1
linux/drivers/usb/core/hcd.c

1955 lines
54 KiB
C
Raw Normal View History

/*
* (C) Copyright Linus Torvalds 1999
* (C) Copyright Johannes Erdfelt 1999-2001
* (C) Copyright Andreas Gal 1999
* (C) Copyright Gregory P. Smith 1999
* (C) Copyright Deti Fliegl 1999
* (C) Copyright Randy Dunlap 2000
* (C) Copyright David Brownell 2000-2002
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/config.h>
#ifdef CONFIG_USB_DEBUG
#define DEBUG
#endif
#include <linux/module.h>
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/completion.h>
#include <linux/utsname.h>
#include <linux/mm.h>
#include <asm/io.h>
#include <asm/scatterlist.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <asm/irq.h>
#include <asm/byteorder.h>
#include <linux/usb.h>
#include "usb.h"
#include "hcd.h"
#include "hub.h"
// #define USB_BANDWIDTH_MESSAGES
/*-------------------------------------------------------------------------*/
/*
* USB Host Controller Driver framework
*
* Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
* HCD-specific behaviors/bugs.
*
* This does error checks, tracks devices and urbs, and delegates to a
* "hc_driver" only for code (and data) that really needs to know about
* hardware differences. That includes root hub registers, i/o queues,
* and so on ... but as little else as possible.
*
* Shared code includes most of the "root hub" code (these are emulated,
* though each HC's hardware works differently) and PCI glue, plus request
* tracking overhead. The HCD code should only block on spinlocks or on
* hardware handshaking; blocking on software events (such as other kernel
* threads releasing resources, or completing actions) is all generic.
*
* Happens the USB 2.0 spec says this would be invisible inside the "USBD",
* and includes mostly a "HCDI" (HCD Interface) along with some APIs used
* only by the hub driver ... and that neither should be seen or used by
* usb client device drivers.
*
* Contributors of ideas or unattributed patches include: David Brownell,
* Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
*
* HISTORY:
* 2002-02-21 Pull in most of the usb_bus support from usb.c; some
* associated cleanup. "usb_hcd" still != "usb_bus".
* 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
*/
/*-------------------------------------------------------------------------*/
/* host controllers we manage */
LIST_HEAD (usb_bus_list);
EXPORT_SYMBOL_GPL (usb_bus_list);
/* used when allocating bus numbers */
#define USB_MAXBUS 64
struct usb_busmap {
unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
};
static struct usb_busmap busmap;
/* used when updating list of hcds */
DECLARE_MUTEX (usb_bus_list_lock); /* exported only for usbfs */
EXPORT_SYMBOL_GPL (usb_bus_list_lock);
/* used for controlling access to virtual root hubs */
static DEFINE_SPINLOCK(hcd_root_hub_lock);
/* used when updating hcd data */
static DEFINE_SPINLOCK(hcd_data_lock);
/* wait queue for synchronous unlinks */
DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
/*-------------------------------------------------------------------------*/
/*
* Sharable chunks of root hub code.
*/
/*-------------------------------------------------------------------------*/
#define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
#define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
/* usb 2.0 root hub device descriptor */
static const u8 usb2_rh_dev_descriptor [18] = {
0x12, /* __u8 bLength; */
0x01, /* __u8 bDescriptorType; Device */
0x00, 0x02, /* __le16 bcdUSB; v2.0 */
0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
0x00, /* __u8 bDeviceSubClass; */
0x01, /* __u8 bDeviceProtocol; [ usb 2.0 single TT ]*/
0x08, /* __u8 bMaxPacketSize0; 8 Bytes */
0x00, 0x00, /* __le16 idVendor; */
0x00, 0x00, /* __le16 idProduct; */
KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
0x03, /* __u8 iManufacturer; */
0x02, /* __u8 iProduct; */
0x01, /* __u8 iSerialNumber; */
0x01 /* __u8 bNumConfigurations; */
};
/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
/* usb 1.1 root hub device descriptor */
static const u8 usb11_rh_dev_descriptor [18] = {
0x12, /* __u8 bLength; */
0x01, /* __u8 bDescriptorType; Device */
0x10, 0x01, /* __le16 bcdUSB; v1.1 */
0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
0x00, /* __u8 bDeviceSubClass; */
0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
0x08, /* __u8 bMaxPacketSize0; 8 Bytes */
0x00, 0x00, /* __le16 idVendor; */
0x00, 0x00, /* __le16 idProduct; */
KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
0x03, /* __u8 iManufacturer; */
0x02, /* __u8 iProduct; */
0x01, /* __u8 iSerialNumber; */
0x01 /* __u8 bNumConfigurations; */
};
/*-------------------------------------------------------------------------*/
/* Configuration descriptors for our root hubs */
static const u8 fs_rh_config_descriptor [] = {
/* one configuration */
0x09, /* __u8 bLength; */
0x02, /* __u8 bDescriptorType; Configuration */
0x19, 0x00, /* __le16 wTotalLength; */
0x01, /* __u8 bNumInterfaces; (1) */
0x01, /* __u8 bConfigurationValue; */
0x00, /* __u8 iConfiguration; */
0xc0, /* __u8 bmAttributes;
Bit 7: must be set,
6: Self-powered,
5: Remote wakeup,
4..0: resvd */
0x00, /* __u8 MaxPower; */
/* USB 1.1:
* USB 2.0, single TT organization (mandatory):
* one interface, protocol 0
*
* USB 2.0, multiple TT organization (optional):
* two interfaces, protocols 1 (like single TT)
* and 2 (multiple TT mode) ... config is
* sometimes settable
* NOT IMPLEMENTED
*/
/* one interface */
0x09, /* __u8 if_bLength; */
0x04, /* __u8 if_bDescriptorType; Interface */
0x00, /* __u8 if_bInterfaceNumber; */
0x00, /* __u8 if_bAlternateSetting; */
0x01, /* __u8 if_bNumEndpoints; */
0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
0x00, /* __u8 if_bInterfaceSubClass; */
0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
0x00, /* __u8 if_iInterface; */
/* one endpoint (status change endpoint) */
0x07, /* __u8 ep_bLength; */
0x05, /* __u8 ep_bDescriptorType; Endpoint */
0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
0x03, /* __u8 ep_bmAttributes; Interrupt */
0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
};
static const u8 hs_rh_config_descriptor [] = {
/* one configuration */
0x09, /* __u8 bLength; */
0x02, /* __u8 bDescriptorType; Configuration */
0x19, 0x00, /* __le16 wTotalLength; */
0x01, /* __u8 bNumInterfaces; (1) */
0x01, /* __u8 bConfigurationValue; */
0x00, /* __u8 iConfiguration; */
0xc0, /* __u8 bmAttributes;
Bit 7: must be set,
6: Self-powered,
5: Remote wakeup,
4..0: resvd */
0x00, /* __u8 MaxPower; */
/* USB 1.1:
* USB 2.0, single TT organization (mandatory):
* one interface, protocol 0
*
* USB 2.0, multiple TT organization (optional):
* two interfaces, protocols 1 (like single TT)
* and 2 (multiple TT mode) ... config is
* sometimes settable
* NOT IMPLEMENTED
*/
/* one interface */
0x09, /* __u8 if_bLength; */
0x04, /* __u8 if_bDescriptorType; Interface */
0x00, /* __u8 if_bInterfaceNumber; */
0x00, /* __u8 if_bAlternateSetting; */
0x01, /* __u8 if_bNumEndpoints; */
0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
0x00, /* __u8 if_bInterfaceSubClass; */
0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
0x00, /* __u8 if_iInterface; */
/* one endpoint (status change endpoint) */
0x07, /* __u8 ep_bLength; */
0x05, /* __u8 ep_bDescriptorType; Endpoint */
0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
0x03, /* __u8 ep_bmAttributes; Interrupt */
0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
};
/*-------------------------------------------------------------------------*/
/*
* helper routine for returning string descriptors in UTF-16LE
* input can actually be ISO-8859-1; ASCII is its 7-bit subset
*/
static int ascii2utf (char *s, u8 *utf, int utfmax)
{
int retval;
for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
*utf++ = *s++;
*utf++ = 0;
}
if (utfmax > 0) {
*utf = *s;
++retval;
}
return retval;
}
/*
* rh_string - provides manufacturer, product and serial strings for root hub
* @id: the string ID number (1: serial number, 2: product, 3: vendor)
* @hcd: the host controller for this root hub
* @type: string describing our driver
* @data: return packet in UTF-16 LE
* @len: length of the return packet
*
* Produces either a manufacturer, product or serial number string for the
* virtual root hub device.
