1
linux/arch/x86/mm/numa_64.c

643 lines
17 KiB
C
Raw Normal View History

/*
* Generic VM initialization for x86-64 NUMA setups.
* Copyright 2002,2003 Andi Kleen, SuSE Labs.
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mmzone.h>
#include <linux/ctype.h>
#include <linux/module.h>
#include <linux/nodemask.h>
#include <linux/sched.h>
#include <asm/e820.h>
#include <asm/proto.h>
#include <asm/dma.h>
#include <asm/numa.h>
#include <asm/acpi.h>
#include <asm/k8.h>
struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
EXPORT_SYMBOL(node_data);
struct memnode memnode;
s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
};
int numa_off __initdata;
static unsigned long __initdata nodemap_addr;
static unsigned long __initdata nodemap_size;
/*
* Given a shift value, try to populate memnodemap[]
* Returns :
* 1 if OK
* 0 if memnodmap[] too small (of shift too small)
* -1 if node overlap or lost ram (shift too big)
*/
static int __init populate_memnodemap(const struct bootnode *nodes,
int numnodes, int shift, int *nodeids)
{
unsigned long addr, end;
int i, res = -1;
memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
for (i = 0; i < numnodes; i++) {
addr = nodes[i].start;
end = nodes[i].end;
if (addr >= end)
continue;
if ((end >> shift) >= memnodemapsize)
return 0;
do {
if (memnodemap[addr >> shift] != NUMA_NO_NODE)
return -1;
if (!nodeids)
memnodemap[addr >> shift] = i;
else
memnodemap[addr >> shift] = nodeids[i];
addr += (1UL << shift);
} while (addr < end);
res = 1;
}
return res;
}
static int __init allocate_cachealigned_memnodemap(void)
{
x86_64: make bootmap_start page align v6 boot oopses when a system has 64 or 128 GB of RAM installed: Calling initcall 0xffffffff80bc33b6: sctp_init+0x0/0x711() BUG: unable to handle kernel NULL pointer dereference at 000000000000005f IP: [<ffffffff802bfe55>] proc_register+0xe7/0x10f PGD 0 Oops: 0000 [1] SMP CPU 0 Modules linked in: Pid: 1, comm: swapper Not tainted 2.6.24-smp-g5a514e21-dirty #6 RIP: 0010:[<ffffffff802bfe55>] [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP: 0000:ffff810824c57e60 EFLAGS: 00010246 RAX: 000000000000d7d7 RBX: ffff811024c5fa80 RCX: ffff810824c57e08 RDX: 0000000000000000 RSI: 0000000000000195 RDI: ffffffff80cc2460 RBP: ffffffffffffffff R08: 0000000000000000 R09: ffff811024c5fa80 R10: 0000000000000000 R11: 0000000000000002 R12: ffff810824c57e6c R13: 0000000000000000 R14: ffff810824c57ee0 R15: 00000006abd25bee FS: 0000000000000000(0000) GS:ffffffff80b4d000(0000) knlGS:0000000000000000 CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b CR2: 000000000000005f CR3: 0000000000201000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process swapper (pid: 1, threadinfo ffff810824c56000, task ffff812024c52000) Stack: ffffffff80a57348 0000019500000000 ffff811024c5fa80 0000000000000000 00000000ffffff97 ffffffff802bfef0 0000000000000000 ffffffffffffffff 0000000000000000 ffffffff80bc3b4b ffff810824c57ee0 ffffffff80bc34a5 Call Trace: [<ffffffff802bfef0>] ? create_proc_entry+0x73/0x8a [<ffffffff80bc3b4b>] ? sctp_snmp_proc_init+0x1c/0x34 [<ffffffff80bc34a5>] ? sctp_init+0xef/0x711 [<ffffffff80b976e3>] ? kernel_init+0x175/0x2e1 [<ffffffff8020ccf8>] ? child_rip+0xa/0x12 [<ffffffff80b9756e>] ? kernel_init+0x0/0x2e1 [<ffffffff8020ccee>] ? child_rip+0x0/0x12 Code: 1e 48 83 7b 38 00 75 08 48 c7 43 38 f0 e8 82 80 48 83 7b 30 00 75 08 48 c7 43 30 d0 e9 82 80 48 c7 c7 60 24 cc 80 e8 bd 5a 54 00 <48> 8b 45 60 48 89 6b 58 48 89 5d 60 48 89 43 50 fe 05 f5 25 a0 RIP [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP <ffff810824c57e60> CR2: 000000000000005f ---[ end trace 02c2d78def82877a ]--- Kernel panic - not syncing: Attempted to kill init! it turns out some variables near end of bss are corrupted already. in System.map we have ffffffff80d40420 b rsi_table ffffffff80d40620 B krb5_seq_lock ffffffff80d40628 b i.20437 ffffffff80d40630 b xprt_rdma_inline_write_padding ffffffff80d40638 b sunrpc_table_header ffffffff80d40640 b zero ffffffff80d40644 b min_memreg ffffffff80d40648 b rpcrdma_tk_lock_g ffffffff80d40650 B sctp_assocs_id_lock ffffffff80d40658 B proc_net_sctp ffffffff80d40660 B sctp_assocs_id ffffffff80d40680 B sysctl_sctp_mem ffffffff80d40690 B sysctl_sctp_rmem ffffffff80d406a0 B sysctl_sctp_wmem ffffffff80d406b0 b sctp_ctl_socket ffffffff80d406b8 b sctp_pf_inet6_specific ffffffff80d406c0 b sctp_pf_inet_specific ffffffff80d406c8 b sctp_af_v4_specific ffffffff80d406d0 b sctp_af_v6_specific ffffffff80d406d8 b sctp_rand.33270 ffffffff80d406dc b sctp_memory_pressure ffffffff80d406e0 b sctp_sockets_allocated ffffffff80d406e4 b sctp_memory_allocated ffffffff80d406e8 b sctp_sysctl_header ffffffff80d406f0 b zero ffffffff80d406f4 A __bss_stop ffffffff80d406f4 A _end and setup_node_bootmem() will use that page 0xd40000 for bootmap Bootmem setup node 0 0000000000000000-0000000828000000 NODE_DATA [000000000008a485 - 0000000000091484] bootmap [0000000000d406f4 - 0000000000e456f3] pages 105 Bootmem setup node 1 0000000828000000-0000001028000000 NODE_DATA [0000000828000000 - 0000000828006fff] bootmap [0000000828007000 - 0000000828106fff] pages 100 Bootmem setup node 2 0000001028000000-0000001828000000 NODE_DATA [0000001028000000 - 0000001028006fff] bootmap [0000001028007000 - 0000001028106fff] pages 100 Bootmem setup node 3 0000001828000000-0000002028000000 NODE_DATA [0000001828000000 - 0000001828006fff] bootmap [0000001828007000 - 0000001828106fff] pages 100 setup_node_bootmem() makes NODE_DATA cacheline aligned, and bootmap is page-aligned. the patch updates find_e820_area() to make sure we can meet the alignment constraints. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-01 09:49:41 -07:00
unsigned long addr;
memnodemap = memnode.embedded_map;
if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
return 0;
x86_64: make bootmap_start page align v6 boot oopses when a system has 64 or 128 GB of RAM installed: Calling initcall 0xffffffff80bc33b6: sctp_init+0x0/0x711() BUG: unable to handle kernel NULL pointer dereference at 000000000000005f IP: [<ffffffff802bfe55>] proc_register+0xe7/0x10f PGD 0 Oops: 0000 [1] SMP CPU 0 Modules linked in: Pid: 1, comm: swapper Not tainted 2.6.24-smp-g5a514e21-dirty #6 RIP: 0010:[<ffffffff802bfe55>] [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP: 0000:ffff810824c57e60 EFLAGS: 00010246 RAX: 000000000000d7d7 RBX: ffff811024c5fa80 RCX: ffff810824c57e08 RDX: 0000000000000000 RSI: 0000000000000195 RDI: ffffffff80cc2460 RBP: ffffffffffffffff R08: 0000000000000000 R09: ffff811024c5fa80 R10: 0000000000000000 R11: 0000000000000002 R12: ffff810824c57e6c R13: 0000000000000000 R14: ffff810824c57ee0 R15: 00000006abd25bee FS: 0000000000000000(0000) GS:ffffffff80b4d000(0000) knlGS:0000000000000000 CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b CR2: 000000000000005f CR3: 0000000000201000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process swapper (pid: 1, threadinfo ffff810824c56000, task ffff812024c52000) Stack: ffffffff80a57348 0000019500000000 ffff811024c5fa80 0000000000000000 00000000ffffff97 ffffffff802bfef0 0000000000000000 ffffffffffffffff 0000000000000000 ffffffff80bc3b4b ffff810824c57ee0 ffffffff80bc34a5 Call Trace: [<ffffffff802bfef0>] ? create_proc_entry+0x73/0x8a [<ffffffff80bc3b4b>] ? sctp_snmp_proc_init+0x1c/0x34 [<ffffffff80bc34a5>] ? sctp_init+0xef/0x711 [<ffffffff80b976e3>] ? kernel_init+0x175/0x2e1 [<ffffffff8020ccf8>] ? child_rip+0xa/0x12 [<ffffffff80b9756e>] ? kernel_init+0x0/0x2e1 [<ffffffff8020ccee>] ? child_rip+0x0/0x12 Code: 1e 48 83 7b 38 00 75 08 48 c7 43 38 f0 e8 82 80 48 83 7b 30 00 75 08 48 c7 43 30 d0 e9 82 80 48 c7 c7 60 24 cc 80 e8 bd 5a 54 00 <48> 8b 45 60 48 89 6b 58 48 89 5d 60 48 89 43 50 fe 05 f5 25 a0 RIP [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP <ffff810824c57e60> CR2: 000000000000005f ---[ end trace 02c2d78def82877a ]--- Kernel panic - not syncing: Attempted to kill init! it turns out some variables near end of bss are corrupted already. in System.map we have ffffffff80d40420 b rsi_table ffffffff80d40620 B krb5_seq_lock ffffffff80d40628 b i.20437 ffffffff80d40630 b xprt_rdma_inline_write_padding ffffffff80d40638 b sunrpc_table_header ffffffff80d40640 b zero ffffffff80d40644 b min_memreg ffffffff80d40648 b rpcrdma_tk_lock_g ffffffff80d40650 B sctp_assocs_id_lock ffffffff80d40658 B proc_net_sctp ffffffff80d40660 B sctp_assocs_id ffffffff80d40680 B sysctl_sctp_mem ffffffff80d40690 B sysctl_sctp_rmem ffffffff80d406a0 B sysctl_sctp_wmem ffffffff80d406b0 b sctp_ctl_socket ffffffff80d406b8 b sctp_pf_inet6_specific ffffffff80d406c0 b sctp_pf_inet_specific ffffffff80d406c8 b sctp_af_v4_specific ffffffff80d406d0 b sctp_af_v6_specific ffffffff80d406d8 b sctp_rand.33270 ffffffff80d406dc b sctp_memory_pressure ffffffff80d406e0 b sctp_sockets_allocated ffffffff80d406e4 b sctp_memory_allocated ffffffff80d406e8 b sctp_sysctl_header ffffffff80d406f0 b zero ffffffff80d406f4 A __bss_stop ffffffff80d406f4 A _end and setup_node_bootmem() will use that page 0xd40000 for bootmap Bootmem setup node 0 0000000000000000-0000000828000000 NODE_DATA [000000000008a485 - 0000000000091484] bootmap [0000000000d406f4 - 0000000000e456f3] pages 105 Bootmem setup node 1 0000000828000000-0000001028000000 NODE_DATA [0000000828000000 - 0000000828006fff] bootmap [0000000828007000 - 0000000828106fff] pages 100 Bootmem setup node 2 0000001028000000-0000001828000000 NODE_DATA [0000001028000000 - 0000001028006fff] bootmap [0000001028007000 - 0000001028106fff] pages 100 Bootmem setup node 3 0000001828000000-0000002028000000 NODE_DATA [0000001828000000 - 0000001828006fff] bootmap [0000001828007000 - 0000001828106fff] pages 100 setup_node_bootmem() makes NODE_DATA cacheline aligned, and bootmap is page-aligned. the patch updates find_e820_area() to make sure we can meet the alignment constraints. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-01 09:49:41 -07:00
