1
linux/crypto/serpent.c

601 lines
20 KiB
C
Raw Normal View History

/*
* Cryptographic API.
*
* Serpent Cipher Algorithm.
*
* Copyright (C) 2002 Dag Arne Osvik <osvik@ii.uib.no>
* 2003 Herbert Valerio Riedel <hvr@gnu.org>
*
* Added tnepres support: Ruben Jesus Garcia Hernandez <ruben@ugr.es>, 18.10.2004
* Based on code by hvr
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <asm/byteorder.h>
#include <linux/crypto.h>
#include <linux/types.h>
/* Key is padded to the maximum of 256 bits before round key generation.
* Any key length <= 256 bits (32 bytes) is allowed by the algorithm.
*/
#define SERPENT_MIN_KEY_SIZE 0
#define SERPENT_MAX_KEY_SIZE 32
#define SERPENT_EXPKEY_WORDS 132
#define SERPENT_BLOCK_SIZE 16
#define PHI 0x9e3779b9UL
#define keyiter(a,b,c,d,i,j) \
b ^= d; b ^= c; b ^= a; b ^= PHI ^ i; b = rol32(b,11); k[j] = b;
#define loadkeys(x0,x1,x2,x3,i) \
x0=k[i]; x1=k[i+1]; x2=k[i+2]; x3=k[i+3];
#define storekeys(x0,x1,x2,x3,i) \
k[i]=x0; k[i+1]=x1; k[i+2]=x2; k[i+3]=x3;
#define K(x0,x1,x2,x3,i) \
x3 ^= k[4*(i)+3]; x2 ^= k[4*(i)+2]; \
x1 ^= k[4*(i)+1]; x0 ^= k[4*(i)+0];
#define LK(x0,x1,x2,x3,x4,i) \
x0=rol32(x0,13);\
x2=rol32(x2,3); x1 ^= x0; x4 = x0 << 3; \
x3 ^= x2; x1 ^= x2; \
x1=rol32(x1,1); x3 ^= x4; \
x3=rol32(x3,7); x4 = x1; \
x0 ^= x1; x4 <<= 7; x2 ^= x3; \
x0 ^= x3; x2 ^= x4; x3 ^= k[4*i+3]; \
x1 ^= k[4*i+1]; x0=rol32(x0,5); x2=rol32(x2,22);\
x0 ^= k[4*i+0]; x2 ^= k[4*i+2];
#define KL(x0,x1,x2,x3,x4,i) \
x0 ^= k[4*i+0]; x1 ^= k[4*i+1]; x2 ^= k[4*i+2]; \
x3 ^= k[4*i+3]; x0=ror32(x0,5); x2=ror32(x2,22);\
x4 = x1; x2 ^= x3; x0 ^= x3; \
x4 <<= 7; x0 ^= x1; x1=ror32(x1,1); \
x2 ^= x4; x3=ror32(x3,7); x4 = x0 << 3; \
x1 ^= x0; x3 ^= x4; x0=ror32(x0,13);\
x1 ^= x2; x3 ^= x2; x2=ror32(x2,3);
#define S0(x0,x1,x2,x3,x4) \
x4 = x3; \
x3 |= x0; x0 ^= x4; x4 ^= x2; \
x4 =~ x4; x3 ^= x1; x1 &= x0; \
x1 ^= x4; x2 ^= x0; x0 ^= x3; \
x4 |= x0; x0 ^= x2; x2 &= x1; \
x3 ^= x2; x1 =~ x1; x2 ^= x4; \
x1 ^= x2;
#define S1(x0,x1,x2,x3,x4) \
x4 = x1; \
x1 ^= x0; x0 ^= x3; x3 =~ x3; \
x4 &= x1; x0 |= x1; x3 ^= x2; \
x0 ^= x3; x1 ^= x3; x3 ^= x4; \
x1 |= x4; x4 ^= x2; x2 &= x0; \
x2 ^= x1; x1 |= x0; x0 =~ x0; \
x0 ^= x2; x4 ^= x1;
#define S2(x0,x1,x2,x3,x4) \
x3 =~ x3; \
x1 ^= x0; x4 = x0; x0 &= x2; \
x0 ^= x3; x3 |= x4; x2 ^= x1; \
x3 ^= x1; x1 &= x0; x0 ^= x2; \
x2 &= x3; x3 |= x1; x0 =~ x0; \
x3 ^= x0; x4 ^= x0; x0 ^= x2; \
x1 |= x2;
#define S3(x0,x1,x2,x3,x4) \
x4 = x1; \