*/
static int rh_string (
int id,
struct usb_hcd *hcd,
u8 *data,
int len
) {
char buf [100];
// language ids
if (id == 0) {
buf[0] = 4; buf[1] = 3; /* 4 bytes string data */
buf[2] = 0x09; buf[3] = 0x04; /* MSFT-speak for "en-us" */
len = min (len, 4);
memcpy (data, buf, len);
return len;
// serial number
} else if (id == 1) {
strlcpy (buf, hcd->self.bus_name, sizeof buf);
// product description
} else if (id == 2) {
strlcpy (buf, hcd->product_desc, sizeof buf);
// id 3 == vendor description
} else if (id == 3) {
snprintf (buf, sizeof buf, "%s %s %s", system_utsname.sysname,
system_utsname.release, hcd->driver->description);
// unsupported IDs --> "protocol stall"
} else
return -EPIPE;
switch (len) { /* All cases fall through */
default:
len = 2 + ascii2utf (buf, data + 2, len - 2);
case 2:
data [1] = 3; /* type == string */
case 1:
data [0] = 2 * (strlen (buf) + 1);
case 0:
; /* Compiler wants a statement here */
}
return len;
}
/* Root hub control transfers execute synchronously */
static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
{
struct usb_ctrlrequest *cmd;
u16 typeReq, wValue, wIndex, wLength;
u8 *ubuf = urb->transfer_buffer;
u8 tbuf [sizeof (struct usb_hub_descriptor)];
const u8 *bufp = tbuf;
int len = 0;
int patch_wakeup = 0;
unsigned long flags;
int status = 0;
int n;
cmd = (struct usb_ctrlrequest *) urb->setup_packet;
typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
wValue = le16_to_cpu (cmd->wValue);
wIndex = le16_to_cpu (cmd->wIndex);
wLength = le16_to_cpu (cmd->wLength);
if (wLength > urb->transfer_buffer_length)
goto error;
urb->actual_length = 0;
switch (typeReq) {
/* DEVICE REQUESTS */
case DeviceRequest | USB_REQ_GET_STATUS:
tbuf [0] = (hcd->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP)
| (1 << USB_DEVICE_SELF_POWERED);
tbuf [1] = 0;
len = 2;
break;
case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
if (wValue == USB_DEVICE_REMOTE_WAKEUP)
hcd->remote_wakeup = 0;
else
goto error;
break;
case DeviceOutRequest | USB_REQ_SET_FEATURE:
if (hcd->can_wakeup && wValue == USB_DEVICE_REMOTE_WAKEUP)
hcd->remote_wakeup = 1;
else
goto error;
break;
case DeviceRequest | USB_REQ_GET_CONFIGURATION:
tbuf [0] = 1;
len = 1;
/* FALLTHROUGH */
case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
break;
case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
switch (wValue & 0xff00) {
case USB_DT_DEVICE << 8:
if (hcd->driver->flags & HCD_USB2)
bufp = usb2_rh_dev_descriptor;
else if (hcd->driver->flags & HCD_USB11)
bufp = usb11_rh_dev_descriptor;
else
goto error;
len = 18;
break;
case USB_DT_CONFIG << 8:
if (hcd->driver->flags & HCD_USB2) {
bufp = hs_rh_config_descriptor;
len = sizeof hs_rh_config_descriptor;
} else {
bufp = fs_rh_config_descriptor;
len = sizeof fs_rh_config_descriptor;
}
if (hcd->can_wakeup)
patch_wakeup = 1;
break;
case USB_DT_STRING << 8:
n = rh_string (wValue & 0xff, hcd, ubuf, wLength);
if (n < 0)
goto error;
urb->actual_length = n;
break;
default:
goto error;
}
break;
case DeviceRequest | USB_REQ_GET_INTERFACE:
tbuf [0] = 0;
len = 1;
/* FALLTHROUGH */
case DeviceOutRequest | USB_REQ_SET_INTERFACE:
break;
case DeviceOutRequest | USB_REQ_SET_ADDRESS:
// wValue == urb->dev->devaddr
dev_dbg (hcd->self.controller, "root hub device address %d\n",
wValue);
break;
/* INTERFACE REQUESTS (no defined feature/status flags) */
/* ENDPOINT REQUESTS */
case EndpointRequest | USB_REQ_GET_STATUS:
// ENDPOINT_HALT flag
tbuf [0] = 0;
tbuf [1] = 0;
len = 2;
/* FALLTHROUGH */
case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
case EndpointOutRequest | USB_REQ_SET_FEATURE:
dev_dbg (hcd->self.controller, "no endpoint features yet\n");
break;
/* CLASS REQUESTS (and errors) */
default:
/* non-generic request */
switch (typeReq) {
case GetHubStatus:
case GetPortStatus:
len = 4;
break;
case GetHubDescriptor:
len = sizeof (struct usb_hub_descriptor);
break;
}
status = hcd->driver->hub_control (hcd,
typeReq, wValue, wIndex,
tbuf, wLength);
break;
error:
/* "protocol stall" on error */
status = -EPIPE;
}
if (status) {
len = 0;
if (status != -EPIPE) {
dev_dbg (hcd->self.controller,
"CTRL: TypeReq=0x%x val=0x%x "
"idx=0x%x len=%d ==> %d\n",
typeReq, wValue, wIndex,
wLength, status);
}
}
if (len) {
if (urb->transfer_buffer_length < len)
len = urb->transfer_buffer_length;
urb->actual_length = len;
// always USB_DIR_IN, toward host
memcpy (ubuf, bufp, len);
/* report whether RH hardware supports remote wakeup */
if (patch_wakeup &&
len > offsetof (struct usb_config_descriptor,
bmAttributes))
((struct usb_config_descriptor *)ubuf)->bmAttributes
|= USB_CONFIG_ATT_WAKEUP;
}
/* any errors get returned through the urb completion */
local_irq_save (flags);
spin_lock (&urb->lock);
if (urb->status == -EINPROGRESS)
urb->status = status;
spin_unlock (&urb->lock);
usb_hcd_giveback_urb (hcd, urb, NULL);
local_irq_restore (flags);
return 0;
}
/*-------------------------------------------------------------------------*/
/*
* Root Hub interrupt transfers are polled using a timer if the
* driver requests it; otherwise the driver is responsible for
* calling usb_hcd_poll_rh_status() when an event occurs.