addr = 0x8000;
nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
nodemap_addr = find_e820_area(addr, max_pfn<<PAGE_SHIFT,
x86_64: make bootmap_start page align v6 boot oopses when a system has 64 or 128 GB of RAM installed: Calling initcall 0xffffffff80bc33b6: sctp_init+0x0/0x711() BUG: unable to handle kernel NULL pointer dereference at 000000000000005f IP: [<ffffffff802bfe55>] proc_register+0xe7/0x10f PGD 0 Oops: 0000 [1] SMP CPU 0 Modules linked in: Pid: 1, comm: swapper Not tainted 2.6.24-smp-g5a514e21-dirty #6 RIP: 0010:[<ffffffff802bfe55>] [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP: 0000:ffff810824c57e60 EFLAGS: 00010246 RAX: 000000000000d7d7 RBX: ffff811024c5fa80 RCX: ffff810824c57e08 RDX: 0000000000000000 RSI: 0000000000000195 RDI: ffffffff80cc2460 RBP: ffffffffffffffff R08: 0000000000000000 R09: ffff811024c5fa80 R10: 0000000000000000 R11: 0000000000000002 R12: ffff810824c57e6c R13: 0000000000000000 R14: ffff810824c57ee0 R15: 00000006abd25bee FS: 0000000000000000(0000) GS:ffffffff80b4d000(0000) knlGS:0000000000000000 CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b CR2: 000000000000005f CR3: 0000000000201000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process swapper (pid: 1, threadinfo ffff810824c56000, task ffff812024c52000) Stack: ffffffff80a57348 0000019500000000 ffff811024c5fa80 0000000000000000 00000000ffffff97 ffffffff802bfef0 0000000000000000 ffffffffffffffff 0000000000000000 ffffffff80bc3b4b ffff810824c57ee0 ffffffff80bc34a5 Call Trace: [<ffffffff802bfef0>] ? create_proc_entry+0x73/0x8a [<ffffffff80bc3b4b>] ? sctp_snmp_proc_init+0x1c/0x34 [<ffffffff80bc34a5>] ? sctp_init+0xef/0x711 [<ffffffff80b976e3>] ? kernel_init+0x175/0x2e1 [<ffffffff8020ccf8>] ? child_rip+0xa/0x12 [<ffffffff80b9756e>] ? kernel_init+0x0/0x2e1 [<ffffffff8020ccee>] ? child_rip+0x0/0x12 Code: 1e 48 83 7b 38 00 75 08 48 c7 43 38 f0 e8 82 80 48 83 7b 30 00 75 08 48 c7 43 30 d0 e9 82 80 48 c7 c7 60 24 cc 80 e8 bd 5a 54 00 <48> 8b 45 60 48 89 6b 58 48 89 5d 60 48 89 43 50 fe 05 f5 25 a0 RIP [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP <ffff810824c57e60> CR2: 000000000000005f ---[ end trace 02c2d78def82877a ]--- Kernel panic - not syncing: Attempted to kill init! it turns out some variables near end of bss are corrupted already. in System.map we have ffffffff80d40420 b rsi_table ffffffff80d40620 B krb5_seq_lock ffffffff80d40628 b i.20437 ffffffff80d40630 b xprt_rdma_inline_write_padding ffffffff80d40638 b sunrpc_table_header ffffffff80d40640 b zero ffffffff80d40644 b min_memreg ffffffff80d40648 b rpcrdma_tk_lock_g ffffffff80d40650 B sctp_assocs_id_lock ffffffff80d40658 B proc_net_sctp ffffffff80d40660 B sctp_assocs_id ffffffff80d40680 B sysctl_sctp_mem ffffffff80d40690 B sysctl_sctp_rmem ffffffff80d406a0 B sysctl_sctp_wmem ffffffff80d406b0 b sctp_ctl_socket ffffffff80d406b8 b sctp_pf_inet6_specific ffffffff80d406c0 b sctp_pf_inet_specific ffffffff80d406c8 b sctp_af_v4_specific ffffffff80d406d0 b sctp_af_v6_specific ffffffff80d406d8 b sctp_rand.33270 ffffffff80d406dc b sctp_memory_pressure ffffffff80d406e0 b sctp_sockets_allocated ffffffff80d406e4 b sctp_memory_allocated ffffffff80d406e8 b sctp_sysctl_header ffffffff80d406f0 b zero ffffffff80d406f4 A __bss_stop ffffffff80d406f4 A _end and setup_node_bootmem() will use that page 0xd40000 for bootmap Bootmem setup node 0 0000000000000000-0000000828000000 NODE_DATA [000000000008a485 - 0000000000091484] bootmap [0000000000d406f4 - 0000000000e456f3] pages 105 Bootmem setup node 1 0000000828000000-0000001028000000 NODE_DATA [0000000828000000 - 0000000828006fff] bootmap [0000000828007000 - 0000000828106fff] pages 100 Bootmem setup node 2 0000001028000000-0000001828000000 NODE_DATA [0000001028000000 - 0000001028006fff] bootmap [0000001028007000 - 0000001028106fff] pages 100 Bootmem setup node 3 0000001828000000-0000002028000000 NODE_DATA [0000001828000000 - 0000001828006fff] bootmap [0000001828007000 - 0000001828106fff] pages 100 setup_node_bootmem() makes NODE_DATA cacheline aligned, and bootmap is page-aligned. the patch updates find_e820_area() to make sure we can meet the alignment constraints. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-01 09:49:41 -07:00
nodemap_size, L1_CACHE_BYTES);
if (nodemap_addr == -1UL) {
printk(KERN_ERR
"NUMA: Unable to allocate Memory to Node hash map\n");
nodemap_addr = nodemap_size = 0;
return -1;
}
x86_64: make bootmap_start page align v6 boot oopses when a system has 64 or 128 GB of RAM installed: Calling initcall 0xffffffff80bc33b6: sctp_init+0x0/0x711() BUG: unable to handle kernel NULL pointer dereference at 000000000000005f IP: [<ffffffff802bfe55>] proc_register+0xe7/0x10f PGD 0 Oops: 0000 [1] SMP CPU 0 Modules linked in: Pid: 1, comm: swapper Not tainted 2.6.24-smp-g5a514e21-dirty #6 RIP: 0010:[<ffffffff802bfe55>] [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP: 0000:ffff810824c57e60 EFLAGS: 00010246 RAX: 000000000000d7d7 RBX: ffff811024c5fa80 RCX: ffff810824c57e08 RDX: 0000000000000000 RSI: 0000000000000195 RDI: ffffffff80cc2460 RBP: ffffffffffffffff R08: 0000000000000000 R09: ffff811024c5fa80 R10: 0000000000000000 R11: 0000000000000002 R12: ffff810824c57e6c R13: 0000000000000000 R14: ffff810824c57ee0 R15: 00000006abd25bee FS: 0000000000000000(0000) GS:ffffffff80b4d000(0000) knlGS:0000000000000000 CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b CR2: 000000000000005f CR3: 0000000000201000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process swapper (pid: 1, threadinfo ffff810824c56000, task ffff812024c52000) Stack: ffffffff80a57348 0000019500000000 ffff811024c5fa80 0000000000000000 00000000ffffff97 ffffffff802bfef0 0000000000000000 ffffffffffffffff 0000000000000000 ffffffff80bc3b4b ffff810824c57ee0 ffffffff80bc34a5 Call Trace: [<ffffffff802bfef0>] ? create_proc_entry+0x73/0x8a [<ffffffff80bc3b4b>] ? sctp_snmp_proc_init+0x1c/0x34 [<ffffffff80bc34a5>] ? sctp_init+0xef/0x711 [<ffffffff80b976e3>] ? kernel_init+0x175/0x2e1 [<ffffffff8020ccf8>] ? child_rip+0xa/0x12 [<ffffffff80b9756e>] ? kernel_init+0x0/0x2e1 [<ffffffff8020ccee>] ? child_rip+0x0/0x12 Code: 1e 48 83 7b 38 00 75 08 48 c7 43 38 f0 e8 82 80 48 83 7b 30 00 75 08 48 c7 43 30 d0 e9 82 80 48 c7 c7 60 24 cc 80 e8 bd 5a 54 00 <48> 8b 45 60 48 89 6b 58 48 89 5d 60 48 89 43 50 fe 05 f5 25 a0 RIP [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP <ffff810824c57e60> CR2: 000000000000005f ---[ end trace 02c2d78def82877a ]--- Kernel panic - not syncing: Attempted to kill init! it turns out some variables near end of bss are corrupted already. in System.map we have ffffffff80d40420 b rsi_table ffffffff80d40620 B krb5_seq_lock ffffffff80d40628 b i.20437 ffffffff80d40630 b xprt_rdma_inline_write_padding ffffffff80d40638 b sunrpc_table_header ffffffff80d40640 b zero ffffffff80d40644 b min_memreg ffffffff80d40648 b rpcrdma_tk_lock_g ffffffff80d40650 B sctp_assocs_id_lock ffffffff80d40658 B proc_net_sctp ffffffff80d40660 B sctp_assocs_id ffffffff80d40680 B sysctl_sctp_mem ffffffff80d40690 B sysctl_sctp_rmem ffffffff80d406a0 B sysctl_sctp_wmem ffffffff80d406b0 b sctp_ctl_socket ffffffff80d406b8 b sctp_pf_inet6_specific ffffffff80d406c0 b sctp_pf_inet_specific ffffffff80d406c8 b sctp_af_v4_specific ffffffff80d406d0 b sctp_af_v6_specific ffffffff80d406d8 b sctp_rand.33270 ffffffff80d406dc b sctp_memory_pressure ffffffff80d406e0 b sctp_sockets_allocated ffffffff80d406e4 b sctp_memory_allocated ffffffff80d406e8 b sctp_sysctl_header ffffffff80d406f0 b zero ffffffff80d406f4 A __bss_stop ffffffff80d406f4 A _end and setup_node_bootmem() will use that page 0xd40000 for bootmap Bootmem setup node 0 0000000000000000-0000000828000000 NODE_DATA [000000000008a485 - 0000000000091484] bootmap [0000000000d406f4 - 0000000000e456f3] pages 105 Bootmem setup node 1 0000000828000000-0000001028000000 NODE_DATA [0000000828000000 - 0000000828006fff] bootmap [0000000828007000 - 0000000828106fff] pages 100 Bootmem setup node 2 0000001028000000-0000001828000000 NODE_DATA [0000001028000000 - 0000001028006fff] bootmap [0000001028007000 - 0000001028106fff] pages 100 Bootmem setup node 3 0000001828000000-0000002028000000 NODE_DATA [0000001828000000 - 0000001828006fff] bootmap [0000001828007000 - 0000001828106fff] pages 100 setup_node_bootmem() makes NODE_DATA cacheline aligned, and bootmap is page-aligned. the patch updates find_e820_area() to make sure we can meet the alignment constraints. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-01 09:49:41 -07:00
memnodemap = phys_to_virt(nodemap_addr);
reserve_early(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
nodemap_addr, nodemap_addr + nodemap_size);
return 0;
}
/*
* The LSB of all start and end addresses in the node map is the value of the
* maximum possible shift.