x1 ^= x3; x3 |= x0; x4 &= x0; \
x0 ^= x2; x2 ^= x1; x1 &= x3; \
x2 ^= x3; x0 |= x4; x4 ^= x3; \
x1 ^= x0; x0 &= x3; x3 &= x4; \
x3 ^= x2; x4 |= x1; x2 &= x1; \
x4 ^= x3; x0 ^= x3; x3 ^= x2;
#define S4(x0,x1,x2,x3,x4) \
x4 = x3; \
x3 &= x0; x0 ^= x4; \
x3 ^= x2; x2 |= x4; x0 ^= x1; \
x4 ^= x3; x2 |= x0; \
x2 ^= x1; x1 &= x0; \
x1 ^= x4; x4 &= x2; x2 ^= x3; \
x4 ^= x0; x3 |= x1; x1 =~ x1; \
x3 ^= x0;
#define S5(x0,x1,x2,x3,x4) \
x4 = x1; x1 |= x0; \
x2 ^= x1; x3 =~ x3; x4 ^= x0; \
x0 ^= x2; x1 &= x4; x4 |= x3; \
x4 ^= x0; x0 &= x3; x1 ^= x3; \
x3 ^= x2; x0 ^= x1; x2 &= x4; \
x1 ^= x2; x2 &= x0; \
x3 ^= x2;
#define S6(x0,x1,x2,x3,x4) \
x4 = x1; \
x3 ^= x0; x1 ^= x2; x2 ^= x0; \
x0 &= x3; x1 |= x3; x4 =~ x4; \
x0 ^= x1; x1 ^= x2; \
x3 ^= x4; x4 ^= x0; x2 &= x0; \
x4 ^= x1; x2 ^= x3; x3 &= x1; \
x3 ^= x0; x1 ^= x2;
#define S7(x0,x1,x2,x3,x4) \
x1 =~ x1; \
x4 = x1; x0 =~ x0; x1 &= x2; \
x1 ^= x3; x3 |= x4; x4 ^= x2; \
x2 ^= x3; x3 ^= x0; x0 |= x1; \
x2 &= x0; x0 ^= x4; x4 ^= x3; \
x3 &= x0; x4 ^= x1; \
x2 ^= x4; x3 ^= x1; x4 |= x0; \
x4 ^= x1;
#define SI0(x0,x1,x2,x3,x4) \
x4 = x3; x1 ^= x0; \
x3 |= x1; x4 ^= x1; x0 =~ x0; \
x2 ^= x3; x3 ^= x0; x0 &= x1; \
x0 ^= x2; x2 &= x3; x3 ^= x4; \
x2 ^= x3; x1 ^= x3; x3 &= x0; \
x1 ^= x0; x0 ^= x2; x4 ^= x3;
#define SI1(x0,x1,x2,x3,x4) \
x1 ^= x3; x4 = x0; \
x0 ^= x2; x2 =~ x2; x4 |= x1; \
x4 ^= x3; x3 &= x1; x1 ^= x2; \
x2 &= x4; x4 ^= x1; x1 |= x3; \
x3 ^= x0; x2 ^= x0; x0 |= x4; \
x2 ^= x4; x1 ^= x0; \
x4 ^= x1;
#define SI2(x0,x1,x2,x3,x4) \
x2 ^= x1; x4 = x3; x3 =~ x3; \
x3 |= x2; x2 ^= x4; x4 ^= x0; \
x3 ^= x1; x1 |= x2; x2 ^= x0; \
x1 ^= x4; x4 |= x3; x2 ^= x3; \
x4 ^= x2; x2 &= x1; \
x2 ^= x3; x3 ^= x4; x4 ^= x0;
#define SI3(x0,x1,x2,x3,x4) \
x2 ^= x1; \
x4 = x1; x1 &= x2; \
x1 ^= x0; x0 |= x4; x4 ^= x3; \
x0 ^= x3; x3 |= x1; x1 ^= x2; \
x1 ^= x3; x0 ^= x2; x2 ^= x3; \
x3 &= x1; x1 ^= x0; x0 &= x2; \
x4 ^= x3; x3 ^= x0; x0 ^= x1;
#define SI4(x0,x1,x2,x3,x4) \
x2 ^= x3; x4 = x0; x0 &= x1; \
x0 ^= x2; x2 |= x3; x4 =~ x4; \
x1 ^= x0; x0 ^= x2; x2 &= x4; \
x2 ^= x0; x0 |= x4; \
x0 ^= x3; x3 &= x2; \
x4 ^= x3; x3 ^= x1; x1 &= x0; \
x4 ^= x1; x0 ^= x3;
#define SI5(x0,x1,x2,x3,x4) \
x4 = x1; x1 |= x2; \
x2 ^= x4; x1 ^= x3; x3 &= x4; \
x2 ^= x3; x3 |= x0; x0 =~ x0; \
x3 ^= x2; x2 |= x0; x4 ^= x1; \
x2 ^= x4; x4 &= x0; x0 ^= x1; \
x1 ^= x3; x0 &= x2; x2 ^= x3; \
x0 ^= x2; x2 ^= x4; x4 ^= x3;
#define SI6(x0,x1,x2,x3,x4) \
x0 ^= x2; \
x4 = x0; x0 &= x3; x2 ^= x3; \
