1
linux/tools/perf/util/cs-etm-decoder/cs-etm-decoder.c

838 lines
24 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright(C) 2015-2018 Linaro Limited.
*
* Author: Tor Jeremiassen <tor@ti.com>
* Author: Mathieu Poirier <mathieu.poirier@linaro.org>
*/
perf cs-etm: Prevent and warn on underflows during timestamp calculation. When a zero timestamp is encountered, warn once. This is to make hardware or configuration issues visible. Also suggest that the issue can be worked around with the --itrace=Z option. When an underflow with a non-zero timestamp occurs, warn every time. This is an unexpected scenario, and with increasing timestamps, it's unlikely that it would occur more than once, therefore it should be ok to warn every time. Only try to calculate the timestamp by subtracting the instruction count if neither of the above cases are true. This makes attempting to decode files with zero timestamps in non-timeless mode more consistent. Currently it can half work if the timestamp wraps around and becomes non-zero, although the behavior is undefined and unpredictable. Signed-off-by: James Clark <james.clark@arm.com> Reviewed-by: Leo Yan <leo.yan@linaro.org> Cc: Al Grant <al.grant@arm.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Branislav Rankov <branislav.rankov@arm.com> Cc: Denis Nikitin <denik@chromium.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Garry <john.garry@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Suzuki Poulouse <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: http://lore.kernel.org/lkml/20210517131741.3027-4-james.clark@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-05-17 06:17:41 -07:00
#include <asm/bug.h>
#include <linux/coresight-pmu.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/zalloc.h>
#include <stdlib.h>
#include <opencsd/c_api/opencsd_c_api.h>
#include "cs-etm.h"
#include "cs-etm-decoder.h"
perf cs-etm: Prevent and warn on underflows during timestamp calculation. When a zero timestamp is encountered, warn once. This is to make hardware or configuration issues visible. Also suggest that the issue can be worked around with the --itrace=Z option. When an underflow with a non-zero timestamp occurs, warn every time. This is an unexpected scenario, and with increasing timestamps, it's unlikely that it would occur more than once, therefore it should be ok to warn every time. Only try to calculate the timestamp by subtracting the instruction count if neither of the above cases are true. This makes attempting to decode files with zero timestamps in non-timeless mode more consistent. Currently it can half work if the timestamp wraps around and becomes non-zero, although the behavior is undefined and unpredictable. Signed-off-by: James Clark <james.clark@arm.com> Reviewed-by: Leo Yan <leo.yan@linaro.org> Cc: Al Grant <al.grant@arm.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Branislav Rankov <branislav.rankov@arm.com> Cc: Denis Nikitin <denik@chromium.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Garry <john.garry@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Suzuki Poulouse <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: http://lore.kernel.org/lkml/20210517131741.3027-4-james.clark@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-05-17 06:17:41 -07:00
#include "debug.h"
#include "intlist.h"
/* use raw logging */
#ifdef CS_DEBUG_RAW
#define CS_LOG_RAW_FRAMES
#ifdef CS_RAW_PACKED
#define CS_RAW_DEBUG_FLAGS (OCSD_DFRMTR_UNPACKED_RAW_OUT | \
OCSD_DFRMTR_PACKED_RAW_OUT)
#else
#define CS_RAW_DEBUG_FLAGS (OCSD_DFRMTR_UNPACKED_RAW_OUT)
#endif
#endif
perf cs_etm: Set the time field in the synthetic samples If virtual timestamps are detected, set sample time field accordingly, otherwise warn the user that the samples will not include accurate time data. | Test notes (FEAT_TRF platform) | | $ ./perf record -e cs_etm//u -a -- sleep 4 | $ ./perf script --fields +time | perf 422 [000] 163.375100: 1 branches:uH: 0 [unknown] ([unknown]) | perf 422 [000] 163.375100: 1 branches:uH: ffffb8009544 ioctl+0x14 (/lib/aarch64-linux-gnu/libc-2.27.so) | perf 422 [000] 163.375100: 1 branches:uH: aaaaab6bebf4 perf_evsel__run_ioctl+0x90 (/home/german/linux/tools/perf/perf) | [...] | perf 422 [000] 167.393100: 1 branches:uH: aaaaab6bda00 __xyarray__entry+0x74 (/home/german/linux/tools/perf/perf) | perf 422 [000] 167.393099: 1 branches:uH: aaaaab6bda0c __xyarray__entry+0x80 (/home/german/linux/tools/perf/perf) | perf 422 [000] 167.393099: 1 branches:uH: ffffb8009538 ioctl+0x8 (/lib/aarch64-linux-gnu/libc-2.27.so) | | The time from the first sample to the last sample is 4 seconds Now that times are converted to nanoseconds, also try to estimate the timestamps more accurately be dividing by some fixed value for instructions per ns. This prevents long ranges from being estimated too far in the past than would be realistic. Signed-off-by: German Gomez <german.gomez@arm.com> Acked-by: Suzuki Poulouse <suzuki.poulose@arm.com> Tested-by: Tanmay Jagdale <tanmay@marvell.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Bharat Bhushan <bbhushan2@marvell.com> Cc: George Cherian <gcherian@marvell.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Garry <john.g.garry@oracle.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Linu Cherian <lcherian@marvell.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sunil Kovvuri Goutham <sgoutham@marvell.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: https://lore.kernel.org/r/20230120143702.4035046-8-james.clark@arm.com Signed-off-by: James Clark <james.clark@arm.com> Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-01-20 07:37:00 -07:00
/*
* Assume a maximum of 0.1ns elapsed per instruction. This would be the
* case with a theoretical 10GHz core executing 1 instruction per cycle.