*/
static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
int numnodes)
{
int i, nodes_used = 0;
unsigned long start, end;
unsigned long bitfield = 0, memtop = 0;
for (i = 0; i < numnodes; i++) {
start = nodes[i].start;
end = nodes[i].end;
if (start >= end)
continue;
bitfield |= start;
nodes_used++;
if (end > memtop)
memtop = end;
}
if (nodes_used <= 1)
i = 63;
else
i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
memnodemapsize = (memtop >> i)+1;
return i;
}
int __init compute_hash_shift(struct bootnode *nodes, int numnodes,
int *nodeids)
{
int shift;
shift = extract_lsb_from_nodes(nodes, numnodes);
if (allocate_cachealigned_memnodemap())
return -1;
printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
shift);
if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) {
printk(KERN_INFO "Your memory is not aligned you need to "
"rebuild your kernel with a bigger NODEMAPSIZE "
"shift=%d\n", shift);
return -1;
}
return shift;
}
int early_pfn_to_nid(unsigned long pfn)
{
return phys_to_nid(pfn << PAGE_SHIFT);
}
static void * __init early_node_mem(int nodeid, unsigned long start,
x86_64: make bootmap_start page align v6 boot oopses when a system has 64 or 128 GB of RAM installed: Calling initcall 0xffffffff80bc33b6: sctp_init+0x0/0x711() BUG: unable to handle kernel NULL pointer dereference at 000000000000005f IP: [<ffffffff802bfe55>] proc_register+0xe7/0x10f PGD 0 Oops: 0000 [1] SMP CPU 0 Modules linked in: Pid: 1, comm: swapper Not tainted 2.6.24-smp-g5a514e21-dirty #6 RIP: 0010:[<ffffffff802bfe55>] [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP: 0000:ffff810824c57e60 EFLAGS: 00010246 RAX: 000000000000d7d7 RBX: ffff811024c5fa80 RCX: ffff810824c57e08 RDX: 0000000000000000 RSI: 0000000000000195 RDI: ffffffff80cc2460 RBP: ffffffffffffffff R08: 0000000000000000 R09: ffff811024c5fa80 R10: 0000000000000000 R11: 0000000000000002 R12: ffff810824c57e6c R13: 0000000000000000 R14: ffff810824c57ee0 R15: 00000006abd25bee FS: 0000000000000000(0000) GS:ffffffff80b4d000(0000) knlGS:0000000000000000 CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b CR2: 000000000000005f CR3: 0000000000201000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process swapper (pid: 1, threadinfo ffff810824c56000, task ffff812024c52000) Stack: ffffffff80a57348 0000019500000000 ffff811024c5fa80 0000000000000000 00000000ffffff97 ffffffff802bfef0 0000000000000000 ffffffffffffffff 0000000000000000 ffffffff80bc3b4b ffff810824c57ee0 ffffffff80bc34a5 Call Trace: [<ffffffff802bfef0>] ? create_proc_entry+0x73/0x8a [<ffffffff80bc3b4b>] ? sctp_snmp_proc_init+0x1c/0x34 [<ffffffff80bc34a5>] ? sctp_init+0xef/0x711 [<ffffffff80b976e3>] ? kernel_init+0x175/0x2e1 [<ffffffff8020ccf8>] ? child_rip+0xa/0x12 [<ffffffff80b9756e>] ? kernel_init+0x0/0x2e1 [<ffffffff8020ccee>] ? child_rip+0x0/0x12 Code: 1e 48 83 7b 38 00 75 08 48 c7 43 38 f0 e8 82 80 48 83 7b 30 00 75 08 48 c7 43 30 d0 e9 82 80 48 c7 c7 60 24 cc 80 e8 bd 5a 54 00 <48> 8b 45 60 48 89 6b 58 48 89 5d 60 48 89 43 50 fe 05 f5 25 a0 RIP [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP <ffff810824c57e60> CR2: 000000000000005f ---[ end trace 02c2d78def82877a ]--- Kernel panic - not syncing: Attempted to kill init! it turns out some variables near end of bss are corrupted already. in System.map we have ffffffff80d40420 b rsi_table ffffffff80d40620 B krb5_seq_lock ffffffff80d40628 b i.20437 ffffffff80d40630 b xprt_rdma_inline_write_padding ffffffff80d40638 b sunrpc_table_header ffffffff80d40640 b zero ffffffff80d40644 b min_memreg ffffffff80d40648 b rpcrdma_tk_lock_g ffffffff80d40650 B sctp_assocs_id_lock ffffffff80d40658 B proc_net_sctp ffffffff80d40660 B sctp_assocs_id ffffffff80d40680 B sysctl_sctp_mem ffffffff80d40690 B sysctl_sctp_rmem ffffffff80d406a0 B sysctl_sctp_wmem ffffffff80d406b0 b sctp_ctl_socket ffffffff80d406b8 b sctp_pf_inet6_specific ffffffff80d406c0 b sctp_pf_inet_specific ffffffff80d406c8 b sctp_af_v4_specific ffffffff80d406d0 b sctp_af_v6_specific ffffffff80d406d8 b sctp_rand.33270 ffffffff80d406dc b sctp_memory_pressure ffffffff80d406e0 b sctp_sockets_allocated ffffffff80d406e4 b sctp_memory_allocated ffffffff80d406e8 b sctp_sysctl_header ffffffff80d406f0 b zero ffffffff80d406f4 A __bss_stop ffffffff80d406f4 A _end and setup_node_bootmem() will use that page 0xd40000 for bootmap Bootmem setup node 0 0000000000000000-0000000828000000 NODE_DATA [000000000008a485 - 0000000000091484] bootmap [0000000000d406f4 - 0000000000e456f3] pages 105 Bootmem setup node 1 0000000828000000-0000001028000000 NODE_DATA [0000000828000000 - 0000000828006fff] bootmap [0000000828007000 - 0000000828106fff] pages 100 Bootmem setup node 2 0000001028000000-0000001828000000 NODE_DATA [0000001028000000 - 0000001028006fff] bootmap [0000001028007000 - 0000001028106fff] pages 100 Bootmem setup node 3 0000001828000000-0000002028000000 NODE_DATA [0000001828000000 - 0000001828006fff] bootmap [0000001828007000 - 0000001828106fff] pages 100 setup_node_bootmem() makes NODE_DATA cacheline aligned, and bootmap is page-aligned. the patch updates find_e820_area() to make sure we can meet the alignment constraints. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-01 09:49:41 -07:00
unsigned long end, unsigned long size,
unsigned long align)
{
x86_64: make bootmap_start page align v6 boot oopses when a system has 64 or 128 GB of RAM installed: Calling initcall 0xffffffff80bc33b6: sctp_init+0x0/0x711() BUG: unable to handle kernel NULL pointer dereference at 000000000000005f IP: [<ffffffff802bfe55>] proc_register+0xe7/0x10f PGD 0 Oops: 0000 [1] SMP CPU 0 Modules linked in: Pid: 1, comm: swapper Not tainted 2.6.24-smp-g5a514e21-dirty #6 RIP: 0010:[<ffffffff802bfe55>] [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP: 0000:ffff810824c57e60 EFLAGS: 00010246 RAX: 000000000000d7d7 RBX: ffff811024c5fa80 RCX: ffff810824c57e08 RDX: 0000000000000000 RSI: 0000000000000195 RDI: ffffffff80cc2460 RBP: ffffffffffffffff R08: 0000000000000000 R09: ffff811024c5fa80 R10: 0000000000000000 R11: 0000000000000002 R12: ffff810824c57e6c R13: 0000000000000000 R14: ffff810824c57ee0 R15: 00000006abd25bee FS: 0000000000000000(0000) GS:ffffffff80b4d000(0000) knlGS:0000000000000000 CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b CR2: 000000000000005f CR3: 0000000000201000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process swapper (pid: 1, threadinfo ffff810824c56000, task ffff812024c52000) Stack: ffffffff80a57348 0000019500000000 ffff811024c5fa80 0000000000000000 00000000ffffff97 ffffffff802bfef0 0000000000000000 ffffffffffffffff 0000000000000000 ffffffff80bc3b4b ffff810824c57ee0 ffffffff80bc34a5 Call Trace: [<ffffffff802bfef0>] ? create_proc_entry+0x73/0x8a [<ffffffff80bc3b4b>] ? sctp_snmp_proc_init+0x1c/0x34 [<ffffffff80bc34a5>] ? sctp_init+0xef/0x711 [<ffffffff80b976e3>] ? kernel_init+0x175/0x2e1 [<ffffffff8020ccf8>] ? child_rip+0xa/0x12 [<ffffffff80b9756e>] ? kernel_init+0x0/0x2e1 [<ffffffff8020ccee>] ? child_rip+0x0/0x12 Code: 1e 48 83 7b 38 00 75 08 48 c7 43 38 f0 e8 82 80 48 83 7b 30 00 75 08 48 c7 43 30 d0 e9 82 80 48 c7 c7 60 24 cc 80 e8 bd 5a 54 00 <48> 8b 45 60 48 89 6b 58 48 89 5d 60 48 89 43 50 fe 05 f5 25 a0 RIP [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP <ffff810824c57e60> CR2: 000000000000005f ---[ end trace 02c2d78def82877a ]--- Kernel panic - not syncing: Attempted to kill init! it turns out some variables near end of bss are corrupted already. in System.map we have ffffffff80d40420 b rsi_table ffffffff80d40620 B krb5_seq_lock ffffffff80d40628 b i.20437 ffffffff80d40630 b xprt_rdma_inline_write_padding ffffffff80d40638 b sunrpc_table_header ffffffff80d40640 b zero ffffffff80d40644 b min_memreg ffffffff80d40648 b rpcrdma_tk_lock_g ffffffff80d40650 B sctp_assocs_id_lock ffffffff80d40658 B proc_net_sctp ffffffff80d40660 B sctp_assocs_id ffffffff80d40680 B sysctl_sctp_mem ffffffff80d40690 B sysctl_sctp_rmem ffffffff80d406a0 B sysctl_sctp_wmem ffffffff80d406b0 b sctp_ctl_socket ffffffff80d406b8 b sctp_pf_inet6_specific ffffffff80d406c0 b sctp_pf_inet_specific ffffffff80d406c8 b sctp_af_v4_specific ffffffff80d406d0 b sctp_af_v6_specific ffffffff80d406d8 b sctp_rand.33270 ffffffff80d406dc b sctp_memory_pressure ffffffff80d406e0 b sctp_sockets_allocated ffffffff80d406e4 b sctp_memory_allocated ffffffff80d406e8 b sctp_sysctl_header ffffffff80d406f0 b zero ffffffff80d406f4 A __bss_stop ffffffff80d406f4 A _end and setup_node_bootmem() will use that page 0xd40000 for bootmap Bootmem setup node 0 0000000000000000-0000000828000000 NODE_DATA [000000000008a485 - 0000000000091484] bootmap [0000000000d406f4 - 0000000000e456f3] pages 105 Bootmem setup node 1 0000000828000000-0000001028000000 NODE_DATA [0000000828000000 - 0000000828006fff] bootmap [0000000828007000 - 0000000828106fff] pages 100 Bootmem setup node 2 0000001028000000-0000001828000000 NODE_DATA [0000001028000000 - 0000001028006fff] bootmap [0000001028007000 - 0000001028106fff] pages 100 Bootmem setup node 3 0000001828000000-0000002028000000 NODE_DATA [0000001828000000 - 0000001828006fff] bootmap [0000001828007000 - 0000001828106fff] pages 100 setup_node_bootmem() makes NODE_DATA cacheline aligned, and bootmap is page-aligned. the patch updates find_e820_area() to make sure we can meet the alignment constraints. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-01 09:49:41 -07:00
unsigned long mem = find_e820_area(start, end, size, align);
void *ptr;
if (mem != -1L)
return __va(mem);
x86_64: make bootmap_start page align v6 boot oopses when a system has 64 or 128 GB of RAM installed: Calling initcall 0xffffffff80bc33b6: sctp_init+0x0/0x711() BUG: unable to handle kernel NULL pointer dereference at 000000000000005f IP: [<ffffffff802bfe55>] proc_register+0xe7/0x10f PGD 0 Oops: 0000 [1] SMP CPU 0 Modules linked in: Pid: 1, comm: swapper Not tainted 2.6.24-smp-g5a514e21-dirty #6 RIP: 0010:[<ffffffff802bfe55>] [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP: 0000:ffff810824c57e60 EFLAGS: 00010246 RAX: 000000000000d7d7 RBX: ffff811024c5fa80 RCX: ffff810824c57e08 RDX: 0000000000000000 RSI: 0000000000000195 RDI: ffffffff80cc2460 RBP: ffffffffffffffff R08: 0000000000000000 R09: ffff811024c5fa80 R10: 0000000000000000 R11: 0000000000000002 R12: ffff810824c57e6c R13: 0000000000000000 R14: ffff810824c57ee0 R15: 00000006abd25bee FS: 0000000000000000(0000) GS:ffffffff80b4d000(0000) knlGS:0000000000000000 CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b CR2: 000000000000005f CR3: 0000000000201000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process swapper (pid: 1, threadinfo ffff810824c56000, task ffff812024c52000) Stack: ffffffff80a57348 0000019500000000 ffff811024c5fa80 0000000000000000 00000000ffffff97 ffffffff802bfef0 0000000000000000 ffffffffffffffff 0000000000000000 ffffffff80bc3b4b ffff810824c57ee0 ffffffff80bc34a5 Call Trace: [<ffffffff802bfef0>] ? create_proc_entry+0x73/0x8a [<ffffffff80bc3b4b>] ? sctp_snmp_proc_init+0x1c/0x34 [<ffffffff80bc34a5>] ? sctp_init+0xef/0x711 [<ffffffff80b976e3>] ? kernel_init+0x175/0x2e1 [<ffffffff8020ccf8>] ? child_rip+0xa/0x12 [<ffffffff80b9756e>] ? kernel_init+0x0/0x2e1 [<ffffffff8020ccee>] ? child_rip+0x0/0x12 Code: 1e 48 83 7b 38 00 75 08 48 c7 43 38 f0 e8 82 80 48 83 7b 30 00 75 08 48 c7 43 30 d0 e9 82 80 48 c7 c7 60 24 cc 80 e8 bd 5a 54 00 <48> 8b 45 60 48 89 6b 58 48 89 5d 60 48 89 43 50 fe 05 f5 25 a0 RIP [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP <ffff810824c57e60> CR2: 000000000000005f ---[ end trace 02c2d78def82877a ]--- Kernel panic - not syncing: Attempted to kill init! it turns out some variables near end of bss