x0 ^= x2; x3 ^= x1; x2 |= x4; \
x2 ^= x3; x3 &= x0; x0 =~ x0; \
x3 ^= x1; x1 &= x2; x4 ^= x0; \
x3 ^= x4; x4 ^= x2; x0 ^= x1; \
x2 ^= x0;
#define SI7(x0,x1,x2,x3,x4) \
x4 = x3; x3 &= x0; x0 ^= x2; \
x2 |= x4; x4 ^= x1; x0 =~ x0; \
x1 |= x3; x4 ^= x0; x0 &= x2; \
x0 ^= x1; x1 &= x2; x3 ^= x2; \
x4 ^= x3; x2 &= x3; x3 |= x0; \
x1 ^= x4; x3 ^= x4; x4 &= x0; \
x4 ^= x2;
struct serpent_ctx {
u32 expkey[SERPENT_EXPKEY_WORDS];
};
static int serpent_setkey(struct crypto_tfm *tfm, const u8 *key,
unsigned int keylen, u32 *flags)
{
struct serpent_ctx *ctx = crypto_tfm_ctx(tfm);
u32 *k = ctx->expkey;
u8 *k8 = (u8 *)k;
u32 r0,r1,r2,r3,r4;
int i;
if ((keylen < SERPENT_MIN_KEY_SIZE)
|| (keylen > SERPENT_MAX_KEY_SIZE))
{
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
/* Copy key, add padding */
for (i = 0; i < keylen; ++i)
k8[i] = key[i];
if (i < SERPENT_MAX_KEY_SIZE)
k8[i++] = 1;
while (i < SERPENT_MAX_KEY_SIZE)
k8[i++] = 0;
/* Expand key using polynomial */
r0 = le32_to_cpu(k[3]);
r1 = le32_to_cpu(k[4]);
r2 = le32_to_cpu(k[5]);
r3 = le32_to_cpu(k[6]);
r4 = le32_to_cpu(k[7]);
keyiter(le32_to_cpu(k[0]),r0,r4,r2,0,0);
keyiter(le32_to_cpu(k[1]),r1,r0,r3,1,1);
keyiter(le32_to_cpu(k[2]),r2,r1,r4,2,2);
keyiter(le32_to_cpu(k[3]),r3,r2,r0,3,3);
keyiter(le32_to_cpu(k[4]),r4,r3,r1,4,4);
keyiter(le32_to_cpu(k[5]),r0,r4,r2,5,5);
keyiter(le32_to_cpu(k[6]),r1,r0,r3,6,6);
keyiter(le32_to_cpu(k[7]),r2,r1,r4,7,7);
keyiter(k[ 0],r3,r2,r0, 8, 8); keyiter(k[ 1],r4,r3,r1, 9, 9);
keyiter(k[ 2],r0,r4,r2, 10, 10); keyiter(k[ 3],r1,r0,r3, 11, 11);
keyiter(k[ 4],r2,r1,r4, 12, 12); keyiter(k[ 5],r3,r2,r0, 13, 13);
keyiter(k[ 6],r4,r3,r1, 14, 14); keyiter(k[ 7],r0,r4,r2, 15, 15);
keyiter(k[ 8],r1,r0,r3, 16, 16); keyiter(k[ 9],r2,r1,r4, 17, 17);
keyiter(k[ 10],r3,r2,r0, 18, 18); keyiter(k[ 11],r4,r3,r1, 19, 19);
keyiter(k[ 12],r0,r4,r2, 20, 20); keyiter(k[ 13],r1,r0,r3, 21, 21);
keyiter(k[ 14],r2,r1,r4, 22, 22); keyiter(k[ 15],r3,r2,r0, 23, 23);
keyiter(k[ 16],r4,r3,r1, 24, 24); keyiter(k[ 17],r0,r4,r2, 25, 25);
keyiter(k[ 18],r1,r0,r3, 26, 26); keyiter(k[ 19],r2,r1,r4, 27, 27);
keyiter(k[ 20],r3,r2,r0, 28, 28); keyiter(k[ 21],r4,r3,r1, 29, 29);
keyiter(k[ 22],r0,r4,r2, 30, 30); keyiter(k[ 23],r1,r0,r3, 31, 31);
k += 50;
keyiter(k[-26],r2,r1,r4, 32,-18); keyiter(k[-25],r3,r2,r0, 33,-17);
keyiter(k[-24],r4,r3,r1, 34,-16); keyiter(k[-23],r0,r4,r2, 35,-15);
keyiter(k[-22],r1,r0,r3, 36,-14); keyiter(k[-21],r2,r1,r4, 37,-13);