* Used to estimate the sample time for synthesized instructions because
* Coresight only emits a timestamp for a range of instructions rather
* than per instruction.
*/
const u32 INSTR_PER_NS = 10;
struct cs_etm_decoder {
void *data;
void (*packet_printer)(const char *msg, void *data);
bool suppress_printing;
dcd_tree_handle_t dcd_tree;
cs_etm_mem_cb_type mem_access;
ocsd_datapath_resp_t prev_return;
const char *decoder_name;
};
static u32
cs_etm_decoder__mem_access(const void *context,
const ocsd_vaddr_t address,
const ocsd_mem_space_acc_t mem_space,
const u8 trace_chan_id,
const u32 req_size,
u8 *buffer)
{
struct cs_etm_decoder *decoder = (struct cs_etm_decoder *) context;
return decoder->mem_access(decoder->data, trace_chan_id, address,
req_size, buffer, mem_space);
}
int cs_etm_decoder__add_mem_access_cb(struct cs_etm_decoder *decoder,
u64 start, u64 end,
cs_etm_mem_cb_type cb_func)
{
decoder->mem_access = cb_func;
if (ocsd_dt_add_callback_trcid_mem_acc(decoder->dcd_tree, start, end,
OCSD_MEM_SPACE_ANY,
cs_etm_decoder__mem_access,
decoder))
return -1;
return 0;
}
int cs_etm_decoder__reset(struct cs_etm_decoder *decoder)
{
ocsd_datapath_resp_t dp_ret;
perf cs-etm: Inject capabilitity for CoreSight traces Added user space perf functionality to translate CoreSight traces into instruction events with branch stack. To invoke the new functionality, use the perf inject tool with --itrace=il. For example, to translate the ETM trace from perf.data into last branch records in a new inj.data file: $ perf inject --itrace=i100000il128 -i perf.data -o perf.data.new The 'i' parameter to itrace generates periodic instruction events. The period between instruction events can be specified as a number of instructions suffixed by i (default 100000). The parameter to 'l' specifies the number of entries in the branch stack attached to instruction events. The 'b' parameter to itrace generates events on taken branches. This patch also fixes the contents of the branch events used in perf report - previously branch events were generated for each contiguous range of instructions executed. These are fixed to generate branch events between the last address of a range ending in an executed branch instruction and the start address of the next range. Based on patches by Sebastian Pop <s.pop@samsung.com> with additional fixes and support for specifying the instruction period. Originally-by: Sebastian Pop <s.pop@samsung.com> Signed-off-by: Robert Walker <robert.walker@arm.com> Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/1518607481-4059-2-git-send-email-robert.walker@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-02-14 04:24:39 -07:00
decoder->prev_return = OCSD_RESP_CONT;
decoder->suppress_printing = true;
dp_ret = ocsd_dt_process_data(decoder->dcd_tree, OCSD_OP_RESET,
0, 0, NULL, NULL);
decoder->suppress_printing = false;
if (OCSD_DATA_RESP_IS_FATAL(dp_ret))
return -1;
return 0;
}
int cs_etm_decoder__get_packet(struct cs_etm_packet_queue *packet_queue,
struct cs_etm_packet *packet)
{
if (!packet_queue || !packet)
return -EINVAL;
/* Nothing to do, might as well just return */
if (packet_queue->packet_count == 0)
return 0;
/*
* The queueing process in function cs_etm_decoder__buffer_packet()
* increments the tail *before* using it. This is somewhat counter
* intuitive but it has the advantage of centralizing tail management
* at a single location. Because of that we need to follow the same
* heuristic with the head, i.e we increment it before using its
* value. Otherwise the first element of the packet queue is not
* used.
