1
linux/tools/sched_ext/scx_central.c

136 lines
3.8 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
* Copyright (c) 2022 Tejun Heo <tj@kernel.org>
* Copyright (c) 2022 David Vernet <dvernet@meta.com>
*/
#define _GNU_SOURCE
#include <sched.h>
#include <stdio.h>
#include <unistd.h>
#include <inttypes.h>
#include <signal.h>
#include <libgen.h>
#include <bpf/bpf.h>
#include <scx/common.h>
#include "scx_central.bpf.skel.h"
const char help_fmt[] =
"A central FIFO sched_ext scheduler.\n"
"\n"
"See the top-level comment in .bpf.c for more details.\n"
"\n"
"Usage: %s [-s SLICE_US] [-c CPU]\n"
"\n"
" -s SLICE_US Override slice duration\n"
" -c CPU Override the central CPU (default: 0)\n"
" -v Print libbpf debug messages\n"
" -h Display this help and exit\n";
static bool verbose;
static volatile int exit_req;
static int libbpf_print_fn(enum libbpf_print_level level, const char *format, va_list args)
{
if (level == LIBBPF_DEBUG && !verbose)
return 0;
return vfprintf(stderr, format, args);
}
static void sigint_handler(int dummy)
{
exit_req = 1;
}
int main(int argc, char **argv)
{
struct scx_central *skel;
struct bpf_link *link;
sched_ext: Implement sched_ext_ops.cpu_online/offline() Add ops.cpu_online/offline() which are invoked when CPUs come online and offline respectively. As the enqueue path already automatically bypasses tasks to the local dsq on a deactivated CPU, BPF schedulers are guaranteed to see tasks only on CPUs which are between online() and offline(). If the BPF scheduler doesn't implement ops.cpu_online/offline(), the scheduler is automatically exited with SCX_ECODE_RESTART | SCX_ECODE_RSN_HOTPLUG. Userspace can implement CPU hotpplug support trivially by simply reinitializing and reloading the scheduler. scx_qmap is updated to print out online CPUs on hotplug events. Other schedulers are updated to restart based on ecode. v3: - The previous implementation added @reason to sched_class.rq_on/offline() to distinguish between CPU hotplug events and topology updates. This was buggy and fragile as the methods are skipped if the current state equals the target state. Instead, add scx_rq_[de]activate() which are directly called from sched_cpu_de/activate(). This also allows ops.cpu_on/offline() to sleep which can be useful. - ops.dispatch() could be called on a CPU that the BPF scheduler was told to be offline. The dispatch patch is updated to bypass in such cases. v2: - To accommodate lock ordering change between scx_cgroup_rwsem and cpus_read_lock(), CPU hotplug operations are put into its own SCX_OPI block and enabled eariler during scx_ope_enable() so that cpus_read_lock() can be dropped before acquiring scx_cgroup_rwsem. - Auto exit with ECODE added. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com>
2024-06-18 13:09:20 -07:00
__u64 seq = 0, ecode;
__s32 opt;
sched_ext: Implement tickless support Allow BPF schedulers to indicate tickless operation by setting p->scx.slice to SCX_SLICE_INF. A CPU whose current task has infinte slice goes into tickless operation. scx_central is updated to use tickless operations for all tasks and instead use a BPF timer to expire slices. This also uses the SCX_ENQ_PREEMPT and task state tracking added by the previous patches. Currently, there is no way to pin the timer on the central CPU, so it may end up on one of the worker CPUs; however, outside of that, the worker CPUs can go tickless both while running sched_ext tasks and idling. With schbench running, scx_central shows: root@test ~# grep ^LOC /proc/interrupts; sleep 10; grep ^LOC /proc/interrupts LOC: 142024 656 664 449 Local timer interrupts LOC: 161663 663 665 449 Local timer interrupts Without it: root@test ~ [SIGINT]# grep ^LOC /proc/interrupts; sleep 10; grep ^LOC /proc/interrupts LOC: 188778 3142 3793 3993 Local timer interrupts LOC: 198993 5314 6323 6438 Local timer interrupts While scx_central itself is too barebone to be useful as a production scheduler, a more featureful central scheduler can be built using the same approach. Google's experience shows that such an approach can have significant benefits for certain applications such as VM hosting. v4: Allow operation even if BPF_F_TIMER_CPU_PIN is not available. v3: Pin the central scheduler's timer on the central_cpu using BPF_F_TIMER_CPU_PIN. v2: Convert to BPF inline iterators. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com>
2024-06-18 13:09:19 -07:00
cpu_set_t *cpuset;
libbpf_set_print(libbpf_print_fn);
signal(SIGINT, sigint_handler);
signal(SIGTERM, sigint_handler);
