1
linux/arch/parisc/kernel/inventory.c

613 lines
16 KiB
C
Raw Normal View History

/*
* inventory.c
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Copyright (c) 1999 The Puffin Group (David Kennedy and Alex deVries)
* Copyright (c) 2001 Matthew Wilcox for Hewlett-Packard
*
* These are the routines to discover what hardware exists in this box.
* This task is complicated by there being 3 different ways of
* performing an inventory, depending largely on the age of the box.
* The recommended way to do this is to check to see whether the machine
* is a `Snake' first, then try System Map, then try PAT. We try System
* Map before checking for a Snake -- this probably doesn't cause any
* problems, but...
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <asm/hardware.h>
#include <asm/io.h>
#include <asm/mmzone.h>
#include <asm/pdc.h>
#include <asm/pdcpat.h>
#include <asm/processor.h>
#include <asm/page.h>
#include <asm/parisc-device.h>
/*
** Debug options
** DEBUG_PAT Dump details which PDC PAT provides about ranges/devices.
*/
#undef DEBUG_PAT
int pdc_type __read_mostly = PDC_TYPE_ILLEGAL;
void __init setup_pdc(void)
{
long status;
unsigned int bus_id;
struct pdc_system_map_mod_info module_result;
struct pdc_module_path module_path;
struct pdc_model model;
#ifdef __LP64__
struct pdc_pat_cell_num cell_info;
#endif
/* Determine the pdc "type" used on this machine */
printk(KERN_INFO "Determining PDC firmware type: ");
status = pdc_system_map_find_mods(&module_result, &module_path, 0);
if (status == PDC_OK) {
pdc_type = PDC_TYPE_SYSTEM_MAP;
printk("System Map.\n");
return;
}
/*
* If the machine doesn't support PDC_SYSTEM_MAP then either it
* is a pdc pat box, or it is an older box. All 64 bit capable
* machines are either pdc pat boxes or they support PDC_SYSTEM_MAP.
*/
/*
* TODO: We should test for 64 bit capability and give a
* clearer message.
*/
#ifdef __LP64__
status = pdc_pat_cell_get_number(&cell_info);
if (status == PDC_OK) {
pdc_type = PDC_TYPE_PAT;
printk("64 bit PAT.\n");
return;
}
#endif
/* Check the CPU's bus ID. There's probably a better test. */
status = pdc_model_info(&model);
bus_id = (model.hversion >> (4 + 7)) & 0x1f;
switch (bus_id) {
case 0x4: /* 720, 730, 750, 735, 755 */
case 0x6: /* 705, 710 */
case 0x7: /* 715, 725 */
case 0x8: /* 745, 747, 742 */
case 0xA: /* 712 and similiar */
case 0xC: /* 715/64, at least */
pdc_type = PDC_TYPE_SNAKE;
printk("Snake.\n");
return;
default: /* Everything else */
printk("Unsupported.\n");
panic("If this is a 64-bit machine, please try a 64-bit kernel.\n");
}
}
#define PDC_PAGE_ADJ_SHIFT (PAGE_SHIFT - 12) /* pdc pages are always 4k */
static void __init
set_pmem_entry(physmem_range_t *pmem_ptr, unsigned long start,
unsigned long pages4k)
{
/* Rather than aligning and potentially throwing away
* memory, we'll assume that any ranges are already
* nicely aligned with any reasonable page size, and
* panic if they are not (it's more likely that the
* pdc info is bad in this case).
*/
if (unlikely( ((start & (PAGE_SIZE - 1)) != 0)
|| ((pages4k & ((1UL << PDC_PAGE_ADJ_SHIFT) - 1)) != 0) )) {
panic("Memory range doesn't align with page size!\n");
}
pmem_ptr->start_pfn = (start >> PAGE_SHIFT);
pmem_ptr->pages = (pages4k >> PDC_PAGE_ADJ_SHIFT);
}
static void __init pagezero_memconfig(void)
{
unsigned long npages;
/* Use the 32 bit information from page zero to create a single
* entry in the pmem_ranges[] table.
*
* We currently don't support machines with contiguous memory
* >= 4 Gb, who report that memory using 64 bit only fields
* on page zero. It's not worth doing until it can be tested,
* and it is not clear we can support those machines for other
* reasons.
*
* If that support is done in the future, this is where it
* should be done.