*/
packet_queue->head = (packet_queue->head + 1) &
(CS_ETM_PACKET_MAX_BUFFER - 1);
*packet = packet_queue->packet_buffer[packet_queue->head];
packet_queue->packet_count--;
return 1;
}
perf cs_etm: Set the time field in the synthetic samples If virtual timestamps are detected, set sample time field accordingly, otherwise warn the user that the samples will not include accurate time data. | Test notes (FEAT_TRF platform) | | $ ./perf record -e cs_etm//u -a -- sleep 4 | $ ./perf script --fields +time | perf 422 [000] 163.375100: 1 branches:uH: 0 [unknown] ([unknown]) | perf 422 [000] 163.375100: 1 branches:uH: ffffb8009544 ioctl+0x14 (/lib/aarch64-linux-gnu/libc-2.27.so) | perf 422 [000] 163.375100: 1 branches:uH: aaaaab6bebf4 perf_evsel__run_ioctl+0x90 (/home/german/linux/tools/perf/perf) | [...] | perf 422 [000] 167.393100: 1 branches:uH: aaaaab6bda00 __xyarray__entry+0x74 (/home/german/linux/tools/perf/perf) | perf 422 [000] 167.393099: 1 branches:uH: aaaaab6bda0c __xyarray__entry+0x80 (/home/german/linux/tools/perf/perf) | perf 422 [000] 167.393099: 1 branches:uH: ffffb8009538 ioctl+0x8 (/lib/aarch64-linux-gnu/libc-2.27.so) | | The time from the first sample to the last sample is 4 seconds Now that times are converted to nanoseconds, also try to estimate the timestamps more accurately be dividing by some fixed value for instructions per ns. This prevents long ranges from being estimated too far in the past than would be realistic. Signed-off-by: German Gomez <german.gomez@arm.com> Acked-by: Suzuki Poulouse <suzuki.poulose@arm.com> Tested-by: Tanmay Jagdale <tanmay@marvell.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Bharat Bhushan <bbhushan2@marvell.com> Cc: George Cherian <gcherian@marvell.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Garry <john.g.garry@oracle.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Linu Cherian <lcherian@marvell.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sunil Kovvuri Goutham <sgoutham@marvell.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: https://lore.kernel.org/r/20230120143702.4035046-8-james.clark@arm.com Signed-off-by: James Clark <james.clark@arm.com> Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-01-20 07:37:00 -07:00
/*
* Calculate the number of nanoseconds elapsed.
*
* instr_count is updated in place with the remainder of the instructions
* which didn't make up a whole nanosecond.
*/
static u32 cs_etm_decoder__dec_instr_count_to_ns(u32 *instr_count)
{
const u32 instr_copy = *instr_count;
*instr_count %= INSTR_PER_NS;
return instr_copy / INSTR_PER_NS;
}
static int cs_etm_decoder__gen_etmv3_config(struct cs_etm_trace_params *params,
ocsd_etmv3_cfg *config)
{
config->reg_idr = params->etmv3.reg_idr;
config->reg_ctrl = params->etmv3.reg_ctrl;
config->reg_ccer = params->etmv3.reg_ccer;
config->reg_trc_id = params->etmv3.reg_trc_id;
config->arch_ver = ARCH_V7;
config->core_prof = profile_CortexA;
return 0;
}
#define TRCIDR1_TRCARCHMIN_SHIFT 4
#define TRCIDR1_TRCARCHMIN_MASK GENMASK(7, 4)
#define TRCIDR1_TRCARCHMIN(x) (((x) & TRCIDR1_TRCARCHMIN_MASK) >> TRCIDR1_TRCARCHMIN_SHIFT)
static enum _ocsd_arch_version cs_etm_decoder__get_etmv4_arch_ver(u32 reg_idr1)
{
/*
* For ETMv4 if the trace minor version is 4 or more then we can assume
* the architecture is ARCH_AA64 rather than just V8.