keyiter(k[-20],r3,r2,r0, 38,-12); keyiter(k[-19],r4,r3,r1, 39,-11);
keyiter(k[-18],r0,r4,r2, 40,-10); keyiter(k[-17],r1,r0,r3, 41, -9);
keyiter(k[-16],r2,r1,r4, 42, -8); keyiter(k[-15],r3,r2,r0, 43, -7);
keyiter(k[-14],r4,r3,r1, 44, -6); keyiter(k[-13],r0,r4,r2, 45, -5);
keyiter(k[-12],r1,r0,r3, 46, -4); keyiter(k[-11],r2,r1,r4, 47, -3);
keyiter(k[-10],r3,r2,r0, 48, -2); keyiter(k[ -9],r4,r3,r1, 49, -1);
keyiter(k[ -8],r0,r4,r2, 50, 0); keyiter(k[ -7],r1,r0,r3, 51, 1);
keyiter(k[ -6],r2,r1,r4, 52, 2); keyiter(k[ -5],r3,r2,r0, 53, 3);
keyiter(k[ -4],r4,r3,r1, 54, 4); keyiter(k[ -3],r0,r4,r2, 55, 5);
keyiter(k[ -2],r1,r0,r3, 56, 6); keyiter(k[ -1],r2,r1,r4, 57, 7);
keyiter(k[ 0],r3,r2,r0, 58, 8); keyiter(k[ 1],r4,r3,r1, 59, 9);
keyiter(k[ 2],r0,r4,r2, 60, 10); keyiter(k[ 3],r1,r0,r3, 61, 11);
keyiter(k[ 4],r2,r1,r4, 62, 12); keyiter(k[ 5],r3,r2,r0, 63, 13);
keyiter(k[ 6],r4,r3,r1, 64, 14); keyiter(k[ 7],r0,r4,r2, 65, 15);
keyiter(k[ 8],r1,r0,r3, 66, 16); keyiter(k[ 9],r2,r1,r4, 67, 17);
keyiter(k[ 10],r3,r2,r0, 68, 18); keyiter(k[ 11],r4,r3,r1, 69, 19);
keyiter(k[ 12],r0,r4,r2, 70, 20); keyiter(k[ 13],r1,r0,r3, 71, 21);
keyiter(k[ 14],r2,r1,r4, 72, 22); keyiter(k[ 15],r3,r2,r0, 73, 23);
keyiter(k[ 16],r4,r3,r1, 74, 24); keyiter(k[ 17],r0,r4,r2, 75, 25);
keyiter(k[ 18],r1,r0,r3, 76, 26); keyiter(k[ 19],r2,r1,r4, 77, 27);
keyiter(k[ 20],r3,r2,r0, 78, 28); keyiter(k[ 21],r4,r3,r1, 79, 29);
keyiter(k[ 22],r0,r4,r2, 80, 30); keyiter(k[ 23],r1,r0,r3, 81, 31);
k += 50;
keyiter(k[-26],r2,r1,r4, 82,-18); keyiter(k[-25],r3,r2,r0, 83,-17);
keyiter(k[-24],r4,r3,r1, 84,-16); keyiter(k[-23],r0,r4,r2, 85,-15);
keyiter(k[-22],r1,r0,r3, 86,-14); keyiter(k[-21],r2,r1,r4, 87,-13);
keyiter(k[-20],r3,r2,r0, 88,-12); keyiter(k[-19],r4,r3,r1, 89,-11);
keyiter(k[-18],r0,r4,r2, 90,-10); keyiter(k[-17],r1,r0,r3, 91, -9);
keyiter(k[-16],r2,r1,r4, 92, -8); keyiter(k[-15],r3,r2,r0, 93, -7);
keyiter(k[-14],r4,r3,r1, 94, -6); keyiter(k[-13],r0,r4,r2, 95, -5);
keyiter(k[-12],r1,r0,r3, 96, -4); keyiter(k[-11],r2,r1,r4, 97, -3);
keyiter(k[-10],r3,r2,r0, 98, -2); keyiter(k[ -9],r4,r3,r1, 99, -1);
keyiter(k[ -8],r0,r4,r2,100, 0); keyiter(k[ -7],r1,r0,r3,101, 1);
keyiter(k[ -6],r2,r1,r4,102, 2); keyiter(k[ -5],r3,r2,r0,103, 3);
keyiter(k[ -4],r4,r3,r1,104, 4); keyiter(k[ -3],r0,r4,r2,105, 5);
keyiter(k[ -2],r1,r0,r3,106, 6); keyiter(k[ -1],r2,r1,r4,107, 7);
keyiter(k[ 0],r3,r2,r0,108, 8); keyiter(k[ 1],r4,r3,r1,109, 9);