are corrupted already. in System.map we have ffffffff80d40420 b rsi_table ffffffff80d40620 B krb5_seq_lock ffffffff80d40628 b i.20437 ffffffff80d40630 b xprt_rdma_inline_write_padding ffffffff80d40638 b sunrpc_table_header ffffffff80d40640 b zero ffffffff80d40644 b min_memreg ffffffff80d40648 b rpcrdma_tk_lock_g ffffffff80d40650 B sctp_assocs_id_lock ffffffff80d40658 B proc_net_sctp ffffffff80d40660 B sctp_assocs_id ffffffff80d40680 B sysctl_sctp_mem ffffffff80d40690 B sysctl_sctp_rmem ffffffff80d406a0 B sysctl_sctp_wmem ffffffff80d406b0 b sctp_ctl_socket ffffffff80d406b8 b sctp_pf_inet6_specific ffffffff80d406c0 b sctp_pf_inet_specific ffffffff80d406c8 b sctp_af_v4_specific ffffffff80d406d0 b sctp_af_v6_specific ffffffff80d406d8 b sctp_rand.33270 ffffffff80d406dc b sctp_memory_pressure ffffffff80d406e0 b sctp_sockets_allocated ffffffff80d406e4 b sctp_memory_allocated ffffffff80d406e8 b sctp_sysctl_header ffffffff80d406f0 b zero ffffffff80d406f4 A __bss_stop ffffffff80d406f4 A _end and setup_node_bootmem() will use that page 0xd40000 for bootmap Bootmem setup node 0 0000000000000000-0000000828000000 NODE_DATA [000000000008a485 - 0000000000091484] bootmap [0000000000d406f4 - 0000000000e456f3] pages 105 Bootmem setup node 1 0000000828000000-0000001028000000 NODE_DATA [0000000828000000 - 0000000828006fff] bootmap [0000000828007000 - 0000000828106fff] pages 100 Bootmem setup node 2 0000001028000000-0000001828000000 NODE_DATA [0000001028000000 - 0000001028006fff] bootmap [0000001028007000 - 0000001028106fff] pages 100 Bootmem setup node 3 0000001828000000-0000002028000000 NODE_DATA [0000001828000000 - 0000001828006fff] bootmap [0000001828007000 - 0000001828106fff] pages 100 setup_node_bootmem() makes NODE_DATA cacheline aligned, and bootmap is page-aligned. the patch updates find_e820_area() to make sure we can meet the alignment constraints. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-01 09:49:41 -07:00
ptr = __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
if (ptr == NULL) {
printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
size, nodeid);
return NULL;
}
return ptr;
}
/* Initialize bootmem allocator for a node */
void __init setup_node_bootmem(int nodeid, unsigned long start,
unsigned long end)
{
unsigned long start_pfn, last_pfn, bootmap_pages, bootmap_size;
unsigned long bootmap_start, nodedata_phys;
void *bootmap;
const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
int nid;
start = roundup(start, ZONE_ALIGN);
printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid,
start, end);
start_pfn = start >> PAGE_SHIFT;
last_pfn = end >> PAGE_SHIFT;
x86_64: make bootmap_start page align v6 boot oopses when a system has 64 or 128 GB of RAM installed: Calling initcall 0xffffffff80bc33b6: sctp_init+0x0/0x711() BUG: unable to handle kernel NULL pointer dereference at 000000000000005f IP: [<ffffffff802bfe55>] proc_register+0xe7/0x10f PGD 0 Oops: 0000 [1] SMP CPU 0 Modules linked in: Pid: 1, comm: swapper Not tainted 2.6.24-smp-g5a514e21-dirty #6 RIP: 0010:[<ffffffff802bfe55>] [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP: 0000:ffff810824c57e60 EFLAGS: 00010246 RAX: 000000000000d7d7 RBX: ffff811024c5fa80 RCX: ffff810824c57e08 RDX: 0000000000000000 RSI: 0000000000000195 RDI: ffffffff80cc2460 RBP: ffffffffffffffff R08: 0000000000000000 R09: ffff811024c5fa80 R10: 0000000000000000 R11: 0000000000000002 R12: ffff810824c57e6c R13: 0000000000000000 R14: ffff810824c57ee0 R15: 00000006abd25bee FS: 0000000000000000(0000) GS:ffffffff80b4d000(0000) knlGS:0000000000000000 CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b CR2: 000000000000005f CR3: 0000000000201000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process swapper (pid: 1, threadinfo ffff810824c56000, task ffff812024c52000) Stack: ffffffff80a57348 0000019500000000 ffff811024c5fa80 0000000000000000 00000000ffffff97 ffffffff802bfef0 0000000000000000 ffffffffffffffff 0000000000000000 ffffffff80bc3b4b ffff810824c57ee0 ffffffff80bc34a5 Call Trace: [<ffffffff802bfef0>] ? create_proc_entry+0x73/0x8a [<ffffffff80bc3b4b>] ? sctp_snmp_proc_init+0x1c/0x34 [<ffffffff80bc34a5>] ? sctp_init+0xef/0x711 [<ffffffff80b976e3>] ? kernel_init+0x175/0x2e1 [<ffffffff8020ccf8>] ? child_rip+0xa/0x12 [<ffffffff80b9756e>] ? kernel_init+0x0/0x2e1 [<ffffffff8020ccee>] ? child_rip+0x0/0x12 Code: 1e 48 83 7b 38 00 75 08 48 c7 43 38 f0 e8 82 80 48 83 7b 30 00 75 08 48 c7 43 30 d0 e9 82 80 48 c7 c7 60 24 cc 80 e8 bd 5a 54 00 <48> 8b 45 60 48 89 6b 58 48 89 5d 60 48 89 43 50 fe 05 f5 25 a0 RIP [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP <ffff810824c57e60> CR2: 000000000000005f ---[ end trace 02c2d78def82877a ]--- Kernel panic - not syncing: Attempted to kill init! it turns out some variables near end of bss are corrupted already. in System.map we have ffffffff80d40420 b rsi_table ffffffff80d40620 B krb5_seq_lock ffffffff80d40628 b i.20437 ffffffff80d40630 b xprt_rdma_inline_write_padding ffffffff80d40638 b sunrpc_table_header ffffffff80d40640 b zero ffffffff80d40644 b min_memreg ffffffff80d40648 b rpcrdma_tk_lock_g ffffffff80d40650 B sctp_assocs_id_lock ffffffff80d40658 B proc_net_sctp ffffffff80d40660 B sctp_assocs_id ffffffff80d40680 B sysctl_sctp_mem ffffffff80d40690 B sysctl_sctp_rmem ffffffff80d406a0 B sysctl_sctp_wmem ffffffff80d406b0 b sctp_ctl_socket ffffffff80d406b8 b sctp_pf_inet6_specific ffffffff80d406c0 b sctp_pf_inet_specific ffffffff80d406c8 b sctp_af_v4_specific ffffffff80d406d0 b sctp_af_v6_specific ffffffff80d406d8 b sctp_rand.33270 ffffffff80d406dc b sctp_memory_pressure ffffffff80d406e0 b sctp_sockets_allocated ffffffff80d406e4 b sctp_memory_allocated ffffffff80d406e8 b sctp_sysctl_header ffffffff80d406f0 b zero ffffffff80d406f4 A __bss_stop ffffffff80d406f4 A _end and setup_node_bootmem() will use that page 0xd40000 for bootmap Bootmem setup node 0 0000000000000000-0000000828000000 NODE_DATA [000000000008a485 - 0000000000091484] bootmap [0000000000d406f4 - 0000000000e456f3] pages 105 Bootmem setup node 1 0000000828000000-0000001028000000 NODE_DATA [0000000828000000 - 0000000828006fff] bootmap [0000000828007000 - 0000000828106fff] pages 100 Bootmem setup node 2 0000001028000000-0000001828000000 NODE_DATA [0000001028000000 - 0000001028006fff] bootmap [0000001028007000 - 0000001028106fff] pages 100 Bootmem setup node 3 0000001828000000-0000002028000000 NODE_DATA [0000001828000000 - 0000001828006fff] bootmap [0000001828007000 - 0000001828106fff] pages 100 setup_node_bootmem() makes NODE_DATA cacheline aligned, and bootmap is page-aligned. the patch updates find_e820_area() to make sure we can meet the alignment constraints. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-01 09:49:41 -07:00
node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
SMP_CACHE_BYTES);
if (node_data[nodeid] == NULL)
return;
nodedata_phys = __pa(node_data[nodeid]);
printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
nodedata_phys + pgdat_size - 1);
memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
NODE_DATA(nodeid)->bdata = &bootmem_node_data[nodeid];
NODE_DATA(nodeid)->node_start_pfn = start_pfn;
NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
/*
* Find a place for the bootmem map
* nodedata_phys could be on other nodes by alloc_bootmem,
* so need to sure bootmap_start not to be small, otherwise
* early_node_mem will get that with find_e820_area instead
* of alloc_bootmem, that could clash with reserved range
*/
bootmap_pages = bootmem_bootmap_pages(last_pfn - start_pfn);
nid = phys_to_nid(nodedata_phys);
if (nid == nodeid)
bootmap_start = roundup(nodedata_phys + pgdat_size, PAGE_SIZE);
else
bootmap_start = roundup(start, PAGE_SIZE);
x86_64: make bootmap_start page align v6 boot oopses when a system has 64 or 128 GB of RAM installed: Calling initcall 0xffffffff80bc33b6: sctp_init+0x0/0x711() BUG: unable to handle kernel NULL pointer dereference at 000000000000005f IP: [<ffffffff802bfe55>] proc_register+0xe7/0x10f PGD 0 Oops: 0000 [1] SMP CPU 0 Modules linked in: Pid: 1, comm: swapper Not tainted 2.6.24-smp-g5a514e21-dirty #6 RIP: 0010:[<ffffffff802bfe55>] [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP: 0000:ffff810824c57e60 EFLAGS: 00010246 RAX: 000000000000d7d7 RBX: ffff811024c5fa80 RCX: ffff810824c57e08 RDX: 0000000000000000 RSI: 0000000000000195 RDI: ffffffff80cc2460 RBP: ffffffffffffffff R08: 0000000000000000 R09: ffff811024c5fa80 R10: 0000000000000000 R11: 0000000000000002 R12: ffff810824c57e6c R13: 0000000000000000 R14: ffff810824c57ee0 R15: 00000006abd25bee FS: 0000000000000000(0000) GS:ffffffff80b4d000(0000) knlGS:0000000000000000 CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b CR2: 000000000000005f CR3: 0000000000201000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process swapper (pid: 1, threadinfo ffff810824c56000, task ffff812024c52000) Stack: ffffffff80a57348 0000019500000000 ffff811024c5fa80 0000000000000000 00000000ffffff97 ffffffff802bfef0 0000000000000000 ffffffffffffffff 0000000000000000 ffffffff80bc3b4b ffff810824c57ee0 ffffffff80bc34a5 Call Trace: [<ffffffff802bfef0>] ? create_proc_entry+0x73/0x8a [<ffffffff80bc3b4b>] ? sctp_snmp_proc_init+0x1c/0x34 [<ffffffff80bc34a5>] ? sctp_init+0xef/0x711 [<ffffffff80b976e3>] ? kernel_init+0x175/0x2e1 [<ffffffff8020ccf8>] ? child_rip+0xa/0x12 [<ffffffff80b9756e>] ? kernel_init+0x0/0x2e1 [<ffffffff8020ccee>] ? child_rip+0x0/0x12 Code: 1e 48 83 7b 38 00 75 08 48 c7 43 38 f0 e8 82 80 48 83 7b 30 00 75 08 48 c7 43 30 d0 e9 82 80 48 c7 c7 60 24 cc 80 e8 bd 5a 54 00 <48> 8b 45 60 48 89 6b 58 48 89 5d 60 48 89 43 50 fe 05 f5 25 a0 RIP [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP <ffff810824c57e60> CR2: 000000000000005f ---[ end trace 02c2d78def82877a ]--- Kernel panic - not syncing: Attempted to kill init! it turns out some variables near end of bss are corrupted already. in System.map we have ffffffff80d40420 b rsi_table ffffffff80d40620 B krb5_seq_lock ffffffff80d40628 b i.20437 ffffffff80d40630 b xprt_rdma_inline_write_padding ffffffff80d40638 b sunrpc_table_header ffffffff80d40640 b zero ffffffff80d40644 b min_memreg ffffffff80d40648 b rpcrdma_tk_lock_g ffffffff80d40650 B sctp_assocs_id_lock ffffffff80d40658 B proc_net_sctp ffffffff80d40660 B sctp_assocs_id ffffffff80d40680 B sysctl_sctp_mem ffffffff80d40690 B sysctl_sctp_rmem ffffffff80d406a0 B sysctl_sctp_wmem ffffffff80d406b0 b sctp_ctl_socket ffffffff80d406b8 b sctp_pf_inet6_specific ffffffff80d406c0 b sctp_pf_inet_specific ffffffff80d406c8 b sctp_af_v4_specific ffffffff80d406d0 b sctp_af_v6_specific ffffffff80d406d8 b sctp_rand.33270 ffffffff80d406dc b sctp_memory_pressure ffffffff80d406e0 b sctp_sockets_allocated ffffffff80d406e4 b sctp_memory_allocated ffffffff80d406e8 b sctp_sysctl_header ffffffff80d406f0 b zero ffffffff80d406f4 A __bss_stop ffffffff80d406f4 A _end and setup_node_bootmem() will use that page 0xd40000 for bootmap Bootmem setup node 0 0000000000000000-0000000828000000 NODE_DATA [000000000008a485 - 0000000000091484] bootmap [0000000000d406f4 - 0000000000e456f3] pages 105 Bootmem setup node 1 0000000828000000-0000001028000000 NODE_DATA [0000000828000000 - 0000000828006fff] bootmap [0000000828007000 - 0000000828106fff] pages 100 Bootmem setup node 2 0000001028000000-0000001828000000 NODE_DATA [0000001028000000 - 0000001028006fff] bootmap [0000001028007000 - 0000001028106fff] pages 100 Bootmem setup node 3 0000001828000000-0000002028000000 NODE_DATA [0000001828000000 - 0000001828006fff] bootmap [0000001828007000 - 0000001828106fff] pages 100 setup_node_bootmem() makes NODE_DATA cacheline aligned, and bootmap is page-aligned. the patch updates find_e820_area() to make sure we can meet the alignment constraints. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-01 09:49:41 -07:00