* ARCH_V8 = V8 architecture
* ARCH_AA64 = Min v8r3 plus additional AA64 PE features
*/
return TRCIDR1_TRCARCHMIN(reg_idr1) >= 4 ? ARCH_AA64 : ARCH_V8;
}
static void cs_etm_decoder__gen_etmv4_config(struct cs_etm_trace_params *params,
ocsd_etmv4_cfg *config)
{
config->reg_configr = params->etmv4.reg_configr;
config->reg_traceidr = params->etmv4.reg_traceidr;
config->reg_idr0 = params->etmv4.reg_idr0;
config->reg_idr1 = params->etmv4.reg_idr1;
config->reg_idr2 = params->etmv4.reg_idr2;
config->reg_idr8 = params->etmv4.reg_idr8;
config->reg_idr9 = 0;
config->reg_idr10 = 0;
config->reg_idr11 = 0;
config->reg_idr12 = 0;
config->reg_idr13 = 0;
config->arch_ver = cs_etm_decoder__get_etmv4_arch_ver(params->etmv4.reg_idr1);
config->core_prof = profile_CortexA;
}
static void cs_etm_decoder__gen_ete_config(struct cs_etm_trace_params *params,
ocsd_ete_cfg *config)
{
config->reg_configr = params->ete.reg_configr;
config->reg_traceidr = params->ete.reg_traceidr;
config->reg_idr0 = params->ete.reg_idr0;
config->reg_idr1 = params->ete.reg_idr1;
config->reg_idr2 = params->ete.reg_idr2;
config->reg_idr8 = params->ete.reg_idr8;
config->reg_devarch = params->ete.reg_devarch;
config->arch_ver = ARCH_AA64;
config->core_prof = profile_CortexA;
}
static void cs_etm_decoder__print_str_cb(const void *p_context,
const char *msg,
const int str_len)
{
const struct cs_etm_decoder *decoder = p_context;
if (p_context && str_len && !decoder->suppress_printing)
decoder->packet_printer(msg, decoder->data);
}
static int
cs_etm_decoder__init_def_logger_printing(struct cs_etm_decoder_params *d_params,
struct cs_etm_decoder *decoder)
{
int ret = 0;
if (d_params->packet_printer == NULL)
return -1;
decoder->packet_printer = d_params->packet_printer;
/*
* Set up a library default logger to process any printers
* (packet/raw frame) we add later.
*/
ret = ocsd_def_errlog_init(OCSD_ERR_SEV_ERROR, 1);
if (ret != 0)
return -1;
/* no stdout / err / file output */
ret = ocsd_def_errlog_config_output(C_API_MSGLOGOUT_FLG_NONE, NULL);
if (ret != 0)
return -1;
/*
* Set the string CB for the default logger, passes strings to
* perf print logger.
*/
ret = ocsd_def_errlog_set_strprint_cb(decoder->dcd_tree,
(void *)decoder,
cs_etm_decoder__print_str_cb);
if (ret != 0)
ret = -1;
return 0;
}
#ifdef CS_LOG_RAW_FRAMES
static void
cs_etm_decoder__init_raw_frame_logging(struct cs_etm_decoder_params *d_params,
struct cs_etm_decoder *decoder)
{
/* Only log these during a --dump operation */
if (d_params->operation == CS_ETM_OPERATION_PRINT) {
/* set up a library default logger to process the
* raw frame printer we add later
*/
ocsd_def_errlog_init(OCSD_ERR_SEV_ERROR, 1);
/* no stdout / err / file output */
ocsd_def_errlog_config_output(C_API_MSGLOGOUT_FLG_NONE, NULL);
/* set the string CB for the default logger,
* passes strings to perf print logger.
*/
ocsd_def_errlog_set_strprint_cb(decoder->dcd_tree,
(void *)decoder,
cs_etm_decoder__print_str_cb);
/* use the built in library printer for the raw frames */
ocsd_dt_set_raw_frame_printer(decoder->dcd_tree,
CS_RAW_DEBUG_FLAGS);
}
}
#else
static void
cs_etm_decoder__init_raw_frame_logging(
struct cs_etm_decoder_params *d_params __maybe_unused,
struct cs_etm_decoder *decoder __maybe_unused)
{
}
#endif
static ocsd_datapath_resp_t
cs_etm_decoder__do_soft_timestamp(struct cs_etm_queue *etmq,
struct cs_etm_packet_queue *packet_queue,
const uint8_t trace_chan_id)
{
perf cs-etm: Ensure that Coresight timestamps don't go backwards There are some edge cases around estimated timestamps that can result in them going backwards. One is that after a discontinuity, the last used timestamp is set to 0. The duration of the next range is then subtracted which could result in an earlier timestamp than the last instruction. Fix this by not resetting the last timestamp used on a discontinuity, and make sure that new estimated timestamps are clamped to be later than that. Another case is that estimated timestamps could compound over time to end up being more than the next real timestamp in the trace. Fix this by clamping the estimates in cs_etm_decoder__do_soft_timestamp() to be no later than it. cs_etm_decoder__do_soft_timestamp() also updated next_cs_timestamp, which meant that the next real timestamp was lost and not stored anywhere. Fix that by only updating cs_timestamp for estimates and keep next_cs_timestamp untouched. Finally, use next_cs_timestamp to signify if a timestamp has been received previously. Because cs_timestamp has the first range subtracted, it could technically go to 0 which would break the logic. Testing ======= It can be verified that timestamps don't go backwards when tracing on a single core with the following commands. Across multiple cores it's expected that timestamps are interleaved: $ perf record -e cs_etm/@tmc_etr0/k -C 4 taskset -c 4 sleep 1 $ perf script --itrace=i1ns --ns -Fcomm,tid,pid,time,cpu,event,ip,sym,addr,symoff,flags,callindent > itrace $ sed 's/://g' itrace | awk -F ' ' ' { print $4 } ' | awk '{ if ($1 < prev) { print "line:" NR " " $0 } {prev=$1}}' Reported-by: Tanmay Jagdale <tanmay@marvell.com> Signed-off-by: James Clark <james.clark@arm.com> Acked-by: Suzuki Poulouse <suzuki.poulose@arm.com> Tested-by: Tanmay Jagdale <tanmay@marvell.