sched_ext: Implement sched_ext_ops.cpu_online/offline() Add ops.cpu_online/offline() which are invoked when CPUs come online and offline respectively. As the enqueue path already automatically bypasses tasks to the local dsq on a deactivated CPU, BPF schedulers are guaranteed to see tasks only on CPUs which are between online() and offline(). If the BPF scheduler doesn't implement ops.cpu_online/offline(), the scheduler is automatically exited with SCX_ECODE_RESTART | SCX_ECODE_RSN_HOTPLUG. Userspace can implement CPU hotpplug support trivially by simply reinitializing and reloading the scheduler. scx_qmap is updated to print out online CPUs on hotplug events. Other schedulers are updated to restart based on ecode. v3: - The previous implementation added @reason to sched_class.rq_on/offline() to distinguish between CPU hotplug events and topology updates. This was buggy and fragile as the methods are skipped if the current state equals the target state. Instead, add scx_rq_[de]activate() which are directly called from sched_cpu_de/activate(). This also allows ops.cpu_on/offline() to sleep which can be useful. - ops.dispatch() could be called on a CPU that the BPF scheduler was told to be offline. The dispatch patch is updated to bypass in such cases. v2: - To accommodate lock ordering change between scx_cgroup_rwsem and cpus_read_lock(), CPU hotplug operations are put into its own SCX_OPI block and enabled eariler during scx_ope_enable() so that cpus_read_lock() can be dropped before acquiring scx_cgroup_rwsem. - Auto exit with ECODE added. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com>
2024-06-18 13:09:20 -07:00
restart:
skel = SCX_OPS_OPEN(central_ops, scx_central);
skel->rodata->central_cpu = 0;
skel->rodata->nr_cpu_ids = libbpf_num_possible_cpus();
while ((opt = getopt(argc, argv, "s:c:pvh")) != -1) {
switch (opt) {
case 's':
skel->rodata->slice_ns = strtoull(optarg, NULL, 0) * 1000;
break;
case 'c':
skel->rodata->central_cpu = strtoul(optarg, NULL, 0);
break;
case 'v':
verbose = true;
break;
default:
fprintf(stderr, help_fmt, basename(argv[0]));
return opt != 'h';
}
}
/* Resize arrays so their element count is equal to cpu count. */
RESIZE_ARRAY(skel, data, cpu_gimme_task, skel->rodata->nr_cpu_ids);
sched_ext: Implement tickless support Allow BPF schedulers to indicate tickless operation by setting p->scx.slice to SCX_SLICE_INF. A CPU whose current task has infinte slice goes into tickless operation. scx_central is updated to use tickless operations for all tasks and instead use a BPF timer to expire slices. This also uses the SCX_ENQ_PREEMPT and task state tracking added by the previous patches. Currently, there is no way to pin the timer on the central CPU, so it may end up on one of the worker CPUs; however, outside of that, the worker CPUs can go tickless both while running sched_ext tasks and idling. With schbench running, scx_central shows: root@test ~# grep ^LOC /proc/interrupts; sleep 10; grep ^LOC /proc/interrupts LOC: 142024 656 664 449 Local timer interrupts LOC: 161663 663 665 449 Local timer interrupts Without it: root@test ~ [SIGINT]# grep ^LOC /proc/interrupts; sleep 10; grep ^LOC /proc/interrupts LOC: 188778 3142 3793 3993 Local timer interrupts LOC: 198993 5314 6323 6438 Local timer interrupts While scx_central itself is too barebone to be useful as a production scheduler, a more featureful central scheduler can be built using the same approach. Google's experience shows that such an approach can have significant benefits for certain applications such as VM hosting. v4: Allow operation even if BPF_F_TIMER_CPU_PIN is not available. v3: Pin the central scheduler's timer on the central_cpu using BPF_F_TIMER_CPU_PIN. v2: Convert to BPF inline iterators. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com>
2024-06-18 13:09:19 -07:00
RESIZE_ARRAY(skel, data, cpu_started_at, skel->rodata->nr_cpu_ids);
SCX_OPS_LOAD(skel, central_ops, scx_central, uei);
sched_ext: Implement tickless support Allow BPF schedulers to indicate tickless operation by setting p->scx.slice to SCX_SLICE_INF. A CPU whose current task has infinte slice goes into tickless operation. scx_central is updated to use tickless operations for all tasks and instead use a BPF timer to expire slices. This also uses the SCX_ENQ_PREEMPT and task state tracking added by the previous patches. Currently, there is no way to pin the timer on the central CPU, so it may end up on one of the worker CPUs; however, outside of that, the worker CPUs can go tickless both while running sched_ext tasks and idling. With schbench running, scx_central shows: root@test ~# grep ^LOC /proc/interrupts; sleep 10; grep ^LOC /proc/interrupts LOC: 142024 656 664 449 Local timer interrupts LOC: 161663 663 665 449 Local timer interrupts Without it: root@test ~ [SIGINT]# grep ^LOC /proc/interrupts; sleep 10; grep ^LOC /proc/interrupts LOC: 188778 3142 3793 3993 Local timer interrupts LOC: 198993 5314 6323 6438 Local timer interrupts While scx_central itself is too barebone to be useful as a production scheduler, a more featureful central scheduler can be built using the same approach. Google's experience shows that such an approach can have significant benefits for certain applications such as VM hosting. v4: Allow operation even if BPF_F_TIMER_CPU_PIN is not available. v3: Pin the central scheduler's timer on the central_cpu using BPF_F_TIMER_CPU_PIN. v2: Convert to BPF inline iterators. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com>
2024-06-18 13:09:19 -07:00
/*
* Affinitize the loading thread to the central CPU, as:
* - That's where the BPF timer is first invoked in the BPF program.