*
* Completions are called in_interrupt(), but they may or may not
* be in_irq().
*/
void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
{
struct urb *urb;
int length;
unsigned long flags;
char buffer[4]; /* Any root hubs with > 31 ports? */
if (!hcd->uses_new_polling && !hcd->status_urb)
return;
length = hcd->driver->hub_status_data(hcd, buffer);
if (length > 0) {
/* try to complete the status urb */
local_irq_save (flags);
spin_lock(&hcd_root_hub_lock);
urb = hcd->status_urb;
if (urb) {
spin_lock(&urb->lock);
if (urb->status == -EINPROGRESS) {
hcd->poll_pending = 0;
hcd->status_urb = NULL;
urb->status = 0;
urb->hcpriv = NULL;
urb->actual_length = length;
memcpy(urb->transfer_buffer, buffer, length);
} else /* urb has been unlinked */
length = 0;
spin_unlock(&urb->lock);
} else
length = 0;
spin_unlock(&hcd_root_hub_lock);
/* local irqs are always blocked in completions */
if (length > 0)
usb_hcd_giveback_urb (hcd, urb, NULL);
else
hcd->poll_pending = 1;
local_irq_restore (flags);
}
/* The USB 2.0 spec says 256 ms. This is close enough and won't
* exceed that limit if HZ is 100. */
if (hcd->uses_new_polling ? hcd->poll_rh :
(length == 0 && hcd->status_urb != NULL))
mod_timer (&hcd->rh_timer, jiffies + msecs_to_jiffies(250));
}
EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
/* timer callback */
static void rh_timer_func (unsigned long _hcd)
{
usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
}
/*-------------------------------------------------------------------------*/
static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
{
int retval;
unsigned long flags;
int len = 1 + (urb->dev->maxchild / 8);
spin_lock_irqsave (&hcd_root_hub_lock, flags);
if (urb->status != -EINPROGRESS) /* already unlinked */
retval = urb->status;
else if (hcd->status_urb || urb->transfer_buffer_length < len) {
dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
retval = -EINVAL;
} else {
hcd->status_urb = urb;
urb->hcpriv = hcd; /* indicate it's queued */
if (!hcd->uses_new_polling)
mod_timer (&hcd->rh_timer, jiffies +
msecs_to_jiffies(250));
/* If a status change has already occurred, report it ASAP */
else if (hcd->poll_pending)
mod_timer (&hcd->rh_timer, jiffies);
retval = 0;
}
spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
return retval;
}
static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
{
if (usb_pipeint (urb->pipe))
return rh_queue_status (hcd, urb);
if (usb_pipecontrol (urb->pipe))
return rh_call_control (hcd, urb);
return -EINVAL;
}
/*-------------------------------------------------------------------------*/
/* Asynchronous unlinks of root-hub control URBs are legal, but they
* don't do anything. Status URB unlinks must be made in process context
* with interrupts enabled.
*/
static int usb_rh_urb_dequeue (struct usb_hcd *hcd, struct urb *urb)
{
if (usb_pipeendpoint(urb->pipe) == 0) { /* Control URB */
if (in_interrupt())
return 0; /* nothing to do */
spin_lock_irq(&urb->lock); /* from usb_kill_urb */
++urb->reject;
spin_unlock_irq(&urb->lock);
wait_event(usb_kill_urb_queue,
atomic_read(&urb->use_count) == 0);
spin_lock_irq(&urb->lock);
--urb->reject;
spin_unlock_irq(&urb->lock);
} else { /* Status URB */
if (!hcd->uses_new_polling)
del_timer_sync (&hcd->rh_timer);
local_irq_disable ();
spin_lock (&hcd_root_hub_lock);
if (urb == hcd->status_urb) {
hcd->status_urb = NULL;
urb->hcpriv = NULL;
} else
urb = NULL; /* wasn't fully queued */
spin_unlock (&hcd_root_hub_lock);
if (urb)
usb_hcd_giveback_urb (hcd, urb, NULL);
local_irq_enable ();
}
return 0;
}
/*-------------------------------------------------------------------------*/
/* exported only within usbcore */
struct usb_bus *usb_bus_get(struct usb_bus *bus)
{
if (bus)
kref_get(&bus->kref);
return bus;
}
static void usb_host_release(struct kref *kref)
{
struct usb_bus *bus = container_of(kref, struct usb_bus, kref);
if (bus->release)
bus->release(bus);
}
/* exported only within usbcore */
void usb_bus_put(struct usb_bus *bus)
{
if (bus)
kref_put(&bus->kref, usb_host_release);
}
/*-------------------------------------------------------------------------*/
static struct class *usb_host_class;
int usb_host_init(void)
{
int retval = 0;
usb_host_class = class_create(THIS_MODULE, "usb_host");
if (IS_ERR(usb_host_class))
retval = PTR_ERR(usb_host_class);
return retval;
}
void usb_host_cleanup(void)
{
class_destroy(usb_host_class);
}
/**
* usb_bus_init - shared initialization code
* @bus: the bus structure being initialized
*
* This code is used to initialize a usb_bus structure, memory for which is
* separately managed.
*/
static void usb_bus_init (struct usb_bus *bus)
{
memset (&bus->devmap, 0, sizeof(struct usb_devmap));
bus->devnum_next = 1;
bus->root_hub = NULL;
bus->hcpriv = NULL;
bus->busnum = -1;
bus->bandwidth_allocated = 0;
bus->bandwidth_int_reqs = 0;
bus->bandwidth_isoc_reqs = 0;
INIT_LIST_HEAD (&bus->bus_list);
kref_init(&bus->kref);
}
/**
* usb_alloc_bus - creates a new USB host controller structure
* @op: pointer to a struct usb_operations that this bus structure should use
* Context: !in_interrupt()
*
* Creates a USB host controller bus structure with the specified
* usb_operations and initializes all the necessary internal objects.
*
* If no memory is available, NULL is returned.
*
* The caller should call usb_put_bus() when it is finished with the structure.
*/
struct usb_bus *usb_alloc_bus (struct usb_operations *op)
{
struct usb_bus *bus;
bus = kmalloc (sizeof *bus, GFP_KERNEL);
if (!bus)
return NULL;
memset(bus, 0, sizeof(struct usb_bus));
usb_bus_init (bus);
bus->op = op;
return bus;
}
/*-------------------------------------------------------------------------*/
/**
* usb_register_bus - registers the USB host controller with the usb core
* @bus: pointer to the bus to register
* Context: !in_interrupt()
*
* Assigns a bus number, and links the controller into usbcore data
* structures so that it can be seen by scanning the bus list.