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Bharat Bhushan <bbhushan2@marvell.com> Cc: George Cherian <gcherian@marvell.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Garry <john.g.garry@oracle.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Linu Cherian <lcherian@marvell.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sunil Kovvuri Goutham <sgoutham@marvell.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: https://lore.kernel.org/r/20230120143702.4035046-9-james.clark@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-01-20 07:37:01 -07:00
u64 estimated_ts;
/* No timestamp packet has been received, nothing to do */
perf cs-etm: Ensure that Coresight timestamps don't go backwards There are some edge cases around estimated timestamps that can result in them going backwards. One is that after a discontinuity, the last used timestamp is set to 0. The duration of the next range is then subtracted which could result in an earlier timestamp than the last instruction. Fix this by not resetting the last timestamp used on a discontinuity, and make sure that new estimated timestamps are clamped to be later than that. Another case is that estimated timestamps could compound over time to end up being more than the next real timestamp in the trace. Fix this by clamping the estimates in cs_etm_decoder__do_soft_timestamp() to be no later than it. cs_etm_decoder__do_soft_timestamp() also updated next_cs_timestamp, which meant that the next real timestamp was lost and not stored anywhere. Fix that by only updating cs_timestamp for estimates and keep next_cs_timestamp untouched. Finally, use next_cs_timestamp to signify if a timestamp has been received previously. Because cs_timestamp has the first range subtracted, it could technically go to 0 which would break the logic. Testing ======= It can be verified that timestamps don't go backwards when tracing on a single core with the following commands. Across multiple cores it's expected that timestamps are interleaved: $ perf record -e cs_etm/@tmc_etr0/k -C 4 taskset -c 4 sleep 1 $ perf script --itrace=i1ns --ns -Fcomm,tid,pid,time,cpu,event,ip,sym,addr,symoff,flags,callindent > itrace $ sed 's/://g' itrace | awk -F ' ' ' { print $4 } ' | awk '{ if ($1 < prev) { print "line:" NR " " $0 } {prev=$1}}' Reported-by: Tanmay Jagdale <tanmay@marvell.com> Signed-off-by: James Clark <james.clark@arm.com> Acked-by: Suzuki Poulouse <suzuki.poulose@arm.com> Tested-by: Tanmay Jagdale <tanmay@marvell.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Bharat Bhushan <bbhushan2@marvell.com> Cc: George Cherian <gcherian@marvell.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Garry <john.g.garry@oracle.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Linu Cherian <lcherian@marvell.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sunil Kovvuri Goutham <sgoutham@marvell.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: https://lore.kernel.org/r/20230120143702.4035046-9-james.clark@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-01-20 07:37:01 -07:00
if (!packet_queue->next_cs_timestamp)
return OCSD_RESP_CONT;
perf cs-etm: Ensure that Coresight timestamps don't go backwards There are some edge cases around estimated timestamps that can result in them going backwards. One is that after a discontinuity, the last used timestamp is set to 0. The duration of the next range is then subtracted which could result in an earlier timestamp than the last instruction. Fix this by not resetting the last timestamp used on a discontinuity, and make sure that new estimated timestamps are clamped to be later than that. Another case is that estimated timestamps could compound over time to end up being more than the next real timestamp in the trace. Fix this by clamping the estimates in cs_etm_decoder__do_soft_timestamp() to be no later than it. cs_etm_decoder__do_soft_timestamp() also updated next_cs_timestamp, which meant that the next real timestamp was lost and not stored anywhere. Fix that by only updating cs_timestamp for estimates and keep next_cs_timestamp untouched. Finally, use next_cs_timestamp to signify if a timestamp has been received previously. Because cs_timestamp has the first range subtracted, it could technically go to 0 which would break the logic. Testing ======= It can be verified that timestamps don't go backwards when tracing on a single core with the following commands. Across multiple cores it's expected that timestamps are interleaved: $ perf record -e cs_etm/@tmc_etr0/k -C 4 taskset -c 4 sleep 1 $ perf script --itrace=i1ns --ns -Fcomm,tid,pid,time,cpu,event,ip,sym,addr,symoff,flags,callindent > itrace $ sed 's/://g' itrace | awk -F ' ' ' { print $4 } ' | awk '{ if ($1 < prev) { print "line:" NR " " $0 } {prev=$1}}' Reported-by: Tanmay Jagdale <tanmay@marvell.com> Signed-off-by: James Clark <james.clark@arm.com> Acked-by: Suzuki Poulouse <suzuki.poulose@arm.com> Tested-by: Tanmay Jagdale <tanmay@marvell.