/*
* SMP_CACHE_BYTES could be enough, but init_bootmem_node like
x86_64: make bootmap_start page align v6 boot oopses when a system has 64 or 128 GB of RAM installed: Calling initcall 0xffffffff80bc33b6: sctp_init+0x0/0x711() BUG: unable to handle kernel NULL pointer dereference at 000000000000005f IP: [<ffffffff802bfe55>] proc_register+0xe7/0x10f PGD 0 Oops: 0000 [1] SMP CPU 0 Modules linked in: Pid: 1, comm: swapper Not tainted 2.6.24-smp-g5a514e21-dirty #6 RIP: 0010:[<ffffffff802bfe55>] [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP: 0000:ffff810824c57e60 EFLAGS: 00010246 RAX: 000000000000d7d7 RBX: ffff811024c5fa80 RCX: ffff810824c57e08 RDX: 0000000000000000 RSI: 0000000000000195 RDI: ffffffff80cc2460 RBP: ffffffffffffffff R08: 0000000000000000 R09: ffff811024c5fa80 R10: 0000000000000000 R11: 0000000000000002 R12: ffff810824c57e6c R13: 0000000000000000 R14: ffff810824c57ee0 R15: 00000006abd25bee FS: 0000000000000000(0000) GS:ffffffff80b4d000(0000) knlGS:0000000000000000 CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b CR2: 000000000000005f CR3: 0000000000201000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process swapper (pid: 1, threadinfo ffff810824c56000, task ffff812024c52000) Stack: ffffffff80a57348 0000019500000000 ffff811024c5fa80 0000000000000000 00000000ffffff97 ffffffff802bfef0 0000000000000000 ffffffffffffffff 0000000000000000 ffffffff80bc3b4b ffff810824c57ee0 ffffffff80bc34a5 Call Trace: [<ffffffff802bfef0>] ? create_proc_entry+0x73/0x8a [<ffffffff80bc3b4b>] ? sctp_snmp_proc_init+0x1c/0x34 [<ffffffff80bc34a5>] ? sctp_init+0xef/0x711 [<ffffffff80b976e3>] ? kernel_init+0x175/0x2e1 [<ffffffff8020ccf8>] ? child_rip+0xa/0x12 [<ffffffff80b9756e>] ? kernel_init+0x0/0x2e1 [<ffffffff8020ccee>] ? child_rip+0x0/0x12 Code: 1e 48 83 7b 38 00 75 08 48 c7 43 38 f0 e8 82 80 48 83 7b 30 00 75 08 48 c7 43 30 d0 e9 82 80 48 c7 c7 60 24 cc 80 e8 bd 5a 54 00 <48> 8b 45 60 48 89 6b 58 48 89 5d 60 48 89 43 50 fe 05 f5 25 a0 RIP [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP <ffff810824c57e60> CR2: 000000000000005f ---[ end trace 02c2d78def82877a ]--- Kernel panic - not syncing: Attempted to kill init! it turns out some variables near end of bss are corrupted already. in System.map we have ffffffff80d40420 b rsi_table ffffffff80d40620 B krb5_seq_lock ffffffff80d40628 b i.20437 ffffffff80d40630 b xprt_rdma_inline_write_padding ffffffff80d40638 b sunrpc_table_header ffffffff80d40640 b zero ffffffff80d40644 b min_memreg ffffffff80d40648 b rpcrdma_tk_lock_g ffffffff80d40650 B sctp_assocs_id_lock ffffffff80d40658 B proc_net_sctp ffffffff80d40660 B sctp_assocs_id ffffffff80d40680 B sysctl_sctp_mem ffffffff80d40690 B sysctl_sctp_rmem ffffffff80d406a0 B sysctl_sctp_wmem ffffffff80d406b0 b sctp_ctl_socket ffffffff80d406b8 b sctp_pf_inet6_specific ffffffff80d406c0 b sctp_pf_inet_specific ffffffff80d406c8 b sctp_af_v4_specific ffffffff80d406d0 b sctp_af_v6_specific ffffffff80d406d8 b sctp_rand.33270 ffffffff80d406dc b sctp_memory_pressure ffffffff80d406e0 b sctp_sockets_allocated ffffffff80d406e4 b sctp_memory_allocated ffffffff80d406e8 b sctp_sysctl_header ffffffff80d406f0 b zero ffffffff80d406f4 A __bss_stop ffffffff80d406f4 A _end and setup_node_bootmem() will use that page 0xd40000 for bootmap Bootmem setup node 0 0000000000000000-0000000828000000 NODE_DATA [000000000008a485 - 0000000000091484] bootmap [0000000000d406f4 - 0000000000e456f3] pages 105 Bootmem setup node 1 0000000828000000-0000001028000000 NODE_DATA [0000000828000000 - 0000000828006fff] bootmap [0000000828007000 - 0000000828106fff] pages 100 Bootmem setup node 2 0000001028000000-0000001828000000 NODE_DATA [0000001028000000 - 0000001028006fff] bootmap [0000001028007000 - 0000001028106fff] pages 100 Bootmem setup node 3 0000001828000000-0000002028000000 NODE_DATA [0000001828000000 - 0000001828006fff] bootmap [0000001828007000 - 0000001828106fff] pages 100 setup_node_bootmem() makes NODE_DATA cacheline aligned, and bootmap is page-aligned. the patch updates find_e820_area() to make sure we can meet the alignment constraints. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-01 09:49:41 -07:00
* to use that to align to PAGE_SIZE
*/
bootmap = early_node_mem(nodeid, bootmap_start, end,
x86_64: make bootmap_start page align v6 boot oopses when a system has 64 or 128 GB of RAM installed: Calling initcall 0xffffffff80bc33b6: sctp_init+0x0/0x711() BUG: unable to handle kernel NULL pointer dereference at 000000000000005f IP: [<ffffffff802bfe55>] proc_register+0xe7/0x10f PGD 0 Oops: 0000 [1] SMP CPU 0 Modules linked in: Pid: 1, comm: swapper Not tainted 2.6.24-smp-g5a514e21-dirty #6 RIP: 0010:[<ffffffff802bfe55>] [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP: 0000:ffff810824c57e60 EFLAGS: 00010246 RAX: 000000000000d7d7 RBX: ffff811024c5fa80 RCX: ffff810824c57e08 RDX: 0000000000000000 RSI: 0000000000000195 RDI: ffffffff80cc2460 RBP: ffffffffffffffff R08: 0000000000000000 R09: ffff811024c5fa80 R10: 0000000000000000 R11: 0000000000000002 R12: ffff810824c57e6c R13: 0000000000000000 R14: ffff810824c57ee0 R15: 00000006abd25bee FS: 0000000000000000(0000) GS:ffffffff80b4d000(0000) knlGS:0000000000000000 CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b CR2: 000000000000005f CR3: 0000000000201000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process swapper (pid: 1, threadinfo ffff810824c56000, task ffff812024c52000) Stack: ffffffff80a57348 0000019500000000 ffff811024c5fa80 0000000000000000 00000000ffffff97 ffffffff802bfef0 0000000000000000 ffffffffffffffff 0000000000000000 ffffffff80bc3b4b ffff810824c57ee0 ffffffff80bc34a5 Call Trace: [<ffffffff802bfef0>] ? create_proc_entry+0x73/0x8a [<ffffffff80bc3b4b>] ? sctp_snmp_proc_init+0x1c/0x34 [<ffffffff80bc34a5>] ? sctp_init+0xef/0x711 [<ffffffff80b976e3>] ? kernel_init+0x175/0x2e1 [<ffffffff8020ccf8>] ? child_rip+0xa/0x12 [<ffffffff80b9756e>] ? kernel_init+0x0/0x2e1 [<ffffffff8020ccee>] ? child_rip+0x0/0x12 Code: 1e 48 83 7b 38 00 75 08 48 c7 43 38 f0 e8 82 80 48 83 7b 30 00 75 08 48 c7 43 30 d0 e9 82 80 48 c7 c7 60 24 cc 80 e8 bd 5a 54 00 <48> 8b 45 60 48 89 6b 58 48 89 5d 60 48 89 43 50 fe 05 f5 25 a0 RIP [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP <ffff810824c57e60> CR2: 000000000000005f ---[ end trace 02c2d78def82877a ]--- Kernel panic - not syncing: Attempted to kill init! it turns out some variables near end of bss are corrupted already. in System.map we have ffffffff80d40420 b rsi_table ffffffff80d40620 B krb5_seq_lock ffffffff80d40628 b i.20437 ffffffff80d40630 b xprt_rdma_inline_write_padding ffffffff80d40638 b sunrpc_table_header ffffffff80d40640 b zero ffffffff80d40644 b min_memreg ffffffff80d40648 b rpcrdma_tk_lock_g ffffffff80d40650 B sctp_assocs_id_lock ffffffff80d40658 B proc_net_sctp ffffffff80d40660 B sctp_assocs_id ffffffff80d40680 B sysctl_sctp_mem ffffffff80d40690 B sysctl_sctp_rmem ffffffff80d406a0 B sysctl_sctp_wmem ffffffff80d406b0 b sctp_ctl_socket ffffffff80d406b8 b sctp_pf_inet6_specific ffffffff80d406c0 b sctp_pf_inet_specific ffffffff80d406c8 b sctp_af_v4_specific ffffffff80d406d0 b sctp_af_v6_specific ffffffff80d406d8 b sctp_rand.33270 ffffffff80d406dc b sctp_memory_pressure ffffffff80d406e0 b sctp_sockets_allocated ffffffff80d406e4 b sctp_memory_allocated ffffffff80d406e8 b sctp_sysctl_header ffffffff80d406f0 b zero ffffffff80d406f4 A __bss_stop ffffffff80d406f4 A _end and setup_node_bootmem() will use that page 0xd40000 for bootmap Bootmem setup node 0 0000000000000000-0000000828000000 NODE_DATA [000000000008a485 - 0000000000091484] bootmap [0000000000d406f4 - 0000000000e456f3] pages 105 Bootmem setup node 1 0000000828000000-0000001028000000 NODE_DATA [0000000828000000 - 0000000828006fff] bootmap [0000000828007000 - 0000000828106fff] pages 100 Bootmem setup node 2 0000001028000000-0000001828000000 NODE_DATA [0000001028000000 - 0000001028006fff] bootmap [0000001028007000 - 0000001028106fff] pages 100 Bootmem setup node 3 0000001828000000-0000002028000000 NODE_DATA [0000001828000000 - 0000001828006fff] bootmap [0000001828007000 - 0000001828106fff] pages 100 setup_node_bootmem() makes NODE_DATA cacheline aligned, and bootmap is page-aligned. the patch updates find_e820_area() to make sure we can meet the alignment constraints. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-01 09:49:41 -07:00
bootmap_pages<<PAGE_SHIFT, PAGE_SIZE);
if (bootmap == NULL) {
if (nodedata_phys < start || nodedata_phys >= end)
free_bootmem(nodedata_phys, pgdat_size);
node_data[nodeid] = NULL;
return;
}
bootmap_start = __pa(bootmap);
bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
bootmap_start >> PAGE_SHIFT,
start_pfn, last_pfn);
printk(KERN_INFO " bootmap [%016lx - %016lx] pages %lx\n",
bootmap_start, bootmap_start + bootmap_size - 1,
bootmap_pages);
free_bootmem_with_active_regions(nodeid, end);
/*
* convert early reserve to bootmem reserve earlier
* otherwise early_node_mem could use early reserved mem
* on previous node
*/
early_res_to_bootmem(start, end);
/*
* in some case early_node_mem could use alloc_bootmem
* to get range on other node, don't reserve that again
*/
if (nid != nodeid)
printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid);
else
reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys,
pgdat_size, BOOTMEM_DEFAULT);
nid = phys_to_nid(bootmap_start);
if (nid != nodeid)
printk(KERN_INFO " bootmap(%d) on node %d\n", nodeid, nid);
else
reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start,
bootmap_pages<<PAGE_SHIFT, BOOTMEM_DEFAULT);
[PATCH] x86_64: Reserve SRAT hotadd memory on x86-64 From: Keith Mannthey, Andi Kleen Implement memory hotadd without sparsemem. The memory in the SRAT hotadd area is just preserved instead and can be activated later. There are a few restrictions: - Only one continuous hotadd area allowed per node The main problem is dealing with the many buggy SRAT tables that are out there. The strategy here is to reject anything suspicious. Originally from Keith Mannthey, with several hacks and changes by AK and also contributions from Andrew Morton [ TBD: Problems pointed out by KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>: 1) Goto's rebuild_zonelist patch will not work if CONFIG_MEMORY_HOTPLUG=n. Rebuilding zonelist is necessary when the system has just memory < 4G at boot, and hot add memory > 4G. because x86_64 has DMA32, ZONE_NORAML is not included into zonelist at boot time if system doesn't have memory >4G at boot. [AK: should just force the higher zones at boot time when SRAT tells us] 2) zone and node's spanned_pages and present_pages are not incremented. They should be. For example, our server (ia64/Fujitsu PrimeQuest) can equip memory from 4G to 1T(maybe 2T in future), and SRAT will *always* say we have possible 1T +memory. (Microsoft requires "write all possible memory in SRAT") When we reserve memmap for possible 1T memory, Linux will not work well in +minimum 4G configuraion ;) [AK: needs limiting to 5-10% of max memory] ] Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-04-07 10:49:18 -07:00
#ifdef CONFIG_ACPI_NUMA
srat_reserve_add_area(nodeid);
#endif
node_set_online(nodeid);
}
/*
* There are unfortunately some poorly designed mainboards around that
* only connect memory to a single CPU. This breaks the 1:1 cpu->node
* mapping. To avoid this fill in the mapping for all possible CPUs,
* as the number of CPUs is not known yet. We round robin the existing
* nodes.