* - We probably don't want this user space component to take up a core
* from a task that would benefit from avoiding preemption on one of
* the tickless cores.
*
* Until BPF supports pinning the timer, it's not guaranteed that it
* will always be invoked on the central CPU. In practice, this
* suffices the majority of the time.
*/
cpuset = CPU_ALLOC(skel->rodata->nr_cpu_ids);
SCX_BUG_ON(!cpuset, "Failed to allocate cpuset");
CPU_ZERO(cpuset);
CPU_SET(skel->rodata->central_cpu, cpuset);
SCX_BUG_ON(sched_setaffinity(0, sizeof(cpuset), cpuset),
"Failed to affinitize to central CPU %d (max %d)",
skel->rodata->central_cpu, skel->rodata->nr_cpu_ids - 1);
CPU_FREE(cpuset);
link = SCX_OPS_ATTACH(skel, central_ops, scx_central);
sched_ext: Implement tickless support Allow BPF schedulers to indicate tickless operation by setting p->scx.slice to SCX_SLICE_INF. A CPU whose current task has infinte slice goes into tickless operation. scx_central is updated to use tickless operations for all tasks and instead use a BPF timer to expire slices. This also uses the SCX_ENQ_PREEMPT and task state tracking added by the previous patches. Currently, there is no way to pin the timer on the central CPU, so it may end up on one of the worker CPUs; however, outside of that, the worker CPUs can go tickless both while running sched_ext tasks and idling. With schbench running, scx_central shows: root@test ~# grep ^LOC /proc/interrupts; sleep 10; grep ^LOC /proc/interrupts LOC: 142024 656 664 449 Local timer interrupts LOC: 161663 663 665 449 Local timer interrupts Without it: root@test ~ [SIGINT]# grep ^LOC /proc/interrupts; sleep 10; grep ^LOC /proc/interrupts LOC: 188778 3142 3793 3993 Local timer interrupts LOC: 198993 5314 6323 6438 Local timer interrupts While scx_central itself is too barebone to be useful as a production scheduler, a more featureful central scheduler can be built using the same approach. Google's experience shows that such an approach can have significant benefits for certain applications such as VM hosting. v4: Allow operation even if BPF_F_TIMER_CPU_PIN is not available. v3: Pin the central scheduler's timer on the central_cpu using BPF_F_TIMER_CPU_PIN. v2: Convert to BPF inline iterators. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com>
2024-06-18 13:09:19 -07:00
if (!skel->data->timer_pinned)
printf("WARNING : BPF_F_TIMER_CPU_PIN not available, timer not pinned to central\n");
while (!exit_req && !UEI_EXITED(skel, uei)) {
printf("[SEQ %llu]\n", seq++);
printf("total :%10" PRIu64 " local:%10" PRIu64 " queued:%10" PRIu64 " lost:%10" PRIu64 "\n",
skel->bss->nr_total,
skel->bss->nr_locals,
skel->bss->nr_queued,
skel->bss->nr_lost_pids);
sched_ext: Implement tickless support Allow BPF schedulers to indicate tickless operation by setting p->scx.slice to SCX_SLICE_INF. A CPU whose current task has infinte slice goes into tickless operation. scx_central is updated to use tickless operations for all tasks and instead use a BPF timer to expire slices. This also uses the SCX_ENQ_PREEMPT and task state tracking added by the previous patches. Currently, there is no way to pin the timer on the central CPU, so it may end up on one of the worker CPUs; however, outside of that, the worker CPUs can go tickless both while running sched_ext tasks and idling. With schbench running, scx_central shows: root@test ~# grep ^LOC /proc/interrupts; sleep 10; grep ^LOC /proc/interrupts LOC: 142024 656 664 449 Local timer interrupts LOC: 161663 663 665 449 Local timer interrupts Without it: root@test ~ [SIGINT]# grep ^LOC /proc/interrupts; sleep 10; grep ^LOC /proc/interrupts LOC: 188778 3142 3793 3993 Local timer interrupts LOC: 198993 5314 6323 6438 Local timer interrupts While scx_central itself is too barebone to be useful as a production scheduler, a more featureful central scheduler can be built using the same approach. Google's experience shows that such an approach can have significant benefits for certain applications such as VM hosting. v4: Allow operation even if BPF_F_TIMER_CPU_PIN is not available. v3: Pin the central scheduler's timer on the central_cpu using BPF_F_TIMER_CPU_PIN. v2: Convert to BPF inline iterators. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com>