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Bharat Bhushan <bbhushan2@marvell.com> Cc: George Cherian <gcherian@marvell.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Garry <john.g.garry@oracle.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Linu Cherian <lcherian@marvell.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sunil Kovvuri Goutham <sgoutham@marvell.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: https://lore.kernel.org/r/20230120143702.4035046-9-james.clark@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-01-20 07:37:01 -07:00
estimated_ts = packet_queue->cs_timestamp +
cs_etm_decoder__dec_instr_count_to_ns(&packet_queue->instr_count);
perf cs-etm: Ensure that Coresight timestamps don't go backwards There are some edge cases around estimated timestamps that can result in them going backwards. One is that after a discontinuity, the last used timestamp is set to 0. The duration of the next range is then subtracted which could result in an earlier timestamp than the last instruction. Fix this by not resetting the last timestamp used on a discontinuity, and make sure that new estimated timestamps are clamped to be later than that. Another case is that estimated timestamps could compound over time to end up being more than the next real timestamp in the trace. Fix this by clamping the estimates in cs_etm_decoder__do_soft_timestamp() to be no later than it. cs_etm_decoder__do_soft_timestamp() also updated next_cs_timestamp, which meant that the next real timestamp was lost and not stored anywhere. Fix that by only updating cs_timestamp for estimates and keep next_cs_timestamp untouched. Finally, use next_cs_timestamp to signify if a timestamp has been received previously. Because cs_timestamp has the first range subtracted, it could technically go to 0 which would break the logic. Testing ======= It can be verified that timestamps don't go backwards when tracing on a single core with the following commands. Across multiple cores it's expected that timestamps are interleaved: $ perf record -e cs_etm/@tmc_etr0/k -C 4 taskset -c 4 sleep 1 $ perf script --itrace=i1ns --ns -Fcomm,tid,pid,time,cpu,event,ip,sym,addr,symoff,flags,callindent > itrace $ sed 's/://g' itrace | awk -F ' ' ' { print $4 } ' | awk '{ if ($1 < prev) { print "line:" NR " " $0 } {prev=$1}}' Reported-by: Tanmay Jagdale <tanmay@marvell.com> Signed-off-by: James Clark <james.clark@arm.com> Acked-by: Suzuki Poulouse <suzuki.poulose@arm.com> Tested-by: Tanmay Jagdale <tanmay@marvell.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Bharat Bhushan <bbhushan2@marvell.com> Cc: George Cherian <gcherian@marvell.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Garry <john.g.garry@oracle.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Linu Cherian <lcherian@marvell.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sunil Kovvuri Goutham <sgoutham@marvell.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: https://lore.kernel.org/r/20230120143702.4035046-9-james.clark@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-01-20 07:37:01 -07:00
/* Estimated TS can never be higher than the next real one in the trace */
packet_queue->cs_timestamp = min(packet_queue->next_cs_timestamp, estimated_ts);
/* Tell the front end which traceid_queue needs attention */
cs_etm__etmq_set_traceid_queue_timestamp(etmq, trace_chan_id);
return OCSD_RESP_WAIT;
}
static ocsd_datapath_resp_t
cs_etm_decoder__do_hard_timestamp(struct cs_etm_queue *etmq,
const ocsd_generic_trace_elem *elem,
perf cs-etm: Prevent and warn on underflows during timestamp calculation. When a zero timestamp is encountered, warn once. This is to make hardware or configuration issues visible. Also suggest that the issue can be worked around with the --itrace=Z option. When an underflow with a non-zero timestamp occurs, warn every time. This is an unexpected scenario, and with increasing timestamps, it's unlikely that it would occur more than once, therefore it should be ok to warn every time. Only try to calculate the timestamp by subtracting the instruction count if neither of the above cases are true. This makes attempting to decode files with zero timestamps in non-timeless mode more consistent. Currently it can half work if the timestamp wraps around and becomes non-zero, although the behavior is undefined and unpredictable. Signed-off-by: James Clark <james.clark@arm.com> Reviewed-by: Leo Yan <leo.yan@linaro.org> Cc: Al Grant <al.grant@arm.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Branislav Rankov <branislav.rankov@arm.com> Cc: Denis Nikitin <denik@chromium.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Garry <john.garry@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Suzuki Poulouse <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: http://lore.kernel.org/lkml/20210517131741.3027-4-james.clark@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-05-17 06:17:41 -07:00