*/
void __init numa_init_array(void)
{
int rr, i;
rr = first_node(node_online_map);
for (i = 0; i < NR_CPUS; i++) {
if (early_cpu_to_node(i) != NUMA_NO_NODE)
continue;
numa_set_node(i, rr);
rr = next_node(rr, node_online_map);
if (rr == MAX_NUMNODES)
rr = first_node(node_online_map);
}
}
#ifdef CONFIG_NUMA_EMU
/* Numa emulation */
static char *cmdline __initdata;
/*
* Setups up nid to range from addr to addr + size. If the end
* boundary is greater than max_addr, then max_addr is used instead.
* The return value is 0 if there is additional memory left for
* allocation past addr and -1 otherwise. addr is adjusted to be at
* the end of the node.
*/
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
u64 size, u64 max_addr)
{
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
int ret = 0;
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
nodes[nid].start = *addr;
*addr += size;
if (*addr >= max_addr) {
*addr = max_addr;
ret = -1;
}
nodes[nid].end = *addr;
node_set(nid, node_possible_map);
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
nodes[nid].start, nodes[nid].end,
(nodes[nid].end - nodes[nid].start) >> 20);
return ret;
}
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
/*
* Splits num_nodes nodes up equally starting at node_start. The return value
* is the number of nodes split up and addr is adjusted to be at the end of the
* last node allocated.
*/
static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
u64 max_addr, int node_start,
int num_nodes)
{
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
unsigned int big;
u64 size;
int i;
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
if (num_nodes <= 0)
return -1;
if (num_nodes > MAX_NUMNODES)
num_nodes = MAX_NUMNODES;
size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
num_nodes;
/*
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
* Calculate the number of big nodes that can be allocated as a result
* of consolidating the leftovers.
*/
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
FAKE_NODE_MIN_SIZE;
/* Round down to nearest FAKE_NODE_MIN_SIZE. */
size &= FAKE_NODE_MIN_HASH_MASK;
if (!size) {
printk(KERN_ERR "Not enough memory for each node. "
"NUMA emulation disabled.\n");
return -1;
}
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
for (i = node_start; i < num_nodes + node_start; i++) {
u64 end = *addr + size;
if (i < big)
end += FAKE_NODE_MIN_SIZE;
/*
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
* The final node can have the remaining system RAM. Other
* nodes receive roughly the same amount of available pages.
*/
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
if (i == num_nodes + node_start - 1)
end = max_addr;
else
while (end - *addr - e820_hole_size(*addr, end) <
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
size) {
end += FAKE_NODE_MIN_SIZE;
if (end > max_addr) {
end = max_addr;
break;
}
}
if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
break;
}
return i - node_start + 1;
}
/*
* Splits the remaining system RAM into chunks of size. The remaining memory is
* always assigned to a final node and can be asymmetric. Returns the number of
* nodes split.
*/
static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
u64 max_addr, int node_start, u64 size)
{
int i = node_start;
size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
while (!setup_node_range(i++, nodes, addr, size, max_addr))
;
return i - node_start;
}
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
/*
* Sets up the system RAM area from start_pfn to last_pfn according to the
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
* numa=fake command-line option.
*/
static struct bootnode nodes[MAX_NUMNODES] __initdata;
static int __init numa_emulation(unsigned long start_pfn, unsigned long last_pfn)
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
{
u64 size, addr = start_pfn << PAGE_SHIFT;
u64 max_addr = last_pfn << PAGE_SHIFT;
int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i;
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
memset(&nodes, 0, sizeof(nodes));
/*
* If the numa=fake command-line is just a single number N, split the
* system RAM into N fake nodes.
*/
if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
long n = simple_strtol(cmdline, NULL, 0);
num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0, n);
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
if (num_nodes < 0)
return num_nodes;
goto out;
}
/* Parse the command line. */
for (coeff_flag = 0; ; cmdline++) {
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
if (*cmdline && isdigit(*cmdline)) {
num = num * 10 + *cmdline - '0';
continue;
}
if (*cmdline == '*') {
if (num > 0)
coeff = num;
coeff_flag = 1;
}
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
if (!*cmdline || *cmdline == ',') {
if (!coeff_flag)
coeff = 1;
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
/*
* Round down to the nearest FAKE_NODE_MIN_SIZE.
* Command-line coefficients are in megabytes.
*/
size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
if (size)
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
for (i = 0; i < coeff; i++, num_nodes++)
if (setup_node_range(num_nodes, nodes,
&addr, size, max_addr) < 0)
goto done;
if (!*cmdline)
break;
coeff_flag = 0;
coeff = -1;
}
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
num = 0;
}
done:
if (!num_nodes)
return -1;
/* Fill remainder of system RAM, if appropriate. */
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
if (addr < max_addr) {
if (coeff_flag && coeff < 0) {
/* Split remaining nodes into num-sized chunks */
num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
num_nodes, num);
goto out;
}
switch (*(cmdline - 1)) {
case '*':
/* Split remaining nodes into coeff chunks */
if (coeff <= 0)
break;
num_nodes += split_nodes_equally(nodes, &addr, max_addr,
num_nodes, coeff);
break;
case ',':
/* Do not allocate remaining system RAM */
break;
default:
/* Give one final node */
setup_node_range(num_nodes, nodes, &addr,
max_addr - addr, max_addr);
num_nodes++;
}
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
}
out:
memnode_shift = compute_hash_shift(nodes, num_nodes, NULL);
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
if (memnode_shift < 0) {
memnode_shift = 0;
printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
"disabled.\n");
return -1;
}
/*
* We need to vacate all active ranges that may have been registered by
* SRAT and set acpi_numa to -1 so that srat_disabled() always returns
* true. NUMA emulation has succeeded so we will not scan ACPI nodes.
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
*/
remove_all_active_ranges();
#ifdef CONFIG_ACPI_NUMA
acpi_numa = -1;
#endif
for_each_node_mask(i, node_possible_map) {
e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
nodes[i].end >> PAGE_SHIFT);
setup_node_bootmem(i, nodes[i].start, nodes[i].end);
}
acpi_fake_nodes(nodes, num_nodes);
numa_init_array();
return 0;
}
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
#endif /* CONFIG_NUMA_EMU */
void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn)
{
int i;
nodes_clear(node_possible_map);
x86: reenable support for system without on node0 One system doesn't have RAM for node0 installed. SRAT: PXM 0 -> APIC 0 -> Node 0 SRAT: PXM 0 -> APIC 1 -> Node 0 SRAT: PXM 1 -> APIC 2 -> Node 1 SRAT: PXM 1 -> APIC 3 -> Node 1 SRAT: Node 1 PXM 1 0-a0000 SRAT: Node 1 PXM 1 0-dd000000 SRAT: Node 1 PXM 1 0-123000000 ACPI: SLIT: nodes = 2 10 13 13 10 mapped APIC to ffffffffff5fb000 ( fee00000) Bootmem setup node 1 0000000000000000-0000000123000000 NODE_DATA [000000000000e000 - 0000000000014fff] bootmap [0000000000015000 - 00000000000395ff] pages 25 Could not find start_pfn for node 0 Pid: 0, comm: swapper Not tainted 2.6.24-smp-g5a514e21-dirty #14 Call Trace: [<ffffffff80bab498>] free_area_init_node+0x22/0x381 [<ffffffff8045ffc5>] generic_swap+0x0/0x17 [<ffffffff80bab0cc>] find_zone_movable_pfns_for_nodes+0x54/0x271 [<ffffffff80baba5f>] free_area_init_nodes+0x239/0x287 [<ffffffff80ba6311>] paging_init+0x46/0x4c [<ffffffff80b9dda5>] setup_arch+0x3c3/0x44e [<ffffffff80b978be>] start_kernel+0x6f/0x2c7 [<ffffffff80b971cc>] _sinittext+0x1cc/0x1d3 This happens because node 0 is not online, but the node state in mm/page_alloc.c has node 0 set. nodemask_t node_states[NR_NODE_STATES] __read_mostly = { [N_POSSIBLE] = NODE_MASK_ALL, [N_ONLINE] = { { [0] = 1UL } }, So we need to clear node_online_map before initializing the memory. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-02-17 03:02:21 -07:00
nodes_clear(node_online_map);
#ifdef CONFIG_NUMA_EMU
if (cmdline && !numa_emulation(start_pfn, last_pfn))
return;
nodes_clear(node_possible_map);
x86: reenable support for system without on node0 One system doesn't have RAM for node0 installed. SRAT: PXM 0 -> APIC 0 -> Node 0 SRAT: PXM 0 -> APIC 1 -> Node 0 SRAT: PXM 1 -> APIC 2 -> Node 1 SRAT: PXM 1 -> APIC 3 -> Node 1 SRAT: Node 1 PXM 1 0-a0000 SRAT: Node 1 PXM 1 0-dd000000 SRAT: Node 1 PXM 1 0-123000000 ACPI: SLIT: nodes = 2 10 13 13 10 mapped APIC to ffffffffff5fb000 ( fee00000) Bootmem setup node 1 0000000000000000-0000000123000000 NODE_DATA [000000000000e000 - 0000000000014fff] bootmap [0000000000015000 - 00000000000395ff] pages 25 Could not find start_pfn for node 0 Pid: 0, comm: swapper Not tainted 2.6.24-smp-g5a514e21-dirty #14 Call Trace: [<ffffffff80bab498>] free_area_init_node+0x22/0x381 [<ffffffff8045ffc5>] generic_swap+0x0/0x17 [<ffffffff80bab0cc>] find_zone_movable_pfns_for_nodes+0x54/0x271 [<ffffffff80baba5f>] free_area_init_nodes+0x239/0x287 [<ffffffff80ba6311>] paging_init+0x46/0x4c [<ffffffff80b9dda5>] setup_arch+0x3c3/0x44e [<ffffffff80b978be>] start_kernel+0x6f/0x2c7 [<ffffffff80b971cc>] _sinittext+0x1cc/0x1d3 This happens because node 0 is not online, but the node state in mm/page_alloc.c has node 0 set. nodemask_t node_states[NR_NODE_STATES] __read_mostly = { [N_POSSIBLE] = NODE_MASK_ALL, [N_ONLINE] = { { [0] = 1UL } }, So we need to clear node_online_map before initializing the memory. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-02-17 03:02:21 -07:00
nodes_clear(node_online_map);
#endif
#ifdef CONFIG_ACPI_NUMA
if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
last_pfn << PAGE_SHIFT))
return;
nodes_clear(node_possible_map);
x86: reenable support for system without on node0 One system doesn't have RAM for node0 installed. SRAT: PXM 0 -> APIC 0 -> Node 0 SRAT: PXM 0 -> APIC 1 -> Node 0 SRAT: PXM 1 -> APIC 2 -> Node 1 SRAT: PXM 1 -> APIC 3 -> Node 1 SRAT: Node 1 PXM 1 0-a0000 SRAT: Node 1 PXM 1 0-dd000000 SRAT: Node 1 PXM 1 0-123000000 ACPI: SLIT: nodes = 2 10 13 13 10 mapped APIC to ffffffffff5fb000 ( fee00000) Bootmem setup node 1 0000000000000000-0000000123000000 NODE_DATA [000000000000e000 - 0000000000014fff] bootmap [0000000000015000 - 00000000000395ff] pages 25 Could not find start_pfn for node 0 Pid: 0, comm: swapper Not tainted 2.6.24-smp-g5a514e21-dirty #14 Call Trace: [<ffffffff80bab498>] free_area_init_node+0x22/0x381 [<ffffffff8045ffc5>] generic_swap+0x0/0x17 [<ffffffff80bab0cc>] find_zone_movable_pfns_for_nodes+0x54/0x271 [<ffffffff80baba5f>] free_area_init_nodes+0x239/0x287 [<ffffffff80ba6311>] paging_init+0x46/0x4c [<ffffffff80b9dda5>] setup_arch+0x3c3/0x44e [<ffffffff80b978be>] start_kernel+0x6f/0x2c7 [<ffffffff80b971cc>] _sinittext+0x1cc/0x1d3 This happens because node 0 is not online, but the node state in mm/page_alloc.c has node 0 set. nodemask_t node_states[NR_NODE_STATES] __read_mostly = { [N_POSSIBLE] = NODE_MASK_ALL, [N_ONLINE] = { { [0] = 1UL } }, So we need to clear node_online_map before initializing the memory. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-02-17 03:02:21 -07:00
