1
linux/include/asm-sparc64/bitops.h

295 lines
7.6 KiB
C
Raw Normal View History

/* $Id: bitops.h,v 1.39 2002/01/30 01:40:00 davem Exp $
* bitops.h: Bit string operations on the V9.
*
* Copyright 1996, 1997 David S. Miller (davem@caip.rutgers.edu)
*/
#ifndef _SPARC64_BITOPS_H
#define _SPARC64_BITOPS_H
#include <linux/config.h>
#include <linux/compiler.h>
#include <asm/byteorder.h>
extern int test_and_set_bit(unsigned long nr, volatile unsigned long *addr);
extern int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr);
extern int test_and_change_bit(unsigned long nr, volatile unsigned long *addr);
extern void set_bit(unsigned long nr, volatile unsigned long *addr);
extern void clear_bit(unsigned long nr, volatile unsigned long *addr);
extern void change_bit(unsigned long nr, volatile unsigned long *addr);
/* "non-atomic" versions... */
static inline void __set_bit(int nr, volatile unsigned long *addr)
{
unsigned long *m = ((unsigned long *)addr) + (nr >> 6);
*m |= (1UL << (nr & 63));
}
static inline void __clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long *m = ((unsigned long *)addr) + (nr >> 6);
*m &= ~(1UL << (nr & 63));
}
static inline void __change_bit(int nr, volatile unsigned long *addr)
{
unsigned long *m = ((unsigned long *)addr) + (nr >> 6);
*m ^= (1UL << (nr & 63));
}
static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
{
unsigned long *m = ((unsigned long *)addr) + (nr >> 6);
unsigned long old = *m;
unsigned long mask = (1UL << (nr & 63));
*m = (old | mask);
return ((old & mask) != 0);
}
static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long *m = ((unsigned long *)addr) + (nr >> 6);
unsigned long old = *m;
unsigned long mask = (1UL << (nr & 63));
*m = (old & ~mask);
return ((old & mask) != 0);
}
static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
{
unsigned long *m = ((unsigned long *)addr) + (nr >> 6);
unsigned long old = *m;
unsigned long mask = (1UL << (nr & 63));
*m = (old ^ mask);
return ((old & mask) != 0);
}
#ifdef CONFIG_SMP
#define smp_mb__before_clear_bit() membar_storeload_loadload()
#define smp_mb__after_clear_bit() membar_storeload_storestore()
#else
#define smp_mb__before_clear_bit() barrier()
#define smp_mb__after_clear_bit() barrier()
#endif
static inline int test_bit(int nr, __const__ volatile unsigned long *addr)
{
return (1UL & (addr[nr >> 6] >> (nr & 63))) != 0UL;
}
/* The easy/cheese version for now. */
static inline unsigned long ffz(unsigned long word)
{
unsigned long result;
result = 0;
while(word & 1) {
result++;
word >>= 1;
}
return result;
}
/**
* __ffs - find first bit in word.
* @word: The word to search
*
* Undefined if no bit exists, so code should check against 0 first.
*/
static inline unsigned long __ffs(unsigned long word)
{
unsigned long result = 0;
while (!(word & 1UL)) {
result++;
word >>= 1;
}
return result;
}
/*
* fls: find last bit set.
*/
#define fls(x) generic_fls(x)
#ifdef __KERNEL__
/*
* Every architecture must define this function. It's the fastest
* way of searching a 140-bit bitmap where the first 100 bits are
* unlikely to be set. It's guaranteed that at least one of the 140
* bits is cleared.
*/
static inline int sched_find_first_bit(unsigned long *b)
{
if (unlikely(b[0]))
return __ffs(b[0]);
if (unlikely(((unsigned int)b[1])))
return __ffs(b[1]) + 64;
if (b[1] >> 32)
return __ffs(b[1] >> 32) + 96;
return __ffs(b[2]) + 128;
}
/*
* ffs: find first bit set. This is defined the same way as
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above ffz (man ffs).