const uint8_t trace_chan_id,
const ocsd_trc_index_t indx)
{
struct cs_etm_packet_queue *packet_queue;
perf cs_etm: Set the time field in the synthetic samples If virtual timestamps are detected, set sample time field accordingly, otherwise warn the user that the samples will not include accurate time data. | Test notes (FEAT_TRF platform) | | $ ./perf record -e cs_etm//u -a -- sleep 4 | $ ./perf script --fields +time | perf 422 [000] 163.375100: 1 branches:uH: 0 [unknown] ([unknown]) | perf 422 [000] 163.375100: 1 branches:uH: ffffb8009544 ioctl+0x14 (/lib/aarch64-linux-gnu/libc-2.27.so) | perf 422 [000] 163.375100: 1 branches:uH: aaaaab6bebf4 perf_evsel__run_ioctl+0x90 (/home/german/linux/tools/perf/perf) | [...] | perf 422 [000] 167.393100: 1 branches:uH: aaaaab6bda00 __xyarray__entry+0x74 (/home/german/linux/tools/perf/perf) | perf 422 [000] 167.393099: 1 branches:uH: aaaaab6bda0c __xyarray__entry+0x80 (/home/german/linux/tools/perf/perf) | perf 422 [000] 167.393099: 1 branches:uH: ffffb8009538 ioctl+0x8 (/lib/aarch64-linux-gnu/libc-2.27.so) | | The time from the first sample to the last sample is 4 seconds Now that times are converted to nanoseconds, also try to estimate the timestamps more accurately be dividing by some fixed value for instructions per ns. This prevents long ranges from being estimated too far in the past than would be realistic. Signed-off-by: German Gomez <german.gomez@arm.com> Acked-by: Suzuki Poulouse <suzuki.poulose@arm.com> Tested-by: Tanmay Jagdale <tanmay@marvell.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Bharat Bhushan <bbhushan2@marvell.com> Cc: George Cherian <gcherian@marvell.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Garry <john.g.garry@oracle.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Linu Cherian <lcherian@marvell.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sunil Kovvuri Goutham <sgoutham@marvell.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: https://lore.kernel.org/r/20230120143702.4035046-8-james.clark@arm.com Signed-off-by: James Clark <james.clark@arm.com> Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-01-20 07:37:00 -07:00
u64 converted_timestamp;
perf cs-etm: Ensure that Coresight timestamps don't go backwards There are some edge cases around estimated timestamps that can result in them going backwards. One is that after a discontinuity, the last used timestamp is set to 0. The duration of the next range is then subtracted which could result in an earlier timestamp than the last instruction. Fix this by not resetting the last timestamp used on a discontinuity, and make sure that new estimated timestamps are clamped to be later than that. Another case is that estimated timestamps could compound over time to end up being more than the next real timestamp in the trace. Fix this by clamping the estimates in cs_etm_decoder__do_soft_timestamp() to be no later than it. cs_etm_decoder__do_soft_timestamp() also updated next_cs_timestamp, which meant that the next real timestamp was lost and not stored anywhere. Fix that by only updating cs_timestamp for estimates and keep next_cs_timestamp untouched. Finally, use next_cs_timestamp to signify if a timestamp has been received previously. Because cs_timestamp has the first range subtracted, it could technically go to 0 which would break the logic. Testing ======= It can be verified that timestamps don't go backwards when tracing on a single core with the following commands. Across multiple cores it's expected that timestamps are interleaved: $ perf record -e cs_etm/@tmc_etr0/k -C 4 taskset -c 4 sleep 1 $ perf script --itrace=i1ns --ns -Fcomm,tid,pid,time,cpu,event,ip,sym,addr,symoff,flags,callindent > itrace $ sed 's/://g' itrace | awk -F ' ' ' { print $4 } ' | awk '{ if ($1 < prev) { print "line:" NR " " $0 } {prev=$1}}' Reported-by: Tanmay Jagdale <tanmay@marvell.com> Signed-off-by: James Clark <james.clark@arm.com> Acked-by: Suzuki Poulouse <suzuki.poulose@arm.com> Tested-by: Tanmay Jagdale <tanmay@marvell.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Bharat Bhushan <bbhushan2@marvell.com> Cc: George Cherian <gcherian@marvell.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Garry <john.g.garry@oracle.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Linu Cherian <lcherian@marvell.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sunil Kovvuri Goutham <sgoutham@marvell.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: https://lore.kernel.org/r/20230120143702.4035046-9-james.clark@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-01-20 07:37:01 -07:00