keyiter(k[ 2],r0,r4,r2,110, 10); keyiter(k[ 3],r1,r0,r3,111, 11);
keyiter(k[ 4],r2,r1,r4,112, 12); keyiter(k[ 5],r3,r2,r0,113, 13);
keyiter(k[ 6],r4,r3,r1,114, 14); keyiter(k[ 7],r0,r4,r2,115, 15);
keyiter(k[ 8],r1,r0,r3,116, 16); keyiter(k[ 9],r2,r1,r4,117, 17);
keyiter(k[ 10],r3,r2,r0,118, 18); keyiter(k[ 11],r4,r3,r1,119, 19);
keyiter(k[ 12],r0,r4,r2,120, 20); keyiter(k[ 13],r1,r0,r3,121, 21);
keyiter(k[ 14],r2,r1,r4,122, 22); keyiter(k[ 15],r3,r2,r0,123, 23);
keyiter(k[ 16],r4,r3,r1,124, 24); keyiter(k[ 17],r0,r4,r2,125, 25);
keyiter(k[ 18],r1,r0,r3,126, 26); keyiter(k[ 19],r2,r1,r4,127, 27);
keyiter(k[ 20],r3,r2,r0,128, 28); keyiter(k[ 21],r4,r3,r1,129, 29);
keyiter(k[ 22],r0,r4,r2,130, 30); keyiter(k[ 23],r1,r0,r3,131, 31);
/* Apply S-boxes */
S3(r3,r4,r0,r1,r2); storekeys(r1,r2,r4,r3, 28); loadkeys(r1,r2,r4,r3, 24);
S4(r1,r2,r4,r3,r0); storekeys(r2,r4,r3,r0, 24); loadkeys(r2,r4,r3,r0, 20);
S5(r2,r4,r3,r0,r1); storekeys(r1,r2,r4,r0, 20); loadkeys(r1,r2,r4,r0, 16);
S6(r1,r2,r4,r0,r3); storekeys(r4,r3,r2,r0, 16); loadkeys(r4,r3,r2,r0, 12);
S7(r4,r3,r2,r0,r1); storekeys(r1,r2,r0,r4, 12); loadkeys(r1,r2,r0,r4, 8);
S0(r1,r2,r0,r4,r3); storekeys(r0,r2,r4,r1, 8); loadkeys(r0,r2,r4,r1, 4);
S1(r0,r2,r4,r1,r3); storekeys(r3,r4,r1,r0, 4); loadkeys(r3,r4,r1,r0, 0);
S2(r3,r4,r1,r0,r2); storekeys(r2,r4,r3,r0, 0); loadkeys(r2,r4,r3,r0, -4);
S3(r2,r4,r3,r0,r1); storekeys(r0,r1,r4,r2, -4); loadkeys(r0,r1,r4,r2, -8);
S4(r0,r1,r4,r2,r3); storekeys(r1,r4,r2,r3, -8); loadkeys(r1,r4,r2,r3,-12);
S5(r1,r4,r2,r3,r0); storekeys(r0,r1,r4,r3,-12); loadkeys(r0,r1,r4,r3,-16);
S6(r0,r1,r4,r3,r2); storekeys(r4,r2,r1,r3,-16); loadkeys(r4,r2,r1,r3,-20);
S7(r4,r2,r1,r3,r0); storekeys(r0,r1,r3,r4,-20); loadkeys(r0,r1,r3,r4,-24);
S0(r0,r1,r3,r4,r2); storekeys(r3,r1,r4,r0,-24); loadkeys(r3,r1,r4,r0,-28);
k -= 50;
S1(r3,r1,r4,r0,r2); storekeys(r2,r4,r0,r3, 22); loadkeys(r2,r4,r0,r3, 18);
S2(r2,r4,r0,r3,r1); storekeys(r1,r4,r2,r3, 18); loadkeys(r1,r4,r2,r3, 14);
S3(r1,r4,r2,r3,r0); storekeys(r3,r0,r4,r1, 14); loadkeys(r3,r0,r4,r1, 10);
S4(r3,r0,r4,r1,r2); storekeys(r0,r4,r1,r2, 10); loadkeys(r0,r4,r1,r2, 6);
S5(r0,r4,r1,r2,r3); storekeys(r3,r0,r4,r2, 6); loadkeys(r3,r0,r4,r2, 2);
S6(r3,r0,r4,r2,r1); storekeys(r4,r1,r0,r2, 2); loadkeys(r4,r1,r0,r2, -2);
S7(r4,r1,r0,r2,r3); storekeys(r3,r0,r2,r4, -2); loadkeys(r3,r0,r2,r4, -6);
S0(r3,r0,r2,r4,r1); storekeys(r2,r0,r4,r3, -6); loadkeys(r2,r0,r4,r3,-10);