*/
static int usb_register_bus(struct usb_bus *bus)
{
int busnum;
down (&usb_bus_list_lock);
busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
if (busnum < USB_MAXBUS) {
set_bit (busnum, busmap.busmap);
bus->busnum = busnum;
} else {
printk (KERN_ERR "%s: too many buses\n", usbcore_name);
up(&usb_bus_list_lock);
return -E2BIG;
}
bus->class_dev = class_device_create(usb_host_class, NULL, MKDEV(0,0),
bus->controller, "usb_host%d", busnum);
if (IS_ERR(bus->class_dev)) {
clear_bit(busnum, busmap.busmap);
up(&usb_bus_list_lock);
return PTR_ERR(bus->class_dev);
}
class_set_devdata(bus->class_dev, bus);
/* Add it to the local list of buses */
list_add (&bus->bus_list, &usb_bus_list);
up (&usb_bus_list_lock);
usbfs_add_bus (bus);
usbmon_notify_bus_add (bus);
dev_info (bus->controller, "new USB bus registered, assigned bus number %d\n", bus->busnum);
return 0;
}
/**
* usb_deregister_bus - deregisters the USB host controller
* @bus: pointer to the bus to deregister
* Context: !in_interrupt()
*
* Recycles the bus number, and unlinks the controller from usbcore data
* structures so that it won't be seen by scanning the bus list.
*/
static void usb_deregister_bus (struct usb_bus *bus)
{
dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
/*
* NOTE: make sure that all the devices are removed by the
* controller code, as well as having it call this when cleaning
* itself up
*/
down (&usb_bus_list_lock);
list_del (&bus->bus_list);
up (&usb_bus_list_lock);
usbmon_notify_bus_remove (bus);
usbfs_remove_bus (bus);
clear_bit (bus->busnum, busmap.busmap);
class_device_unregister(bus->class_dev);
}
/**
* register_root_hub - called by usb_add_hcd() to register a root hub
* @usb_dev: the usb root hub device to be registered.
* @hcd: host controller for this root hub
*
* This function registers the root hub with the USB subsystem. It sets up
* the device properly in the device tree and stores the root_hub pointer
* in the bus structure, then calls usb_new_device() to register the usb
* device. It also assigns the root hub's USB address (always 1).
*/
static int register_root_hub (struct usb_device *usb_dev,
struct usb_hcd *hcd)
{
struct device *parent_dev = hcd->self.controller;
const int devnum = 1;
int retval;
usb_dev->devnum = devnum;
usb_dev->bus->devnum_next = devnum + 1;
memset (&usb_dev->bus->devmap.devicemap, 0,
sizeof usb_dev->bus->devmap.devicemap);
set_bit (devnum, usb_dev->bus->devmap.devicemap);
usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
down (&usb_bus_list_lock);
usb_dev->bus->root_hub = usb_dev;
usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
if (retval != sizeof usb_dev->descriptor) {
usb_dev->bus->root_hub = NULL;
up (&usb_bus_list_lock);
dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
usb_dev->dev.bus_id, retval);
return (retval < 0) ? retval : -EMSGSIZE;
}
usb_lock_device (usb_dev);
retval = usb_new_device (usb_dev);
usb_unlock_device (usb_dev);
if (retval) {
usb_dev->bus->root_hub = NULL;
dev_err (parent_dev, "can't register root hub for %s, %d\n",
usb_dev->dev.bus_id, retval);
}
up (&usb_bus_list_lock);
if (retval == 0) {
spin_lock_irq (&hcd_root_hub_lock);
hcd->rh_registered = 1;
spin_unlock_irq (&hcd_root_hub_lock);
/* Did the HC die before the root hub was registered? */
if (hcd->state == HC_STATE_HALT)
usb_hc_died (hcd); /* This time clean up */
}
return retval;
}
void usb_enable_root_hub_irq (struct usb_bus *bus)
{
struct usb_hcd *hcd;
hcd = container_of (bus, struct usb_hcd, self);
if (hcd->driver->hub_irq_enable && !hcd->poll_rh &&
hcd->state != HC_STATE_HALT)
hcd->driver->hub_irq_enable (hcd);
}
/*-------------------------------------------------------------------------*/
/**
* usb_calc_bus_time - approximate periodic transaction time in nanoseconds
* @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
* @is_input: true iff the transaction sends data to the host
* @isoc: true for isochronous transactions, false for interrupt ones
* @bytecount: how many bytes in the transaction.
*
* Returns approximate bus time in nanoseconds for a periodic transaction.
* See USB 2.0 spec section 5.11.3; only periodic transfers need to be
* scheduled in software, this function is only used for such scheduling.
*/
long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
{
unsigned long tmp;
switch (speed) {
case USB_SPEED_LOW: /* INTR only */
if (is_input) {
tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
} else {
tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
}
case USB_SPEED_FULL: /* ISOC or INTR */
if (isoc) {
tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
} else {
tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
return (9107L + BW_HOST_DELAY + tmp);
}
case USB_SPEED_HIGH: /* ISOC or INTR */
// FIXME adjust for input vs output
if (isoc)
tmp = HS_NSECS_ISO (bytecount);
else
tmp = HS_NSECS (bytecount);
return tmp;
default:
pr_debug ("%s: bogus device speed!\n", usbcore_name);
return -1;
}
}
EXPORT_SYMBOL (usb_calc_bus_time);
/*
* usb_check_bandwidth():
*
* old_alloc is from host_controller->bandwidth_allocated in microseconds;
* bustime is from calc_bus_time(), but converted to microseconds.
*
* returns <bustime in us> if successful,
* or -ENOSPC if bandwidth request fails.
*
* FIXME:
* This initial implementation does not use Endpoint.bInterval
* in managing bandwidth allocation.
* It probably needs to be expanded to use Endpoint.bInterval.
* This can be done as a later enhancement (correction).
*
* This will also probably require some kind of
* frame allocation tracking...meaning, for example,
* that if multiple drivers request interrupts every 10 USB frames,
* they don't all have to be allocated at
* frame numbers N, N+10, N+20, etc. Some of them could be at
* N+11, N+21, N+31, etc., and others at
* N+12, N+22, N+32, etc.
*
* Similarly for isochronous transfers...
*
* Individual HCDs can schedule more directly ... this logic
* is not correct for high speed transfers.
*/
int usb_check_bandwidth (struct usb_device *dev, struct urb *urb)
{
unsigned int pipe = urb->pipe;
long bustime;
int is_in = usb_pipein (pipe);
int is_iso = usb_pipeisoc (pipe);
int old_alloc = dev->bus->bandwidth_allocated;
int new_alloc;
bustime = NS_TO_US (usb_calc_bus_time (dev->speed, is_in, is_iso,
usb_maxpacket (dev, pipe, !is_in)));
if (is_iso)
bustime /= urb->number_of_packets;
new_alloc = old_alloc + (int) bustime;
if (new_alloc > FRAME_TIME_MAX_USECS_ALLOC) {
#ifdef DEBUG
char *mode =
#ifdef CONFIG_USB_BANDWIDTH
"";
#else
"would have ";
#endif
dev_dbg (&dev->dev, "usb_check_bandwidth %sFAILED: %d + %ld = %d usec\n",
mode, old_alloc, bustime, new_alloc);
#endif
#ifdef CONFIG_USB_BANDWIDTH
bustime = -ENOSPC; /* report error */
#endif
}
return bustime;
}
EXPORT_SYMBOL (usb_check_bandwidth);
/**
* usb_claim_bandwidth - records bandwidth for a periodic transfer
* @dev: source/target of request
* @urb: request (urb->dev == dev)
* @bustime: bandwidth consumed, in (average) microseconds per frame
* @isoc: true iff the request is isochronous
*
* Bus bandwidth reservations are recorded purely for diagnostic purposes.
