https://lkml.kernel.org/r/YZ5A6iWLb0h3N3RC@bombadil.infradead.org [mcgrof@kernel.org: update commit log to reflect new path we decided to take] Link: https://lkml.kernel.org/r/20211123202422.819032-7-mcgrof@kernel.org Signed-off-by: Xiaoming Ni <nixiaoming@huawei.com> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Antti Palosaari <crope@iki.fi> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Benjamin LaHaise <bcrl@kvack.org> Cc: Clemens Ladisch <clemens@ladisch.de> Cc: David Airlie <airlied@linux.ie> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Joel Becker <jlbec@evilplan.org> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Julia Lawall <julia.lawall@inria.fr> Cc: Kees Cook <keescook@chromium.org> Cc: Lukas Middendorf <kernel@tuxforce.de> Cc: Mark Fasheh <mark@fasheh.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Phillip Potter <phil@philpotter.co.uk> Cc: Qing Wang <wangqing@vivo.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Sebastian Reichel <sre@kernel.org> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Stephen Kitt <steve@sk2.org> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Douglas Gilbert <dgilbert@interlog.com> Cc: James E.J. Bottomley <jejb@linux.ibm.com> Cc: Jani Nikula <jani.nikula@intel.com> Cc: John Ogness <john.ogness@linutronix.de> Cc: Martin K. Petersen <martin.petersen@oracle.com> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-21 23:11:59 -07:00
fanotify_sysctls_init();
fanotify: configurable limits via sysfs fanotify has some hardcoded limits. The only APIs to escape those limits are FAN_UNLIMITED_QUEUE and FAN_UNLIMITED_MARKS. Allow finer grained tuning of the system limits via sysfs tunables under /proc/sys/fs/fanotify, similar to tunables under /proc/sys/fs/inotify, with some minor differences. - max_queued_events - global system tunable for group queue size limit. Like the inotify tunable with the same name, it defaults to 16384 and applies on initialization of a new group. - max_user_marks - user ns tunable for marks limit per user. Like the inotify tunable named max_user_watches, on a machine with sufficient RAM and it defaults to 1048576 in init userns and can be further limited per containing user ns. - max_user_groups - user ns tunable for number of groups per user. Like the inotify tunable named max_user_instances, it defaults to 128 in init userns and can be further limited per containing user ns. The slightly different tunable names used for fanotify are derived from the "group" and "mark" terminology used in the fanotify man pages and throughout the code. Considering the fact that the default value for max_user_instances was increased in kernel v5.10 from 8192 to 1048576, leaving the legacy fanotify limit of 8192 marks per group in addition to the max_user_marks limit makes little sense, so the per group marks limit has been removed. Note that when a group is initialized with FAN_UNLIMITED_MARKS, its own marks are not accounted in the per user marks account, so in effect the limit of max_user_marks is only for the collection of groups that are not initialized with FAN_UNLIMITED_MARKS. Link: https://lore.kernel.org/r/20210304112921.3996419-2-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2021-03-04 04:29:20 -07:00
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
return 0;
}
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-17 19:24:26 -07:00
device_initcall(fanotify_user_setup);