S1(r2,r0,r4,r3,r1); storekeys(r1,r4,r3,r2,-10); loadkeys(r1,r4,r3,r2,-14);
S2(r1,r4,r3,r2,r0); storekeys(r0,r4,r1,r2,-14); loadkeys(r0,r4,r1,r2,-18);
S3(r0,r4,r1,r2,r3); storekeys(r2,r3,r4,r0,-18); loadkeys(r2,r3,r4,r0,-22);
k -= 50;
S4(r2,r3,r4,r0,r1); storekeys(r3,r4,r0,r1, 28); loadkeys(r3,r4,r0,r1, 24);
S5(r3,r4,r0,r1,r2); storekeys(r2,r3,r4,r1, 24); loadkeys(r2,r3,r4,r1, 20);
S6(r2,r3,r4,r1,r0); storekeys(r4,r0,r3,r1, 20); loadkeys(r4,r0,r3,r1, 16);
S7(r4,r0,r3,r1,r2); storekeys(r2,r3,r1,r4, 16); loadkeys(r2,r3,r1,r4, 12);
S0(r2,r3,r1,r4,r0); storekeys(r1,r3,r4,r2, 12); loadkeys(r1,r3,r4,r2, 8);
S1(r1,r3,r4,r2,r0); storekeys(r0,r4,r2,r1, 8); loadkeys(r0,r4,r2,r1, 4);
S2(r0,r4,r2,r1,r3); storekeys(r3,r4,r0,r1, 4); loadkeys(r3,r4,r0,r1, 0);
S3(r3,r4,r0,r1,r2); storekeys(r1,r2,r4,r3, 0);
return 0;
}
static void serpent_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct serpent_ctx *ctx = crypto_tfm_ctx(tfm);
const u32
*k = ctx->expkey,
*s = (const u32 *)src;
u32 *d = (u32 *)dst,
r0, r1, r2, r3, r4;
/*
* Note: The conversions between u8* and u32* might cause trouble
* on architectures with stricter alignment rules than x86
*/
r0 = le32_to_cpu(s[0]);
r1 = le32_to_cpu(s[1]);
r2 = le32_to_cpu(s[2]);
r3 = le32_to_cpu(s[3]);
K(r0,r1,r2,r3,0);
S0(r0,r1,r2,r3,r4); LK(r2,r1,r3,r0,r4,1);
S1(r2,r1,r3,r0,r4); LK(r4,r3,r0,r2,r1,2);
S2(r4,r3,r0,r2,r1); LK(r1,r3,r4,r2,r0,3);
S3(r1,r3,r4,r2,r0); LK(r2,r0,r3,r1,r4,4);
S4(r2,r0,r3,r1,r4); LK(r0,r3,r1,r4,r2,5);
S5(r0,r3,r1,r4,r2); LK(r2,r0,r3,r4,r1,6);
S6(r2,r0,r3,r4,r1); LK(r3,r1,r0,r4,r2,7);
S7(r3,r1,r0,r4,r2); LK(r2,r0,r4,r3,r1,8);
S0(r2,r0,r4,r3,r1); LK(r4,r0,r3,r2,r1,9);
S1(r4,r0,r3,r2,r1); LK(r1,r3,r2,r4,r0,10);
S2(r1,r3,r2,r4,r0); LK(r0,r3,r1,r4,r2,11);
S3(r0,r3,r1,r4,r2); LK(r4,r2,r3,r0,r1,12);
S4(r4,r2,r3,r0,r1); LK(r2,r3,r0,r1,r4,13);
S5(r2,r3,r0,r1,r4); LK(r4,r2,r3,r1,r0,14);
S6(r4,r2,r3,r1,r0); LK(r3,r0,r2,r1,r4,15);
S7(r3,r0,r2,r1,r4); LK(r4,r2,r1,r3,r0,16);
S0(r4,r2,r1,r3,r0); LK(r1,r2,r3,r4,r0,17);
S1(r1,r2,r3,r4,r0); LK(r0,r3,r4,r1,r2,18);
S2(r0,r3,r4,r1,r2); LK(r2,r3,r0,r1,r4,19);
S3(r2,r3,r0,r1,r4); LK(r1,r4,r3,r2,r0,20);
S4(r1,r4,r3,r2,r0); LK(r4,r3,r2,r0,r1,21);
S5(r4,r3,r2,r0,r1); LK(r1,r4,r3,r0,r2,22);
S6(r1,r4,r3,r0,r2); LK(r3,r2,r4,r0,r1,23);
S7(r3,r2,r4,r0,r1); LK(r1,r4,r0,r3,r2,24);
S0(r1,r4,r0,r3,r2); LK(r0,r4,r3,r1,r2,25);
S1(r0,r4,r3,r1,r2); LK(r2,r3,r1,r0,r4,26);
S2(r2,r3,r1,r0,r4); LK(r4,r3,r2,r0,r1,27);