* HCDs are expected not to overcommit periodic bandwidth, and to record such
* reservations whenever endpoints are added to the periodic schedule.
*
* FIXME averaging per-frame is suboptimal. Better to sum over the HCD's
* entire periodic schedule ... 32 frames for OHCI, 1024 for UHCI, settable
* for EHCI (256/512/1024 frames, default 1024) and have the bus expose how
* large its periodic schedule is.
*/
void usb_claim_bandwidth (struct usb_device *dev, struct urb *urb, int bustime, int isoc)
{
dev->bus->bandwidth_allocated += bustime;
if (isoc)
dev->bus->bandwidth_isoc_reqs++;
else
dev->bus->bandwidth_int_reqs++;
urb->bandwidth = bustime;
#ifdef USB_BANDWIDTH_MESSAGES
dev_dbg (&dev->dev, "bandwidth alloc increased by %d (%s) to %d for %d requesters\n",
bustime,
isoc ? "ISOC" : "INTR",
dev->bus->bandwidth_allocated,
dev->bus->bandwidth_int_reqs + dev->bus->bandwidth_isoc_reqs);
#endif
}
EXPORT_SYMBOL (usb_claim_bandwidth);
/**
* usb_release_bandwidth - reverses effect of usb_claim_bandwidth()
* @dev: source/target of request
* @urb: request (urb->dev == dev)
* @isoc: true iff the request is isochronous
*
* This records that previously allocated bandwidth has been released.
* Bandwidth is released when endpoints are removed from the host controller's
* periodic schedule.
*/
void usb_release_bandwidth (struct usb_device *dev, struct urb *urb, int isoc)
{
dev->bus->bandwidth_allocated -= urb->bandwidth;
if (isoc)
dev->bus->bandwidth_isoc_reqs--;
else
dev->bus->bandwidth_int_reqs--;
#ifdef USB_BANDWIDTH_MESSAGES
dev_dbg (&dev->dev, "bandwidth alloc reduced by %d (%s) to %d for %d requesters\n",
urb->bandwidth,
isoc ? "ISOC" : "INTR",
dev->bus->bandwidth_allocated,
dev->bus->bandwidth_int_reqs + dev->bus->bandwidth_isoc_reqs);
#endif
urb->bandwidth = 0;
}
EXPORT_SYMBOL (usb_release_bandwidth);
/*-------------------------------------------------------------------------*/
/*
* Generic HC operations.
*/
/*-------------------------------------------------------------------------*/
static void urb_unlink (struct urb *urb)
{
unsigned long flags;
/* Release any periodic transfer bandwidth */
if (urb->bandwidth)
usb_release_bandwidth (urb->dev, urb,
usb_pipeisoc (urb->pipe));
/* clear all state linking urb to this dev (and hcd) */
spin_lock_irqsave (&hcd_data_lock, flags);
list_del_init (&urb->urb_list);
spin_unlock_irqrestore (&hcd_data_lock, flags);
usb_put_dev (urb->dev);
}
/* may be called in any context with a valid urb->dev usecount
* caller surrenders "ownership" of urb
* expects usb_submit_urb() to have sanity checked and conditioned all
* inputs in the urb
*/
static int hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
{
int status;
struct usb_hcd *hcd = urb->dev->bus->hcpriv;
struct usb_host_endpoint *ep;
unsigned long flags;
if (!hcd)
return -ENODEV;
usbmon_urb_submit(&hcd->self, urb);
/*
* Atomically queue the urb, first to our records, then to the HCD.
* Access to urb->status is controlled by urb->lock ... changes on
* i/o completion (normal or fault) or unlinking.
*/
// FIXME: verify that quiescing hc works right (RH cleans up)
spin_lock_irqsave (&hcd_data_lock, flags);
ep = (usb_pipein(urb->pipe) ? urb->dev->ep_in : urb->dev->ep_out)
[usb_pipeendpoint(urb->pipe)];
if (unlikely (!ep))
status = -ENOENT;
else if (unlikely (urb->reject))
status = -EPERM;
else switch (hcd->state) {
case HC_STATE_RUNNING:
case HC_STATE_RESUMING:
doit:
usb_get_dev (urb->dev);
list_add_tail (&urb->urb_list, &ep->urb_list);
status = 0;
break;
case HC_STATE_SUSPENDED:
/* HC upstream links (register access, wakeup signaling) can work
* even when the downstream links (and DMA etc) are quiesced; let
* usbcore talk to the root hub.
*/
if (hcd->self.controller->power.power_state.event == PM_EVENT_ON
&& urb->dev->parent == NULL)
goto doit;
/* FALL THROUGH */
default:
status = -ESHUTDOWN;
break;
}
spin_unlock_irqrestore (&hcd_data_lock, flags);
if (status) {
INIT_LIST_HEAD (&urb->urb_list);
usbmon_urb_submit_error(&hcd->self, urb, status);
return status;
}
/* increment urb's reference count as part of giving it to the HCD
* (which now controls it). HCD guarantees that it either returns
* an error or calls giveback(), but not both.
*/
urb = usb_get_urb (urb);
atomic_inc (&urb->use_count);
if (urb->dev == hcd->self.root_hub) {
/* NOTE: requirement on hub callers (usbfs and the hub
* driver, for now) that URBs' urb->transfer_buffer be
* valid and usb_buffer_{sync,unmap}() not be needed, since
* they could clobber root hub response data.
*/
status = rh_urb_enqueue (hcd, urb);
goto done;
}
/* lower level hcd code should use *_dma exclusively,
* unless it uses pio or talks to another transport.
*/
if (hcd->self.controller->dma_mask) {
if (usb_pipecontrol (urb->pipe)
&& !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
urb->setup_dma = dma_map_single (
hcd->self.controller,
urb->setup_packet,
sizeof (struct usb_ctrlrequest),
DMA_TO_DEVICE);
if (urb->transfer_buffer_length != 0
&& !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP))
urb->transfer_dma = dma_map_single (
hcd->self.controller,
urb->transfer_buffer,
urb->transfer_buffer_length,
usb_pipein (urb->pipe)
? DMA_FROM_DEVICE
: DMA_TO_DEVICE);
}
status = hcd->driver->urb_enqueue (hcd, ep, urb, mem_flags);
done:
if (unlikely (status)) {
urb_unlink (urb);
atomic_dec (&urb->use_count);
if (urb->reject)
wake_up (&usb_kill_urb_queue);
usb_put_urb (urb);
usbmon_urb_submit_error(&hcd->self, urb, status);
}
return status;
}
/*-------------------------------------------------------------------------*/
/* called in any context */
static int hcd_get_frame_number (struct usb_device *udev)
{
struct usb_hcd *hcd = (struct usb_hcd *)udev->bus->hcpriv;
if (!HC_IS_RUNNING (hcd->state))
return -ESHUTDOWN;
return hcd->driver->get_frame_number (hcd);
}
/*-------------------------------------------------------------------------*/
/* this makes the hcd giveback() the urb more quickly, by kicking it
* off hardware queues (which may take a while) and returning it as
* soon as practical. we've already set up the urb's return status,
* but we can't know if the callback completed already.