*/
npages = (PAGE_ALIGN(PAGE0->imm_max_mem) >> PAGE_SHIFT);
set_pmem_entry(pmem_ranges,0UL,npages);
npmem_ranges = 1;
}
#ifdef __LP64__
/* All of the PDC PAT specific code is 64-bit only */
/*
** The module object is filled via PDC_PAT_CELL[Return Cell Module].
** If a module is found, register module will get the IODC bytes via
** pdc_iodc_read() using the PA view of conf_base_addr for the hpa parameter.
**
** The IO view can be used by PDC_PAT_CELL[Return Cell Module]
** only for SBAs and LBAs. This view will cause an invalid
** argument error for all other cell module types.
**
*/
static int __init
pat_query_module(ulong pcell_loc, ulong mod_index)
{
pdc_pat_cell_mod_maddr_block_t pa_pdc_cell;
unsigned long bytecnt;
unsigned long temp; /* 64-bit scratch value */
long status; /* PDC return value status */
struct parisc_device *dev;
/* return cell module (PA or Processor view) */
status = pdc_pat_cell_module(&bytecnt, pcell_loc, mod_index,
PA_VIEW, &pa_pdc_cell);
if (status != PDC_OK) {
/* no more cell modules or error */
return status;
}
temp = pa_pdc_cell.cba;
dev = alloc_pa_dev(PAT_GET_CBA(temp), &pa_pdc_cell.mod_path);
if (!dev) {
return PDC_OK;
}
/* alloc_pa_dev sets dev->hpa */
/*
** save parameters in the parisc_device
** (The idea being the device driver will call pdc_pat_cell_module()
** and store the results in its own data structure.)
*/
dev->pcell_loc = pcell_loc;
dev->mod_index = mod_index;
/* save generic info returned from the call */
/* REVISIT: who is the consumer of this? not sure yet... */
dev->mod_info = pa_pdc_cell.mod_info; /* pass to PAT_GET_ENTITY() */
dev->pmod_loc = pa_pdc_cell.mod_location;
register_parisc_device(dev); /* advertise device */
#ifdef DEBUG_PAT
pdc_pat_cell_mod_maddr_block_t io_pdc_cell;
/* dump what we see so far... */
switch (PAT_GET_ENTITY(dev->mod_info)) {
unsigned long i;
case PAT_ENTITY_PROC:
printk(KERN_DEBUG "PAT_ENTITY_PROC: id_eid 0x%lx\n",
pa_pdc_cell.mod[0]);
break;
case PAT_ENTITY_MEM:
printk(KERN_DEBUG
"PAT_ENTITY_MEM: amount 0x%lx min_gni_base 0x%lx min_gni_len 0x%lx\n",
pa_pdc_cell.mod[0], pa_pdc_cell.mod[1],
pa_pdc_cell.mod[2]);
break;
case PAT_ENTITY_CA:
printk(KERN_DEBUG "PAT_ENTITY_CA: %ld\n", pcell_loc);
break;
case PAT_ENTITY_PBC:
printk(KERN_DEBUG "PAT_ENTITY_PBC: ");
goto print_ranges;
case PAT_ENTITY_SBA:
printk(KERN_DEBUG "PAT_ENTITY_SBA: ");
goto print_ranges;
case PAT_ENTITY_LBA:
printk(KERN_DEBUG "PAT_ENTITY_LBA: ");
print_ranges:
pdc_pat_cell_module(&bytecnt, pcell_loc, mod_index,
IO_VIEW, &io_pdc_cell);
printk(KERN_DEBUG "ranges %ld\n", pa_pdc_cell.mod[1]);
for (i = 0; i < pa_pdc_cell.mod[1]; i++) {
printk(KERN_DEBUG
" PA_VIEW %ld: 0x%016lx 0x%016lx 0x%016lx\n",
i, pa_pdc_cell.mod[2 + i * 3], /* type */
pa_pdc_cell.mod[3 + i * 3], /* start */
pa_pdc_cell.mod[4 + i * 3]); /* finish (ie end) */
printk(KERN_DEBUG
" IO_VIEW %ld: 0x%016lx 0x%016lx 0x%016lx\n",
i, io_pdc_cell.mod[2 + i * 3], /* type */
io_pdc_cell.mod[3 + i * 3], /* start */
io_pdc_cell.mod[4 + i * 3]); /* finish (ie end) */
}
printk(KERN_DEBUG "\n");
break;
}
#endif /* DEBUG_PAT */
return PDC_OK;
}
/* pat pdc can return information about a variety of different
* types of memory (e.g. firmware,i/o, etc) but we only care about
* the usable physical ram right now. Since the firmware specific
* information is allocated on the stack, we'll be generous, in
* case there is a lot of other information we don't care about.
*/
#define PAT_MAX_RANGES (4 * MAX_PHYSMEM_RANGES)
static void __init pat_memconfig(void)
{
unsigned long actual_len;
struct pdc_pat_pd_addr_map_entry mem_table[PAT_MAX_RANGES+1];
struct pdc_pat_pd_addr_map_entry *mtbl_ptr;
physmem_range_t *pmem_ptr;
long status;
int entries;
unsigned long length;
int i;
length = (PAT_MAX_RANGES + 1) * sizeof(struct pdc_pat_pd_addr_map_entry);
status = pdc_pat_pd_get_addr_map(&actual_len, mem_table, length, 0L);
if ((status != PDC_OK)
|| ((actual_len % sizeof(struct pdc_pat_pd_addr_map_entry)) != 0)) {
/* The above pdc call shouldn't fail, but, just in
* case, just use the PAGE0 info.