S3(r4,r3,r2,r0,r1); LK(r0,r1,r3,r4,r2,28);
S4(r0,r1,r3,r4,r2); LK(r1,r3,r4,r2,r0,29);
S5(r1,r3,r4,r2,r0); LK(r0,r1,r3,r2,r4,30);
S6(r0,r1,r3,r2,r4); LK(r3,r4,r1,r2,r0,31);
S7(r3,r4,r1,r2,r0); K(r0,r1,r2,r3,32);
d[0] = cpu_to_le32(r0);
d[1] = cpu_to_le32(r1);
d[2] = cpu_to_le32(r2);
d[3] = cpu_to_le32(r3);
}
static void serpent_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct serpent_ctx *ctx = crypto_tfm_ctx(tfm);
const u32
*k = ((struct serpent_ctx *)ctx)->expkey,
*s = (const u32 *)src;
u32 *d = (u32 *)dst,
r0, r1, r2, r3, r4;
r0 = le32_to_cpu(s[0]);
r1 = le32_to_cpu(s[1]);
r2 = le32_to_cpu(s[2]);
r3 = le32_to_cpu(s[3]);
K(r0,r1,r2,r3,32);
SI7(r0,r1,r2,r3,r4); KL(r1,r3,r0,r4,r2,31);
SI6(r1,r3,r0,r4,r2); KL(r0,r2,r4,r1,r3,30);
SI5(r0,r2,r4,r1,r3); KL(r2,r3,r0,r4,r1,29);
SI4(r2,r3,r0,r4,r1); KL(r2,r0,r1,r4,r3,28);
SI3(r2,r0,r1,r4,r3); KL(r1,r2,r3,r4,r0,27);
SI2(r1,r2,r3,r4,r0); KL(r2,r0,r4,r3,r1,26);
SI1(r2,r0,r4,r3,r1); KL(r1,r0,r4,r3,r2,25);
SI0(r1,r0,r4,r3,r2); KL(r4,r2,r0,r1,r3,24);
SI7(r4,r2,r0,r1,r3); KL(r2,r1,r4,r3,r0,23);
SI6(r2,r1,r4,r3,r0); KL(r4,r0,r3,r2,r1,22);
SI5(r4,r0,r3,r2,r1); KL(r0,r1,r4,r3,r2,21);
SI4(r0,r1,r4,r3,r2); KL(r0,r4,r2,r3,r1,20);
SI3(r0,r4,r2,r3,r1); KL(r2,r0,r1,r3,r4,19);
SI2(r2,r0,r1,r3,r4); KL(r0,r4,r3,r1,r2,18);
SI1(r0,r4,r3,r1,r2); KL(r2,r4,r3,r1,r0,17);
SI0(r2,r4,r3,r1,r0); KL(r3,r0,r4,r2,r1,16);
SI7(r3,r0,r4,r2,r1); KL(r0,r2,r3,r1,r4,15);
SI6(r0,r2,r3,r1,r4); KL(r3,r4,r1,r0,r2,14);
SI5(r3,r4,r1,r0,r2); KL(r4,r2,r3,r1,r0,13);
SI4(r4,r2,r3,r1,r0); KL(r4,r3,r0,r1,r2,12);
SI3(r4,r3,r0,r1,r2); KL(r0,r4,r2,r1,r3,11);
SI2(r0,r4,r2,r1,r3); KL(r4,r3,r1,r2,r0,10);
SI1(r4,r3,r1,r2,r0); KL(r0,r3,r1,r2,r4,9);
SI0(r0,r3,r1,r2,r4); KL(r1,r4,r3,r0,r2,8);
SI7(r1,r4,r3,r0,r2); KL(r4,r0,r1,r2,r3,7);
SI6(r4,r0,r1,r2,r3); KL(r1,r3,r2,r4,r0,6);
SI5(r1,r3,r2,r4,r0); KL(r3,r0,r1,r2,r4,5);
SI4(r3,r0,r1,r2,r4); KL(r3,r1,r4,r2,r0,4);
SI3(r3,r1,r4,r2,r0); KL(r4,r3,r0,r2,r1,3);
SI2(r4,r3,r0,r2,r1); KL(r3,r1,r2,r0,r4,2);
SI1(r3,r1,r2,r0,r4); KL(r4,r1,r2,r0,r3,1);
SI0(r4,r1,r2,r0,r3); K(r2,r3,r1,r4,0);
d[0] = cpu_to_le32(r2);
d[1] = cpu_to_le32(r3);
d[2] = cpu_to_le32(r1);
d[3] = cpu_to_le32(r4);
}
static struct crypto_alg serpent_alg = {
.cra_name = "serpent",
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = SERPENT_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct serpent_ctx),
.cra_alignmask = 3,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(serpent_alg.cra_list),