2024-06-18 13:09:19 -07:00
printf("timer :%10" PRIu64 " dispatch:%10" PRIu64 " mismatch:%10" PRIu64 " retry:%10" PRIu64 "\n",
skel->bss->nr_timers,
skel->bss->nr_dispatches,
skel->bss->nr_mismatches,
skel->bss->nr_retries);
printf("overflow:%10" PRIu64 "\n",
skel->bss->nr_overflows);
fflush(stdout);
sleep(1);
}
bpf_link__destroy(link);
sched_ext: Implement sched_ext_ops.cpu_online/offline() Add ops.cpu_online/offline() which are invoked when CPUs come online and offline respectively. As the enqueue path already automatically bypasses tasks to the local dsq on a deactivated CPU, BPF schedulers are guaranteed to see tasks only on CPUs which are between online() and offline(). If the BPF scheduler doesn't implement ops.cpu_online/offline(), the scheduler is automatically exited with SCX_ECODE_RESTART | SCX_ECODE_RSN_HOTPLUG. Userspace can implement CPU hotpplug support trivially by simply reinitializing and reloading the scheduler. scx_qmap is updated to print out online CPUs on hotplug events. Other schedulers are updated to restart based on ecode. v3: - The previous implementation added @reason to sched_class.rq_on/offline() to distinguish between CPU hotplug events and topology updates. This was buggy and fragile as the methods are skipped if the current state equals the target state. Instead, add scx_rq_[de]activate() which are directly called from sched_cpu_de/activate(). This also allows ops.cpu_on/offline() to sleep which can be useful. - ops.dispatch() could be called on a CPU that the BPF scheduler was told to be offline. The dispatch patch is updated to bypass in such cases. v2: - To accommodate lock ordering change between scx_cgroup_rwsem and cpus_read_lock(), CPU hotplug operations are put into its own SCX_OPI block and enabled eariler during scx_ope_enable() so that cpus_read_lock() can be dropped before acquiring scx_cgroup_rwsem. - Auto exit with ECODE added. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com>
2024-06-18 13:09:20 -07:00
ecode = UEI_REPORT(skel, uei);
scx_central__destroy(skel);
sched_ext: Implement sched_ext_ops.cpu_online/offline() Add ops.cpu_online/offline() which are invoked when CPUs come online and offline respectively. As the enqueue path already automatically bypasses tasks to the local dsq on a deactivated CPU, BPF schedulers are guaranteed to see tasks only on CPUs which are between online() and offline(). If the BPF scheduler doesn't implement ops.cpu_online/offline(), the scheduler is automatically exited with SCX_ECODE_RESTART | SCX_ECODE_RSN_HOTPLUG. Userspace can implement CPU hotpplug support trivially by simply reinitializing and reloading the scheduler. scx_qmap is updated to print out online CPUs on hotplug events. Other schedulers are updated to restart based on ecode. v3: - The previous implementation added @reason to sched_class.rq_on/offline() to distinguish between CPU hotplug events and topology updates. This was buggy and fragile as the methods are skipped if the current state equals the target state. Instead, add scx_rq_[de]activate() which are directly called from sched_cpu_de/activate(). This also allows ops.cpu_on/offline() to sleep which can be useful. - ops.dispatch() could be called on a CPU that the BPF scheduler was told to be offline. The dispatch patch is updated to bypass in such cases. v2: - To accommodate lock ordering change between scx_cgroup_rwsem and cpus_read_lock(), CPU hotplug operations are put into its own SCX_OPI block and enabled eariler during scx_ope_enable() so that cpus_read_lock() can be dropped before acquiring scx_cgroup_rwsem. - Auto exit with ECODE added. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com>
2024-06-18 13:09:20 -07:00
if (UEI_ECODE_RESTART(ecode))
goto restart;
return 0;
}