*/
printk("\n\n\n");
printk(KERN_WARNING "WARNING! Could not get full memory configuration. "
"All memory may not be used!\n\n\n");
pagezero_memconfig();
return;
}
entries = actual_len / sizeof(struct pdc_pat_pd_addr_map_entry);
if (entries > PAT_MAX_RANGES) {
printk(KERN_WARNING "This Machine has more memory ranges than we support!\n");
printk(KERN_WARNING "Some memory may not be used!\n");
}
/* Copy information into the firmware independent pmem_ranges
* array, skipping types we don't care about. Notice we said
* "may" above. We'll use all the entries that were returned.
*/
npmem_ranges = 0;
mtbl_ptr = mem_table;
pmem_ptr = pmem_ranges; /* Global firmware independent table */
for (i = 0; i < entries; i++,mtbl_ptr++) {
if ( (mtbl_ptr->entry_type != PAT_MEMORY_DESCRIPTOR)
|| (mtbl_ptr->memory_type != PAT_MEMTYPE_MEMORY)
|| (mtbl_ptr->pages == 0)
|| ( (mtbl_ptr->memory_usage != PAT_MEMUSE_GENERAL)
&& (mtbl_ptr->memory_usage != PAT_MEMUSE_GI)
&& (mtbl_ptr->memory_usage != PAT_MEMUSE_GNI) ) ) {
continue;
}
if (npmem_ranges == MAX_PHYSMEM_RANGES) {
printk(KERN_WARNING "This Machine has more memory ranges than we support!\n");
printk(KERN_WARNING "Some memory will not be used!\n");
break;
}
set_pmem_entry(pmem_ptr++,mtbl_ptr->paddr,mtbl_ptr->pages);
npmem_ranges++;
}
}
static int __init pat_inventory(void)
{
int status;
ulong mod_index = 0;
struct pdc_pat_cell_num cell_info;
/*
** Note: Prelude (and it's successors: Lclass, A400/500) only
** implement PDC_PAT_CELL sub-options 0 and 2.
*/
status = pdc_pat_cell_get_number(&cell_info);
if (status != PDC_OK) {
return 0;
}
#ifdef DEBUG_PAT
printk(KERN_DEBUG "CELL_GET_NUMBER: 0x%lx 0x%lx\n", cell_info.cell_num,
cell_info.cell_loc);
#endif
while (PDC_OK == pat_query_module(cell_info.cell_loc, mod_index)) {
mod_index++;
}
return mod_index;
}
/* We only look for extended memory ranges on a 64 bit capable box */
static void __init sprockets_memconfig(void)
{
struct pdc_memory_table_raddr r_addr;
struct pdc_memory_table mem_table[MAX_PHYSMEM_RANGES];
struct pdc_memory_table *mtbl_ptr;
physmem_range_t *pmem_ptr;
long status;
int entries;
int i;
status = pdc_mem_mem_table(&r_addr,mem_table,
(unsigned long)MAX_PHYSMEM_RANGES);
if (status != PDC_OK) {
/* The above pdc call only works on boxes with sprockets
* firmware (newer B,C,J class). Other non PAT PDC machines
* do support more than 3.75 Gb of memory, but we don't
* support them yet.
*/
pagezero_memconfig();
return;
}
if (r_addr.entries_total > MAX_PHYSMEM_RANGES) {
printk(KERN_WARNING "This Machine has more memory ranges than we support!\n");
printk(KERN_WARNING "Some memory will not be used!\n");
}
entries = (int)r_addr.entries_returned;
npmem_ranges = 0;
mtbl_ptr = mem_table;
pmem_ptr = pmem_ranges; /* Global firmware independent table */
for (i = 0; i < entries; i++,mtbl_ptr++) {
set_pmem_entry(pmem_ptr++,mtbl_ptr->paddr,mtbl_ptr->pages);
npmem_ranges++;
}
}
#else /* !__LP64__ */
#define pat_inventory() do { } while (0)
#define pat_memconfig() do { } while (0)
#define sprockets_memconfig() pagezero_memconfig()
#endif /* !__LP64__ */
#ifndef CONFIG_PA20
/* Code to support Snake machines (7[2350], 7[235]5, 715/Scorpio) */
static struct parisc_device * __init
legacy_create_device(struct pdc_memory_map *r_addr,
struct pdc_module_path *module_path)
{
struct parisc_device *dev;
int status = pdc_mem_map_hpa(r_addr, module_path);
if (status != PDC_OK)
return NULL;
dev = alloc_pa_dev(r_addr->hpa, &module_path->path);
if (dev == NULL)
return NULL;
register_parisc_device(dev);
return dev;
}
/**
* snake_inventory
*
* Before PDC_SYSTEM_MAP was invented, the PDC_MEM_MAP call was used.