*/
static inline int ffs(int x)
{
if (!x)
return 0;
return __ffs((unsigned long)x) + 1;
}
/*
* hweightN: returns the hamming weight (i.e. the number
* of bits set) of a N-bit word
*/
#ifdef ULTRA_HAS_POPULATION_COUNT
static inline unsigned int hweight64(unsigned long w)
{
unsigned int res;
__asm__ ("popc %1,%0" : "=r" (res) : "r" (w));
return res;
}
static inline unsigned int hweight32(unsigned int w)
{
unsigned int res;
__asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffffffff));
return res;
}
static inline unsigned int hweight16(unsigned int w)
{
unsigned int res;
__asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffff));
return res;
}
static inline unsigned int hweight8(unsigned int w)
{
unsigned int res;
__asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xff));
return res;
}
#else
#define hweight64(x) generic_hweight64(x)
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)
#endif
#endif /* __KERNEL__ */
/**
* find_next_bit - find the next set bit in a memory region
* @addr: The address to base the search on
* @offset: The bitnumber to start searching at
* @size: The maximum size to search
*/
extern unsigned long find_next_bit(const unsigned long *, unsigned long,
unsigned long);
/**
* find_first_bit - find the first set bit in a memory region
* @addr: The address to start the search at
* @size: The maximum size to search
*
* Returns the bit-number of the first set bit, not the number of the byte
* containing a bit.
*/
#define find_first_bit(addr, size) \
find_next_bit((addr), (size), 0)
/* find_next_zero_bit() finds the first zero bit in a bit string of length
* 'size' bits, starting the search at bit 'offset'. This is largely based
* on Linus's ALPHA routines, which are pretty portable BTW.
*/
extern unsigned long find_next_zero_bit(const unsigned long *,
unsigned long, unsigned long);
#define find_first_zero_bit(addr, size) \
find_next_zero_bit((addr), (size), 0)
#define test_and_set_le_bit(nr,addr) \
test_and_set_bit((nr) ^ 0x38, (addr))
#define test_and_clear_le_bit(nr,addr) \
test_and_clear_bit((nr) ^ 0x38, (addr))
static inline int test_le_bit(int nr, __const__ unsigned long * addr)
{
int mask;
__const__ unsigned char *ADDR = (__const__ unsigned char *) addr;
ADDR += nr >> 3;
mask = 1 << (nr & 0x07);
return ((mask & *ADDR) != 0);
}
#define find_first_zero_le_bit(addr, size) \
find_next_zero_le_bit((addr), (size), 0)
extern unsigned long find_next_zero_le_bit(unsigned long *, unsigned long, unsigned long);
#ifdef __KERNEL__
#define __set_le_bit(nr, addr) \
__set_bit((nr) ^ 0x38, (addr))
#define __clear_le_bit(nr, addr) \
__clear_bit((nr) ^ 0x38, (addr))
#define __test_and_clear_le_bit(nr, addr) \
__test_and_clear_bit((nr) ^ 0x38, (addr))
#define __test_and_set_le_bit(nr, addr) \
__test_and_set_bit((nr) ^ 0x38, (addr))
#define ext2_set_bit(nr,addr) \
__test_and_set_le_bit((nr),(unsigned long *)(addr))
#define ext2_set_bit_atomic(lock,nr,addr) \
test_and_set_le_bit((nr),(unsigned long *)(addr))
#define ext2_clear_bit(nr,addr) \
__test_and_clear_le_bit((nr),(unsigned long *)(addr))
#define ext2_clear_bit_atomic(lock,nr,addr) \
test_and_clear_le_bit((nr),(unsigned long *)(addr))
#define ext2_test_bit(nr,addr) \
test_le_bit((nr),(unsigned long *)(addr))
#define ext2_find_first_zero_bit(addr, size) \
find_first_zero_le_bit((unsigned long *)(addr), (size))
#define ext2_find_next_zero_bit(addr, size, off) \
find_next_zero_le_bit((unsigned long *)(addr), (size), (off))
/* Bitmap functions for the minix filesystem. */
#define minix_test_and_set_bit(nr,addr) \
test_and_set_bit((nr),(unsigned long *)(addr))
#define minix_set_bit(nr,addr) \
set_bit((nr),(unsigned long *)(addr))
#define minix_test_and_clear_bit(nr,addr) \
test_and_clear_bit((nr),(unsigned long *)(addr))
#define minix_test_bit(nr,addr) \
test_bit((nr),(unsigned long *)(addr))
#define minix_find_first_zero_bit(addr,size) \
find_first_zero_bit((unsigned long *)(addr),(size))
#endif /* __KERNEL__ */
#endif /* defined(_SPARC64_BITOPS_H) */