*/
static int
unlink1 (struct usb_hcd *hcd, struct urb *urb)
{
int value;
if (urb->dev == hcd->self.root_hub)
value = usb_rh_urb_dequeue (hcd, urb);
else {
/* The only reason an HCD might fail this call is if
* it has not yet fully queued the urb to begin with.
* Such failures should be harmless. */
value = hcd->driver->urb_dequeue (hcd, urb);
}
if (value != 0)
dev_dbg (hcd->self.controller, "dequeue %p --> %d\n",
urb, value);
return value;
}
/*
* called in any context
*
* caller guarantees urb won't be recycled till both unlink()
* and the urb's completion function return
*/
static int hcd_unlink_urb (struct urb *urb, int status)
{
struct usb_host_endpoint *ep;
struct usb_hcd *hcd = NULL;
struct device *sys = NULL;
unsigned long flags;
struct list_head *tmp;
int retval;
if (!urb)
return -EINVAL;
if (!urb->dev || !urb->dev->bus)
return -ENODEV;
ep = (usb_pipein(urb->pipe) ? urb->dev->ep_in : urb->dev->ep_out)
[usb_pipeendpoint(urb->pipe)];
if (!ep)
return -ENODEV;
/*
* we contend for urb->status with the hcd core,
* which changes it while returning the urb.
*
* Caller guaranteed that the urb pointer hasn't been freed, and
* that it was submitted. But as a rule it can't know whether or
* not it's already been unlinked ... so we respect the reversed
* lock sequence needed for the usb_hcd_giveback_urb() code paths
* (urb lock, then hcd_data_lock) in case some other CPU is now
* unlinking it.
*/
spin_lock_irqsave (&urb->lock, flags);
spin_lock (&hcd_data_lock);
sys = &urb->dev->dev;
hcd = urb->dev->bus->hcpriv;
if (hcd == NULL) {
retval = -ENODEV;
goto done;
}
/* insist the urb is still queued */
list_for_each(tmp, &ep->urb_list) {
if (tmp == &urb->urb_list)
break;
}
if (tmp != &urb->urb_list) {
retval = -EIDRM;
goto done;
}
/* Any status except -EINPROGRESS means something already started to
* unlink this URB from the hardware. So there's no more work to do.
*/
if (urb->status != -EINPROGRESS) {
retval = -EBUSY;
goto done;
}
/* IRQ setup can easily be broken so that USB controllers
* never get completion IRQs ... maybe even the ones we need to
* finish unlinking the initial failed usb_set_address()
* or device descriptor fetch.
*/
if (!hcd->saw_irq && hcd->self.root_hub != urb->dev) {
dev_warn (hcd->self.controller, "Unlink after no-IRQ? "
"Controller is probably using the wrong IRQ."
"\n");
hcd->saw_irq = 1;
}
urb->status = status;
spin_unlock (&hcd_data_lock);
spin_unlock_irqrestore (&urb->lock, flags);
retval = unlink1 (hcd, urb);
if (retval == 0)
retval = -EINPROGRESS;
return retval;
done:
spin_unlock (&hcd_data_lock);
spin_unlock_irqrestore (&urb->lock, flags);
if (retval != -EIDRM && sys && sys->driver)
dev_dbg (sys, "hcd_unlink_urb %p fail %d\n", urb, retval);
return retval;
}
/*-------------------------------------------------------------------------*/
/* disables the endpoint: cancels any pending urbs, then synchronizes with
* the hcd to make sure all endpoint state is gone from hardware. use for
* set_configuration, set_interface, driver removal, physical disconnect.
*
* example: a qh stored in ep->hcpriv, holding state related to endpoint
* type, maxpacket size, toggle, halt status, and scheduling.
*/
static void
hcd_endpoint_disable (struct usb_device *udev, struct usb_host_endpoint *ep)
{
struct usb_hcd *hcd;
struct urb *urb;
hcd = udev->bus->hcpriv;
WARN_ON (!HC_IS_RUNNING (hcd->state) && hcd->state != HC_STATE_HALT &&
udev->state != USB_STATE_NOTATTACHED);
local_irq_disable ();
/* FIXME move most of this into message.c as part of its
* endpoint disable logic
*/
/* ep is already gone from udev->ep_{in,out}[]; no more submits */
rescan:
spin_lock (&hcd_data_lock);
list_for_each_entry (urb, &ep->urb_list, urb_list) {
int tmp;
/* another cpu may be in hcd, spinning on hcd_data_lock
* to giveback() this urb. the races here should be
* small, but a full fix needs a new "can't submit"
* urb state.
* FIXME urb->reject should allow that...
*/
if (urb->status != -EINPROGRESS)
continue;
usb_get_urb (urb);
spin_unlock (&hcd_data_lock);
spin_lock (&urb->lock);
tmp = urb->status;
if (tmp == -EINPROGRESS)
urb->status = -ESHUTDOWN;
spin_unlock (&urb->lock);
/* kick hcd unless it's already returning this */
if (tmp == -EINPROGRESS) {
tmp = urb->pipe;
unlink1 (hcd, urb);
dev_dbg (hcd->self.controller,
"shutdown urb %p pipe %08x ep%d%s%s\n",
urb, tmp, usb_pipeendpoint (tmp),
(tmp & USB_DIR_IN) ? "in" : "out",
({ char *s; \
switch (usb_pipetype (tmp)) { \
case PIPE_CONTROL: s = ""; break; \
case PIPE_BULK: s = "-bulk"; break; \
case PIPE_INTERRUPT: s = "-intr"; break; \
default: s = "-iso"; break; \
}; s;}));
}
usb_put_urb (urb);
/* list contents may have changed */
goto rescan;
}
spin_unlock (&hcd_data_lock);
local_irq_enable ();
/* synchronize with the hardware, so old configuration state
* clears out immediately (and will be freed).
*/
might_sleep ();
if (hcd->driver->endpoint_disable)
hcd->driver->endpoint_disable (hcd, ep);
}
/*-------------------------------------------------------------------------*/
#ifdef CONFIG_PM
static int hcd_hub_suspend (struct usb_bus *bus)
{
struct usb_hcd *hcd;
int status;
hcd = container_of (bus, struct usb_hcd, self);
if (!hcd->driver->hub_suspend)
return -ENOENT;
hcd->state = HC_STATE_QUIESCING;
status = hcd->driver->hub_suspend (hcd);
if (status == 0)
hcd->state = HC_STATE_SUSPENDED;
else
dev_dbg(&bus->root_hub->dev, "%s fail, err %d\n",
"suspend", status);
return status;
}
static int hcd_hub_resume (struct usb_bus *bus)
{
struct usb_hcd *hcd;
int status;
hcd = container_of (bus, struct usb_hcd, self);
if (!hcd->driver->hub_resume)
return -ENOENT;
if (hcd->state == HC_STATE_RUNNING)
return 0;
hcd->state = HC_STATE_RESUMING;
status = hcd->driver->hub_resume (hcd);
if (status == 0)
hcd->state = HC_STATE_RUNNING;
else {
dev_dbg(&bus->root_hub->dev, "%s fail, err %d\n",
"resume", status);
usb_hc_died(hcd);
}
return status;
}
/*
* usb_hcd_suspend_root_hub - HCD autosuspends downstream ports
* @hcd: host controller for this root hub
*
* This call arranges that usb_hcd_resume_root_hub() is safe to call later;
* that the HCD's root hub polling is deactivated; and that the root's hub
* driver is suspended. HCDs may call this to autosuspend when their root
* hub's downstream ports are all inactive: unpowered, disconnected,
* disabled, or suspended.