* To use it, we initialise the mod_path.bc to 0xff and try all values of
* mod to get the HPA for the top-level devices. Bus adapters may have
* sub-devices which are discovered by setting bc[5] to 0 and bc[4] to the
* module, then trying all possible functions.
*/
static void __init snake_inventory(void)
{
int mod;
for (mod = 0; mod < 16; mod++) {
struct parisc_device *dev;
struct pdc_module_path module_path;
struct pdc_memory_map r_addr;
unsigned int func;
memset(module_path.path.bc, 0xff, 6);
module_path.path.mod = mod;
dev = legacy_create_device(&r_addr, &module_path);
if ((!dev) || (dev->id.hw_type != HPHW_BA))
continue;
memset(module_path.path.bc, 0xff, 4);
module_path.path.bc[4] = mod;
for (func = 0; func < 16; func++) {
module_path.path.bc[5] = 0;
module_path.path.mod = func;
legacy_create_device(&r_addr, &module_path);
}
}
}
#else /* CONFIG_PA20 */
#define snake_inventory() do { } while (0)
#endif /* CONFIG_PA20 */
/* Common 32/64 bit based code goes here */
/**
* add_system_map_addresses - Add additional addresses to the parisc device.
* @dev: The parisc device.
* @num_addrs: Then number of addresses to add;
* @module_instance: The system_map module instance.
*
* This function adds any additional addresses reported by the system_map
* firmware to the parisc device.
*/
static void __init
add_system_map_addresses(struct parisc_device *dev, int num_addrs,
int module_instance)
{
int i;
long status;
struct pdc_system_map_addr_info addr_result;
dev->addr = kmalloc(num_addrs * sizeof(unsigned long), GFP_KERNEL);
if(!dev->addr) {
printk(KERN_ERR "%s %s(): memory allocation failure\n",
__FILE__, __FUNCTION__);
return;
}
for(i = 1; i <= num_addrs; ++i) {
status = pdc_system_map_find_addrs(&addr_result,
module_instance, i);
if(PDC_OK == status) {
dev->addr[dev->num_addrs] = (unsigned long)addr_result.mod_addr;
dev->num_addrs++;
} else {
printk(KERN_WARNING
"Bad PDC_FIND_ADDRESS status return (%ld) for index %d\n",
status, i);
}
}
}
/**
* system_map_inventory - Retrieve firmware devices via SYSTEM_MAP.
*
* This function attempts to retrieve and register all the devices firmware
* knows about via the SYSTEM_MAP PDC call.
*/
static void __init system_map_inventory(void)
{
int i;
long status = PDC_OK;
for (i = 0; i < 256; i++) {
struct parisc_device *dev;
struct pdc_system_map_mod_info module_result;
struct pdc_module_path module_path;
status = pdc_system_map_find_mods(&module_result,
&module_path, i);
if ((status == PDC_BAD_PROC) || (status == PDC_NE_MOD))
break;
if (status != PDC_OK)
continue;
dev = alloc_pa_dev(module_result.mod_addr, &module_path.path);
if (!dev)
continue;
register_parisc_device(dev);
/* if available, get the additional addresses for a module */
if (!module_result.add_addrs)
continue;
add_system_map_addresses(dev, module_result.add_addrs, i);
}
walk_central_bus();
return;
}
void __init do_memory_inventory(void)
{
switch (pdc_type) {
case PDC_TYPE_PAT:
pat_memconfig();
break;
case PDC_TYPE_SYSTEM_MAP:
sprockets_memconfig();
break;
case PDC_TYPE_SNAKE:
pagezero_memconfig();
return;
default:
panic("Unknown PDC type!\n");
}
if (npmem_ranges == 0 || pmem_ranges[0].start_pfn != 0) {
printk(KERN_WARNING "Bad memory configuration returned!\n");
printk(KERN_WARNING "Some memory may not be used!\n");
pagezero_memconfig();
}
}
void __init do_device_inventory(void)
{
printk(KERN_INFO "Searching for devices...\n");
init_parisc_bus();
switch (pdc_type) {
case PDC_TYPE_PAT:
pat_inventory();
break;
case PDC_TYPE_SYSTEM_MAP:
system_map_inventory();
break;
case PDC_TYPE_SNAKE:
snake_inventory();
break;
default:
panic("Unknown PDC type!\n");
}
printk(KERN_INFO "Found devices:\n");
print_parisc_devices();
}