.cra_u = { .cipher = {
.cia_min_keysize = SERPENT_MIN_KEY_SIZE,
.cia_max_keysize = SERPENT_MAX_KEY_SIZE,
.cia_setkey = serpent_setkey,
.cia_encrypt = serpent_encrypt,
.cia_decrypt = serpent_decrypt } }
};
static int tnepres_setkey(struct crypto_tfm *tfm, const u8 *key,
unsigned int keylen, u32 *flags)
{
u8 rev_key[SERPENT_MAX_KEY_SIZE];
int i;
if ((keylen < SERPENT_MIN_KEY_SIZE)
|| (keylen > SERPENT_MAX_KEY_SIZE)) {
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
for (i = 0; i < keylen; ++i)
rev_key[keylen - i - 1] = key[i];
return serpent_setkey(tfm, rev_key, keylen, flags);
}
static void tnepres_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
const u32 * const s = (const u32 * const)src;
u32 * const d = (u32 * const)dst;
u32 rs[4], rd[4];
rs[0] = swab32(s[3]);
rs[1] = swab32(s[2]);
rs[2] = swab32(s[1]);
rs[3] = swab32(s[0]);
serpent_encrypt(tfm, (u8 *)rd, (u8 *)rs);
d[0] = swab32(rd[3]);
d[1] = swab32(rd[2]);
d[2] = swab32(rd[1]);
d[3] = swab32(rd[0]);
}
static void tnepres_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
const u32 * const s = (const u32 * const)src;
u32 * const d = (u32 * const)dst;
u32 rs[4], rd[4];
rs[0] = swab32(s[3]);
rs[1] = swab32(s[2]);
rs[2] = swab32(s[1]);
rs[3] = swab32(s[0]);
serpent_decrypt(tfm, (u8 *)rd, (u8 *)rs);
d[0] = swab32(rd[3]);
d[1] = swab32(rd[2]);
d[2] = swab32(rd[1]);
d[3] = swab32(rd[0]);
}
static struct crypto_alg tnepres_alg = {
.cra_name = "tnepres",
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = SERPENT_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct serpent_ctx),
.cra_alignmask = 3,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(serpent_alg.cra_list),
.cra_u = { .cipher = {
.cia_min_keysize = SERPENT_MIN_KEY_SIZE,
.cia_max_keysize = SERPENT_MAX_KEY_SIZE,
.cia_setkey = tnepres_setkey,
.cia_encrypt = tnepres_encrypt,
.cia_decrypt = tnepres_decrypt } }
};
static int __init init(void)
{
int ret = crypto_register_alg(&serpent_alg);
if (ret)
return ret;
ret = crypto_register_alg(&tnepres_alg);
if (ret)
crypto_unregister_alg(&serpent_alg);
return ret;
}
static void __exit fini(void)
{
crypto_unregister_alg(&tnepres_alg);
crypto_unregister_alg(&serpent_alg);
}
module_init(init);
module_exit(fini);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Serpent and tnepres (kerneli compatible serpent reversed) Cipher Algorithm");
MODULE_AUTHOR("Dag Arne Osvik <osvik@ii.uib.no>");
MODULE_ALIAS("tnepres");