*
* The HCD will autoresume on device connect change detection (using SRP
* or a D+/D- pullup). The HCD also autoresumes on remote wakeup signaling
* from any ports that are suspended (if that is enabled). In most cases,
* overcurrent signaling (on powered ports) will also start autoresume.
*
* Always called with IRQs blocked.
*/
void usb_hcd_suspend_root_hub (struct usb_hcd *hcd)
{
struct urb *urb;
spin_lock (&hcd_root_hub_lock);
usb_suspend_root_hub (hcd->self.root_hub);
/* force status urb to complete/unlink while suspended */
if (hcd->status_urb) {
urb = hcd->status_urb;
urb->status = -ECONNRESET;
urb->hcpriv = NULL;
urb->actual_length = 0;
del_timer (&hcd->rh_timer);
hcd->poll_pending = 0;
hcd->status_urb = NULL;
} else
urb = NULL;
spin_unlock (&hcd_root_hub_lock);
hcd->state = HC_STATE_SUSPENDED;
if (urb)
usb_hcd_giveback_urb (hcd, urb, NULL);
}
EXPORT_SYMBOL_GPL(usb_hcd_suspend_root_hub);
/**
* usb_hcd_resume_root_hub - called by HCD to resume its root hub
* @hcd: host controller for this root hub
*
* The USB host controller calls this function when its root hub is
* suspended (with the remote wakeup feature enabled) and a remote
* wakeup request is received. It queues a request for khubd to
* resume the root hub (that is, manage its downstream ports again).
*/
void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
{
unsigned long flags;
spin_lock_irqsave (&hcd_root_hub_lock, flags);
if (hcd->rh_registered)
usb_resume_root_hub (hcd->self.root_hub);
spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
}
EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
#endif
/*-------------------------------------------------------------------------*/
#ifdef CONFIG_USB_OTG
/**
* usb_bus_start_enum - start immediate enumeration (for OTG)
* @bus: the bus (must use hcd framework)
* @port_num: 1-based number of port; usually bus->otg_port
* Context: in_interrupt()
*
* Starts enumeration, with an immediate reset followed later by
* khubd identifying and possibly configuring the device.
* This is needed by OTG controller drivers, where it helps meet
* HNP protocol timing requirements for starting a port reset.
*/
int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
{
struct usb_hcd *hcd;
int status = -EOPNOTSUPP;
/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
* boards with root hubs hooked up to internal devices (instead of
* just the OTG port) may need more attention to resetting...
*/
hcd = container_of (bus, struct usb_hcd, self);
if (port_num && hcd->driver->start_port_reset)
status = hcd->driver->start_port_reset(hcd, port_num);
/* run khubd shortly after (first) root port reset finishes;
* it may issue others, until at least 50 msecs have passed.
*/
if (status == 0)
mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
return status;
}
EXPORT_SYMBOL (usb_bus_start_enum);
#endif
/*-------------------------------------------------------------------------*/
/*
* usb_hcd_operations - adapts usb_bus framework to HCD framework (bus glue)
*/
static struct usb_operations usb_hcd_operations = {
.get_frame_number = hcd_get_frame_number,
.submit_urb = hcd_submit_urb,
.unlink_urb = hcd_unlink_urb,
.buffer_alloc = hcd_buffer_alloc,
.buffer_free = hcd_buffer_free,
.disable = hcd_endpoint_disable,
#ifdef CONFIG_PM
.hub_suspend = hcd_hub_suspend,
.hub_resume = hcd_hub_resume,
#endif
};
/*-------------------------------------------------------------------------*/
/**
* usb_hcd_giveback_urb - return URB from HCD to device driver
* @hcd: host controller returning the URB
* @urb: urb being returned to the USB device driver.
* @regs: pt_regs, passed down to the URB completion handler
* Context: in_interrupt()
*
* This hands the URB from HCD to its USB device driver, using its
* completion function. The HCD has freed all per-urb resources
* (and is done using urb->hcpriv). It also released all HCD locks;
* the device driver won't cause problems if it frees, modifies,
* or resubmits this URB.
*/
void usb_hcd_giveback_urb (struct usb_hcd *hcd, struct urb *urb, struct pt_regs *regs)
{
int at_root_hub;
at_root_hub = (urb->dev == hcd->self.root_hub);
urb_unlink (urb);
/* lower level hcd code should use *_dma exclusively */
if (hcd->self.controller->dma_mask && !at_root_hub) {
if (usb_pipecontrol (urb->pipe)
&& !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
dma_unmap_single (hcd->self.controller, urb->setup_dma,
sizeof (struct usb_ctrlrequest),
DMA_TO_DEVICE);
if (urb->transfer_buffer_length != 0
&& !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP))
dma_unmap_single (hcd->self.controller,
urb->transfer_dma,
urb->transfer_buffer_length,
usb_pipein (urb->pipe)
? DMA_FROM_DEVICE
: DMA_TO_DEVICE);
}
usbmon_urb_complete (&hcd->self, urb);
/* pass ownership to the completion handler */
urb->complete (urb, regs);
atomic_dec (&urb->use_count);
if (unlikely (urb->reject))
wake_up (&usb_kill_urb_queue);
usb_put_urb (urb);
}
EXPORT_SYMBOL (usb_hcd_giveback_urb);
/*-------------------------------------------------------------------------*/
/**
* usb_hcd_irq - hook IRQs to HCD framework (bus glue)
* @irq: the IRQ being raised
* @__hcd: pointer to the HCD whose IRQ is being signaled
* @r: saved hardware registers
*
* If the controller isn't HALTed, calls the driver's irq handler.
* Checks whether the controller is now dead.
*/
irqreturn_t usb_hcd_irq (int irq, void *__hcd, struct pt_regs * r)
{
struct usb_hcd *hcd = __hcd;
int start = hcd->state;
if (start == HC_STATE_HALT)
return IRQ_NONE;
if (hcd->driver->irq (hcd, r) == IRQ_NONE)
return IRQ_NONE;
hcd->saw_irq = 1;
if (hcd->state == HC_STATE_HALT)
usb_hc_died (hcd);
return IRQ_HANDLED;
}
/*-------------------------------------------------------------------------*/
/**
* usb_hc_died - report abnormal shutdown of a host controller (bus glue)
* @hcd: pointer to the HCD representing the controller
*
* This is called by bus glue to report a USB host controller that died
* while operations may still have been pending. It's called automatically
* by the PCI glue, so only glue for non-PCI busses should need to call it.