nodes_clear(node_online_map);
#endif
#ifdef CONFIG_K8_NUMA
if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT,
last_pfn<<PAGE_SHIFT))
return;
nodes_clear(node_possible_map);
x86: reenable support for system without on node0 One system doesn't have RAM for node0 installed. SRAT: PXM 0 -> APIC 0 -> Node 0 SRAT: PXM 0 -> APIC 1 -> Node 0 SRAT: PXM 1 -> APIC 2 -> Node 1 SRAT: PXM 1 -> APIC 3 -> Node 1 SRAT: Node 1 PXM 1 0-a0000 SRAT: Node 1 PXM 1 0-dd000000 SRAT: Node 1 PXM 1 0-123000000 ACPI: SLIT: nodes = 2 10 13 13 10 mapped APIC to ffffffffff5fb000 ( fee00000) Bootmem setup node 1 0000000000000000-0000000123000000 NODE_DATA [000000000000e000 - 0000000000014fff] bootmap [0000000000015000 - 00000000000395ff] pages 25 Could not find start_pfn for node 0 Pid: 0, comm: swapper Not tainted 2.6.24-smp-g5a514e21-dirty #14 Call Trace: [<ffffffff80bab498>] free_area_init_node+0x22/0x381 [<ffffffff8045ffc5>] generic_swap+0x0/0x17 [<ffffffff80bab0cc>] find_zone_movable_pfns_for_nodes+0x54/0x271 [<ffffffff80baba5f>] free_area_init_nodes+0x239/0x287 [<ffffffff80ba6311>] paging_init+0x46/0x4c [<ffffffff80b9dda5>] setup_arch+0x3c3/0x44e [<ffffffff80b978be>] start_kernel+0x6f/0x2c7 [<ffffffff80b971cc>] _sinittext+0x1cc/0x1d3 This happens because node 0 is not online, but the node state in mm/page_alloc.c has node 0 set. nodemask_t node_states[NR_NODE_STATES] __read_mostly = { [N_POSSIBLE] = NODE_MASK_ALL, [N_ONLINE] = { { [0] = 1UL } }, So we need to clear node_online_map before initializing the memory. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-02-17 03:02:21 -07:00
nodes_clear(node_online_map);
#endif
printk(KERN_INFO "%s\n",
numa_off ? "NUMA turned off" : "No NUMA configuration found");
printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
start_pfn << PAGE_SHIFT,
last_pfn << PAGE_SHIFT);
/* setup dummy node covering all memory */
memnode_shift = 63;
memnodemap = memnode.embedded_map;
memnodemap[0] = 0;
node_set_online(0);
node_set(0, node_possible_map);
for (i = 0; i < NR_CPUS; i++)
numa_set_node(i, 0);
e820_register_active_regions(0, start_pfn, last_pfn);
setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT);
}
unsigned long __init numa_free_all_bootmem(void)
{
unsigned long pages = 0;
int i;
for_each_online_node(i)
pages += free_all_bootmem_node(NODE_DATA(i));
return pages;
}
void __init paging_init(void)
{
unsigned long max_zone_pfns[MAX_NR_ZONES];
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
max_zone_pfns[ZONE_NORMAL] = max_pfn;
sparse_memory_present_with_active_regions(MAX_NUMNODES);
sparse_init();
free_area_init_nodes(max_zone_pfns);
}
static __init int numa_setup(char *opt)
{
if (!opt)
return -EINVAL;
if (!strncmp(opt, "off", 3))
numa_off = 1;
#ifdef CONFIG_NUMA_EMU
[PATCH] x86-64: configurable fake numa node sizes Extends the numa=fake x86_64 command-line option to allow for configurable node sizes. These nodes can be used in conjunction with cpusets for coarse memory resource management. The old command-line option is still supported: numa=fake=32 gives 32 fake NUMA nodes, ignoring the NUMA setup of the actual machine. But now you may configure your system for the node sizes of your choice: numa=fake=2*512,1024,2*256 gives two 512M nodes, one 1024M node, two 256M nodes, and the rest of system memory to a sixth node. The existing hash function is maintained to support the various node sizes that are possible with this implementation. Each node of the same size receives roughly the same amount of available pages, regardless of any reserved memory with its address range. The total available pages on the system is calculated and divided by the number of equal nodes to allocate. These nodes are then dynamically allocated and their borders extended until such time as their number of available pages reaches the required size. Configurable node sizes are recommended when used in conjunction with cpusets for memory control because it eliminates the overhead associated with scanning the zonelists of many smaller full nodes on page_alloc(). Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 10:27:09 -07:00
if (!strncmp(opt, "fake=", 5))
cmdline = opt + 5;
#endif
#ifdef CONFIG_ACPI_NUMA
if (!strncmp(opt, "noacpi", 6))
acpi_numa = -1;
if (!strncmp(opt, "hotadd=", 7))
[PATCH] x86_64: Reserve SRAT hotadd memory on x86-64 From: Keith Mannthey, Andi Kleen Implement memory hotadd without sparsemem. The memory in the SRAT hotadd area is just preserved instead and can be activated later. There are a few restrictions: - Only one continuous hotadd area allowed per node The main problem is dealing with the many buggy SRAT tables that are out there. The strategy here is to reject anything suspicious. Originally from Keith Mannthey, with several hacks and changes by AK and also contributions from Andrew Morton [ TBD: Problems pointed out by KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>: 1) Goto's rebuild_zonelist patch will not work if CONFIG_MEMORY_HOTPLUG=n. Rebuilding zonelist is necessary when the system has just memory < 4G at boot, and hot add memory > 4G. because x86_64 has DMA32, ZONE_NORAML is not included into zonelist at boot time if system doesn't have memory >4G at boot. [AK: should just force the higher zones at boot time when SRAT tells us] 2) zone and node's spanned_pages and present_pages are not incremented. They should be. For example, our server (ia64/Fujitsu PrimeQuest) can equip memory from 4G to 1T(maybe 2T in future), and SRAT will *always* say we have possible 1T +memory. (Microsoft requires "write all possible memory in SRAT") When we reserve memmap for possible 1T memory, Linux will not work well in +minimum 4G configuraion ;) [AK: needs limiting to 5-10% of max memory] ] Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-04-07 10:49:18 -07:00
hotadd_percent = simple_strtoul(opt+7, NULL, 10);
#endif
return 0;
}
early_param("numa", numa_setup);
x86: cleanup early per cpu variables/accesses v4 * Introduce a new PER_CPU macro called "EARLY_PER_CPU". This is used by some per_cpu variables that are initialized and accessed before there are per_cpu areas allocated. ["Early" in respect to per_cpu variables is "earlier than the per_cpu areas have been setup".] This patchset adds these new macros: DEFINE_EARLY_PER_CPU(_type, _name, _initvalue) EXPORT_EARLY_PER_CPU_SYMBOL(_name) DECLARE_EARLY_PER_CPU(_type, _name) early_per_cpu_ptr(_name) early_per_cpu_map(_name, _idx) early_per_cpu(_name, _cpu) The DEFINE macro defines the per_cpu variable as well as the early map and pointer. It also initializes the per_cpu variable and map elements to "_initvalue". The early_* macros provide access to the initial map (usually setup during system init) and the early pointer. This pointer is initialized to point to the early map but is then NULL'ed when the actual per_cpu areas are setup. After that the per_cpu variable is the correct access to the variable. The early_per_cpu() macro is not very efficient but does show how to access the variable if you have a function that can be called both "early" and "late". It tests the early ptr to be NULL, and if not then it's still valid. Otherwise, the per_cpu variable is used instead: #define early_per_cpu(_name, _cpu) \ (early_per_cpu_ptr(_name) ? \ early_per_cpu_ptr(_name)[_cpu] : \ per_cpu(_name, _cpu)) A better method is to actually check the pointer manually. In the case below, numa_set_node can be called both "early" and "late": void __cpuinit numa_set_node(int cpu, int node) { int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); if (cpu_to_node_map) cpu_to_node_map[cpu] = node; else per_cpu(x86_cpu_to_node_map, cpu) = node; } * Add a flag "arch_provides_topology_pointers" that indicates pointers to topology cpumask_t maps are available. Otherwise, use the function returning the cpumask_t value. This is useful if cpumask_t set size is very large to avoid copying data on to/off of the stack. * The coverage of CONFIG_DEBUG_PER_CPU_MAPS has been increased while the non-debug case has been optimized a bit. * Remove an unreferenced compiler warning in drivers/base/topology.c * Clean up #ifdef in setup.c For inclusion into sched-devel/latest tree. Based on: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git + sched-devel/latest .../mingo/linux-2.6-sched-devel.git Signed-off-by: Mike Travis <travis@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 12:21:12 -07:00
#ifdef CONFIG_NUMA
/*
* Setup early cpu_to_node.
*
* Populate cpu_to_node[] only if x86_cpu_to_apicid[],
* and apicid_to_node[] tables have valid entries for a CPU.
* This means we skip cpu_to_node[] initialisation for NUMA
* emulation and faking node case (when running a kernel compiled
* for NUMA on a non NUMA box), which is OK as cpu_to_node[]
* is already initialized in a round robin manner at numa_init_array,
* prior to this call, and this initialization is good enough
* for the fake NUMA cases.
x86: cleanup early per cpu variables/accesses v4 * Introduce a new PER_CPU macro called "EARLY_PER_CPU". This is used by some per_cpu variables that are initialized and accessed before there are per_cpu areas allocated. ["Early" in respect to per_cpu variables is "earlier than the per_cpu areas have been setup".] This patchset adds these new macros: DEFINE_EARLY_PER_CPU(_type, _name, _initvalue) EXPORT_EARLY_PER_CPU_SYMBOL(_name) DECLARE_EARLY_PER_CPU(_type, _name) early_per_cpu_ptr(_name) early_per_cpu_map(_name, _idx) early_per_cpu(_name, _cpu) The DEFINE macro defines the per_cpu variable as well as the early map and pointer. It also initializes the per_cpu variable and map elements to "_initvalue". The early_* macros provide access to the initial map (usually setup during system init) and the early pointer. This pointer is initialized to point to the early map but is then NULL'ed when the actual per_cpu areas are setup. After that the per_cpu variable is the correct access to the variable. The early_per_cpu() macro is not very efficient but does show how to access the variable if you have a function that can be called both "early" and "late". It tests the early ptr to be NULL, and if not then it's still valid. Otherwise, the per_cpu variable is used instead: #define early_per_cpu(_name, _cpu) \ (early_per_cpu_ptr(_name) ? \ early_per_cpu_ptr(_name)[_cpu] : \ per_cpu(_name, _cpu)) A better method is to actually check the pointer manually. In the case below, numa_set_node can be called both "early" and "late": void __cpuinit numa_set_node(int cpu, int node) { int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); if (cpu_to_node_map) cpu_to_node_map[cpu] = node; else per_cpu(x86_cpu_to_node_map, cpu) = node; } * Add a flag "arch_provides_topology_pointers" that indicates pointers to topology cpumask_t maps are available. Otherwise, use the function returning the cpumask_t value. This is useful if cpumask_t set size is very large to avoid copying data on to/off of the stack. * The coverage of CONFIG_DEBUG_PER_CPU_MAPS has been increased while the non-debug case has been optimized a bit. * Remove an unreferenced compiler warning in drivers/base/topology.c * Clean up #ifdef in setup.c For inclusion into sched-devel/latest tree. Based on: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git + sched-devel/latest .../mingo/linux-2.6-sched-devel.git Signed-off-by: Mike Travis <travis@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 12:21:12 -07:00
*
* Called before the per_cpu areas are setup.