*/
void usb_hc_died (struct usb_hcd *hcd)
{
unsigned long flags;
dev_err (hcd->self.controller, "HC died; cleaning up\n");
spin_lock_irqsave (&hcd_root_hub_lock, flags);
if (hcd->rh_registered) {
hcd->poll_rh = 0;
/* make khubd clean up old urbs and devices */
usb_set_device_state (hcd->self.root_hub,
USB_STATE_NOTATTACHED);
usb_kick_khubd (hcd->self.root_hub);
}
spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
}
EXPORT_SYMBOL_GPL (usb_hc_died);
/*-------------------------------------------------------------------------*/
static void hcd_release (struct usb_bus *bus)
{
struct usb_hcd *hcd;
hcd = container_of(bus, struct usb_hcd, self);
kfree(hcd);
}
/**
* usb_create_hcd - create and initialize an HCD structure
* @driver: HC driver that will use this hcd
* @dev: device for this HC, stored in hcd->self.controller
* @bus_name: value to store in hcd->self.bus_name
* Context: !in_interrupt()
*
* Allocate a struct usb_hcd, with extra space at the end for the
* HC driver's private data. Initialize the generic members of the
* hcd structure.
*
* If memory is unavailable, returns NULL.
*/
struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
struct device *dev, char *bus_name)
{
struct usb_hcd *hcd;
hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
if (!hcd) {
dev_dbg (dev, "hcd alloc failed\n");
return NULL;
}
dev_set_drvdata(dev, hcd);
usb_bus_init(&hcd->self);
hcd->self.op = &usb_hcd_operations;
hcd->self.hcpriv = hcd;
hcd->self.release = &hcd_release;
hcd->self.controller = dev;
hcd->self.bus_name = bus_name;
init_timer(&hcd->rh_timer);
hcd->rh_timer.function = rh_timer_func;
hcd->rh_timer.data = (unsigned long) hcd;
hcd->driver = driver;
hcd->product_desc = (driver->product_desc) ? driver->product_desc :
"USB Host Controller";
return hcd;
}
EXPORT_SYMBOL (usb_create_hcd);
void usb_put_hcd (struct usb_hcd *hcd)
{
dev_set_drvdata(hcd->self.controller, NULL);
usb_bus_put(&hcd->self);
}
EXPORT_SYMBOL (usb_put_hcd);
/**
* usb_add_hcd - finish generic HCD structure initialization and register
* @hcd: the usb_hcd structure to initialize
* @irqnum: Interrupt line to allocate
* @irqflags: Interrupt type flags
*
* Finish the remaining parts of generic HCD initialization: allocate the
* buffers of consistent memory, register the bus, request the IRQ line,
* and call the driver's reset() and start() routines.
*/
int usb_add_hcd(struct usb_hcd *hcd,
unsigned int irqnum, unsigned long irqflags)
{
int retval;
struct usb_device *rhdev;
dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
/* till now HC has been in an indeterminate state ... */
if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
dev_err(hcd->self.controller, "can't reset\n");
return retval;
}
if ((retval = hcd_buffer_create(hcd)) != 0) {
dev_dbg(hcd->self.controller, "pool alloc failed\n");
return retval;
}
if ((retval = usb_register_bus(&hcd->self)) < 0)
goto err_register_bus;
if (hcd->driver->irq) {
char buf[8], *bufp = buf;
#ifdef __sparc__
bufp = __irq_itoa(irqnum);
#else
sprintf(buf, "%d", irqnum);
#endif
snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
hcd->driver->description, hcd->self.busnum);
if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
hcd->irq_descr, hcd)) != 0) {
dev_err(hcd->self.controller,
"request interrupt %s failed\n", bufp);
goto err_request_irq;
}
hcd->irq = irqnum;
dev_info(hcd->self.controller, "irq %s, %s 0x%08llx\n", bufp,
(hcd->driver->flags & HCD_MEMORY) ?
"io mem" : "io base",
(unsigned long long)hcd->rsrc_start);
} else {
hcd->irq = -1;
if (hcd->rsrc_start)
dev_info(hcd->self.controller, "%s 0x%08llx\n",
(hcd->driver->flags & HCD_MEMORY) ?
"io mem" : "io base",
(unsigned long long)hcd->rsrc_start);
}
/* Allocate the root hub before calling hcd->driver->start(),
* but don't register it until afterward so that the hardware
* is running.
*/
if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
dev_err(hcd->self.controller, "unable to allocate root hub\n");
retval = -ENOMEM;
goto err_allocate_root_hub;
}
rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
USB_SPEED_FULL;
/* Although in principle hcd->driver->start() might need to use rhdev,
* none of the current drivers do.
*/
if ((retval = hcd->driver->start(hcd)) < 0) {
dev_err(hcd->self.controller, "startup error %d\n", retval);
goto err_hcd_driver_start;
}
/* hcd->driver->start() reported can_wakeup, probably with
* assistance from board's boot firmware.
* NOTE: normal devices won't enable wakeup by default.
*/
if (hcd->can_wakeup)
dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
hcd->remote_wakeup = hcd->can_wakeup;
if ((retval = register_root_hub(rhdev, hcd)) != 0)
goto err_register_root_hub;
if (hcd->uses_new_polling && hcd->poll_rh)
usb_hcd_poll_rh_status(hcd);
return retval;
err_register_root_hub:
hcd->driver->stop(hcd);
err_hcd_driver_start:
usb_put_dev(rhdev);
err_allocate_root_hub:
if (hcd->irq >= 0)
free_irq(irqnum, hcd);
err_request_irq:
usb_deregister_bus(&hcd->self);
err_register_bus:
hcd_buffer_destroy(hcd);
return retval;
}
EXPORT_SYMBOL (usb_add_hcd);
/**
* usb_remove_hcd - shutdown processing for generic HCDs
* @hcd: the usb_hcd structure to remove
* Context: !in_interrupt()
*
* Disconnects the root hub, then reverses the effects of usb_add_hcd(),
* invoking the HCD's stop() method.
*/
void usb_remove_hcd(struct usb_hcd *hcd)
{
dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
if (HC_IS_RUNNING (hcd->state))
hcd->state = HC_STATE_QUIESCING;
dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
spin_lock_irq (&hcd_root_hub_lock);
hcd->rh_registered = 0;
spin_unlock_irq (&hcd_root_hub_lock);
usb_disconnect(&hcd->self.root_hub);
hcd->poll_rh = 0;
del_timer_sync(&hcd->rh_timer);
hcd->driver->stop(hcd);
hcd->state = HC_STATE_HALT;
if (hcd->irq >= 0)
free_irq(hcd->irq, hcd);
usb_deregister_bus(&hcd->self);
hcd_buffer_destroy(hcd);
}
EXPORT_SYMBOL (usb_remove_hcd);
/*-------------------------------------------------------------------------*/
#if defined(CONFIG_USB_MON)
struct usb_mon_operations *mon_ops;
/*
* The registration is unlocked.
* We do it this way because we do not want to lock in hot paths.
*
* Notice that the code is minimally error-proof. Because usbmon needs
* symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
*/
int usb_mon_register (struct usb_mon_operations *ops)
{
if (mon_ops)
return -EBUSY;
mon_ops = ops;
mb();
return 0;
}
EXPORT_SYMBOL_GPL (usb_mon_register);
void usb_mon_deregister (void)
{
if (mon_ops == NULL) {
printk(KERN_ERR "USB: monitor was not registered\n");
return;
}
mon_ops = NULL;
mb();
}
EXPORT_SYMBOL_GPL (usb_mon_deregister);
#endif /* CONFIG_USB_MON */