*/
void __init init_cpu_to_node(void)
{
x86: cleanup early per cpu variables/accesses v4 * Introduce a new PER_CPU macro called "EARLY_PER_CPU". This is used by some per_cpu variables that are initialized and accessed before there are per_cpu areas allocated. ["Early" in respect to per_cpu variables is "earlier than the per_cpu areas have been setup".] This patchset adds these new macros: DEFINE_EARLY_PER_CPU(_type, _name, _initvalue) EXPORT_EARLY_PER_CPU_SYMBOL(_name) DECLARE_EARLY_PER_CPU(_type, _name) early_per_cpu_ptr(_name) early_per_cpu_map(_name, _idx) early_per_cpu(_name, _cpu) The DEFINE macro defines the per_cpu variable as well as the early map and pointer. It also initializes the per_cpu variable and map elements to "_initvalue". The early_* macros provide access to the initial map (usually setup during system init) and the early pointer. This pointer is initialized to point to the early map but is then NULL'ed when the actual per_cpu areas are setup. After that the per_cpu variable is the correct access to the variable. The early_per_cpu() macro is not very efficient but does show how to access the variable if you have a function that can be called both "early" and "late". It tests the early ptr to be NULL, and if not then it's still valid. Otherwise, the per_cpu variable is used instead: #define early_per_cpu(_name, _cpu) \ (early_per_cpu_ptr(_name) ? \ early_per_cpu_ptr(_name)[_cpu] : \ per_cpu(_name, _cpu)) A better method is to actually check the pointer manually. In the case below, numa_set_node can be called both "early" and "late": void __cpuinit numa_set_node(int cpu, int node) { int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); if (cpu_to_node_map) cpu_to_node_map[cpu] = node; else per_cpu(x86_cpu_to_node_map, cpu) = node; } * Add a flag "arch_provides_topology_pointers" that indicates pointers to topology cpumask_t maps are available. Otherwise, use the function returning the cpumask_t value. This is useful if cpumask_t set size is very large to avoid copying data on to/off of the stack. * The coverage of CONFIG_DEBUG_PER_CPU_MAPS has been increased while the non-debug case has been optimized a bit. * Remove an unreferenced compiler warning in drivers/base/topology.c * Clean up #ifdef in setup.c For inclusion into sched-devel/latest tree. Based on: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git + sched-devel/latest .../mingo/linux-2.6-sched-devel.git Signed-off-by: Mike Travis <travis@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 12:21:12 -07:00
int cpu;
u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
x86: cleanup early per cpu variables/accesses v4 * Introduce a new PER_CPU macro called "EARLY_PER_CPU". This is used by some per_cpu variables that are initialized and accessed before there are per_cpu areas allocated. ["Early" in respect to per_cpu variables is "earlier than the per_cpu areas have been setup".] This patchset adds these new macros: DEFINE_EARLY_PER_CPU(_type, _name, _initvalue) EXPORT_EARLY_PER_CPU_SYMBOL(_name) DECLARE_EARLY_PER_CPU(_type, _name) early_per_cpu_ptr(_name) early_per_cpu_map(_name, _idx) early_per_cpu(_name, _cpu) The DEFINE macro defines the per_cpu variable as well as the early map and pointer. It also initializes the per_cpu variable and map elements to "_initvalue". The early_* macros provide access to the initial map (usually setup during system init) and the early pointer. This pointer is initialized to point to the early map but is then NULL'ed when the actual per_cpu areas are setup. After that the per_cpu variable is the correct access to the variable. The early_per_cpu() macro is not very efficient but does show how to access the variable if you have a function that can be called both "early" and "late". It tests the early ptr to be NULL, and if not then it's still valid. Otherwise, the per_cpu variable is used instead: #define early_per_cpu(_name, _cpu) \ (early_per_cpu_ptr(_name) ? \ early_per_cpu_ptr(_name)[_cpu] : \ per_cpu(_name, _cpu)) A better method is to actually check the pointer manually. In the case below, numa_set_node can be called both "early" and "late": void __cpuinit numa_set_node(int cpu, int node) { int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); if (cpu_to_node_map) cpu_to_node_map[cpu] = node; else per_cpu(x86_cpu_to_node_map, cpu) = node; } * Add a flag "arch_provides_topology_pointers" that indicates pointers to topology cpumask_t maps are available. Otherwise, use the function returning the cpumask_t value. This is useful if cpumask_t set size is very large to avoid copying data on to/off of the stack. * The coverage of CONFIG_DEBUG_PER_CPU_MAPS has been increased while the non-debug case has been optimized a bit. * Remove an unreferenced compiler warning in drivers/base/topology.c * Clean up #ifdef in setup.c For inclusion into sched-devel/latest tree. Based on: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git + sched-devel/latest .../mingo/linux-2.6-sched-devel.git Signed-off-by: Mike Travis <travis@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 12:21:12 -07:00
BUG_ON(cpu_to_apicid == NULL);
for_each_possible_cpu(cpu) {
int node;
x86: cleanup early per cpu variables/accesses v4 * Introduce a new PER_CPU macro called "EARLY_PER_CPU". This is used by some per_cpu variables that are initialized and accessed before there are per_cpu areas allocated. ["Early" in respect to per_cpu variables is "earlier than the per_cpu areas have been setup".] This patchset adds these new macros: DEFINE_EARLY_PER_CPU(_type, _name, _initvalue) EXPORT_EARLY_PER_CPU_SYMBOL(_name) DECLARE_EARLY_PER_CPU(_type, _name) early_per_cpu_ptr(_name) early_per_cpu_map(_name, _idx) early_per_cpu(_name, _cpu) The DEFINE macro defines the per_cpu variable as well as the early map and pointer. It also initializes the per_cpu variable and map elements to "_initvalue". The early_* macros provide access to the initial map (usually setup during system init) and the early pointer. This pointer is initialized to point to the early map but is then NULL'ed when the actual per_cpu areas are setup. After that the per_cpu variable is the correct access to the variable. The early_per_cpu() macro is not very efficient but does show how to access the variable if you have a function that can be called both "early" and "late". It tests the early ptr to be NULL, and if not then it's still valid. Otherwise, the per_cpu variable is used instead: #define early_per_cpu(_name, _cpu) \ (early_per_cpu_ptr(_name) ? \ early_per_cpu_ptr(_name)[_cpu] : \ per_cpu(_name, _cpu)) A better method is to actually check the pointer manually. In the case below, numa_set_node can be called both "early" and "late": void __cpuinit numa_set_node(int cpu, int node) { int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); if (cpu_to_node_map) cpu_to_node_map[cpu] = node; else per_cpu(x86_cpu_to_node_map, cpu) = node; } * Add a flag "arch_provides_topology_pointers" that indicates pointers to topology cpumask_t maps are available. Otherwise, use the function returning the cpumask_t value. This is useful if cpumask_t set size is very large to avoid copying data on to/off of the stack. * The coverage of CONFIG_DEBUG_PER_CPU_MAPS has been increased while the non-debug case has been optimized a bit. * Remove an unreferenced compiler warning in drivers/base/topology.c * Clean up #ifdef in setup.c For inclusion into sched-devel/latest tree. Based on: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git + sched-devel/latest .../mingo/linux-2.6-sched-devel.git Signed-off-by: Mike Travis <travis@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 12:21:12 -07:00
u16 apicid = cpu_to_apicid[cpu];
if (apicid == BAD_APICID)
continue;
node = apicid_to_node[apicid];
if (node == NUMA_NO_NODE)
continue;
if (!node_online(node))
continue;
x86: cleanup early per cpu variables/accesses v4 * Introduce a new PER_CPU macro called "EARLY_PER_CPU". This is used by some per_cpu variables that are initialized and accessed before there are per_cpu areas allocated. ["Early" in respect to per_cpu variables is "earlier than the per_cpu areas have been setup".] This patchset adds these new macros: DEFINE_EARLY_PER_CPU(_type, _name, _initvalue) EXPORT_EARLY_PER_CPU_SYMBOL(_name) DECLARE_EARLY_PER_CPU(_type, _name) early_per_cpu_ptr(_name) early_per_cpu_map(_name, _idx) early_per_cpu(_name, _cpu) The DEFINE macro defines the per_cpu variable as well as the early map and pointer. It also initializes the per_cpu variable and map elements to "_initvalue". The early_* macros provide access to the initial map (usually setup during system init) and the early pointer. This pointer is initialized to point to the early map but is then NULL'ed when the actual per_cpu areas are setup. After that the per_cpu variable is the correct access to the variable. The early_per_cpu() macro is not very efficient but does show how to access the variable if you have a function that can be called both "early" and "late". It tests the early ptr to be NULL, and if not then it's still valid. Otherwise, the per_cpu variable is used instead: #define early_per_cpu(_name, _cpu) \ (early_per_cpu_ptr(_name) ? \ early_per_cpu_ptr(_name)[_cpu] : \ per_cpu(_name, _cpu)) A better method is to actually check the pointer manually. In the case below, numa_set_node can be called both "early" and "late": void __cpuinit numa_set_node(int cpu, int node) { int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); if (cpu_to_node_map) cpu_to_node_map[cpu] = node; else per_cpu(x86_cpu_to_node_map, cpu) = node; } * Add a flag "arch_provides_topology_pointers" that indicates pointers to topology cpumask_t maps are available. Otherwise, use the function returning the cpumask_t value. This is useful if cpumask_t set size is very large to avoid copying data on to/off of the stack. * The coverage of CONFIG_DEBUG_PER_CPU_MAPS has been increased while the non-debug case has been optimized a bit. * Remove an unreferenced compiler warning in drivers/base/topology.c * Clean up #ifdef in setup.c For inclusion into sched-devel/latest tree. Based on: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git + sched-devel/latest .../mingo/linux-2.6-sched-devel.git Signed-off-by: Mike Travis <travis@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 12:21:12 -07:00
numa_set_node(cpu, node);
}
}
x86: cleanup early per cpu variables/accesses v4 * Introduce a new PER_CPU macro called "EARLY_PER_CPU". This is used by some per_cpu variables that are initialized and accessed before there are per_cpu areas allocated. ["Early" in respect to per_cpu variables is "earlier than the per_cpu areas have been setup".] This patchset adds these new macros: DEFINE_EARLY_PER_CPU(_type, _name, _initvalue) EXPORT_EARLY_PER_CPU_SYMBOL(_name) DECLARE_EARLY_PER_CPU(_type, _name) early_per_cpu_ptr(_name) early_per_cpu_map(_name, _idx) early_per_cpu(_name, _cpu) The DEFINE macro defines the per_cpu variable as well as the early map and pointer. It also initializes the per_cpu variable and map elements to "_initvalue". The early_* macros provide access to the initial map (usually setup during system init) and the early pointer. This pointer is initialized to point to the early map but is then NULL'ed when the actual per_cpu areas are setup. After that the per_cpu variable is the correct access to the variable. The early_per_cpu() macro is not very efficient but does show how to access the variable if you have a function that can be called both "early" and "late". It tests the early ptr to be NULL, and if not then it's still valid. Otherwise, the per_cpu variable is used instead: #define early_per_cpu(_name, _cpu) \ (early_per_cpu_ptr(_name) ? \ early_per_cpu_ptr(_name)[_cpu] : \ per_cpu(_name, _cpu)) A better method is to actually check the pointer manually. In the case below, numa_set_node can be called both "early" and "late": void __cpuinit numa_set_node(int cpu, int node) { int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); if (cpu_to_node_map) cpu_to_node_map[cpu] = node; else per_cpu(x86_cpu_to_node_map, cpu) = node; } * Add a flag "arch_provides_topology_pointers" that indicates pointers to topology cpumask_t maps are available. Otherwise, use the function returning the cpumask_t value. This is useful if cpumask_t set size is very large to avoid copying data on to/off of the stack. * The coverage of CONFIG_DEBUG_PER_CPU_MAPS has been increased while the non-debug case has been optimized a bit. * Remove an unreferenced compiler warning in drivers/base/topology.c * Clean up #ifdef in setup.c For inclusion into sched-devel/latest tree. Based on: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git + sched-devel/latest .../mingo/linux-2.6-sched-devel.git Signed-off-by: Mike Travis <travis@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 12:21:12 -07:00
#endif