u64 estimated_first_ts;
/* First get the packet queue for this traceID */
packet_queue = cs_etm__etmq_get_packet_queue(etmq, trace_chan_id);
if (!packet_queue)
return OCSD_RESP_FATAL_SYS_ERR;
perf cs_etm: Set the time field in the synthetic samples If virtual timestamps are detected, set sample time field accordingly, otherwise warn the user that the samples will not include accurate time data. | Test notes (FEAT_TRF platform) | | $ ./perf record -e cs_etm//u -a -- sleep 4 | $ ./perf script --fields +time | perf 422 [000] 163.375100: 1 branches:uH: 0 [unknown] ([unknown]) | perf 422 [000] 163.375100: 1 branches:uH: ffffb8009544 ioctl+0x14 (/lib/aarch64-linux-gnu/libc-2.27.so) | perf 422 [000] 163.375100: 1 branches:uH: aaaaab6bebf4 perf_evsel__run_ioctl+0x90 (/home/german/linux/tools/perf/perf) | [...] | perf 422 [000] 167.393100: 1 branches:uH: aaaaab6bda00 __xyarray__entry+0x74 (/home/german/linux/tools/perf/perf) | perf 422 [000] 167.393099: 1 branches:uH: aaaaab6bda0c __xyarray__entry+0x80 (/home/german/linux/tools/perf/perf) | perf 422 [000] 167.393099: 1 branches:uH: ffffb8009538 ioctl+0x8 (/lib/aarch64-linux-gnu/libc-2.27.so) | | The time from the first sample to the last sample is 4 seconds Now that times are converted to nanoseconds, also try to estimate the timestamps more accurately be dividing by some fixed value for instructions per ns. This prevents long ranges from being estimated too far in the past than would be realistic. Signed-off-by: German Gomez <german.gomez@arm.com> Acked-by: Suzuki Poulouse <suzuki.poulose@arm.com> Tested-by: Tanmay Jagdale <tanmay@marvell.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Bharat Bhushan <bbhushan2@marvell.com> Cc: George Cherian <gcherian@marvell.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Garry <john.g.garry@oracle.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Linu Cherian <lcherian@marvell.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sunil Kovvuri Goutham <sgoutham@marvell.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: https://lore.kernel.org/r/20230120143702.4035046-8-james.clark@arm.com Signed-off-by: James Clark <james.clark@arm.com> Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-01-20 07:37:00 -07:00
/*
* Coresight timestamps are raw timer values which need to be scaled to ns. Assume
* 0 is a bad value so don't try to convert it.
*/
converted_timestamp = elem->timestamp ?
cs_etm__convert_sample_time(etmq, elem->timestamp) : 0;
/*
* We've seen a timestamp packet before - simply record the new value.
* Function do_soft_timestamp() will report the value to the front end,
* hence asking the decoder to keep decoding rather than stopping.
*/
perf cs-etm: Ensure that Coresight timestamps don't go backwards There are some edge cases around estimated timestamps that can result in them going backwards. One is that after a discontinuity, the last used timestamp is set to 0. The duration of the next range is then subtracted which could result in an earlier timestamp than the last instruction. Fix this by not resetting the last timestamp used on a discontinuity, and make sure that new estimated timestamps are clamped to be later than that. Another case is that estimated timestamps could compound over time to end up being more than the next real timestamp in the trace. Fix this by clamping the estimates in cs_etm_decoder__do_soft_timestamp() to be no later than it. cs_etm_decoder__do_soft_timestamp() also updated next_cs_timestamp, which meant that the next real timestamp was lost and not stored anywhere. Fix that by only updating cs_timestamp for estimates and keep next_cs_timestamp untouched. Finally, use next_cs_timestamp to signify if a timestamp has been received previously. Because cs_timestamp has the first range subtracted, it could technically go to 0 which would break the logic. Testing ======= It can be verified that timestamps don't go backwards when tracing on a single core with the following commands. Across multiple cores it's expected that timestamps are interleaved: $ perf record -e cs_etm/@tmc_etr0/k -C 4 taskset -c 4 sleep 1 $ perf script --itrace=i1ns --ns -Fcomm,tid,pid,time,cpu,event,ip,sym,addr,symoff,flags,callindent > itrace $ sed 's/://g' itrace | awk -F ' ' ' { print $4 } ' | awk '{ if ($1 < prev) { print "line:" NR " " $0 } {prev=$1}}' Reported-by: Tanmay Jagdale <tanmay@marvell.com> Signed-off-by: James Clark <james.clark@arm.com> Acked-by: Suzuki Poulouse <suzuki.poulose@arm.com> Tested-by: Tanmay Jagdale <tanmay@marvell.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Bharat Bhushan <bbhushan2@marvell.com> Cc: George Cherian <gcherian@marvell.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Garry <john.g.garry@oracle.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Linu Cherian <lcherian@marvell.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sunil Kovvuri Goutham <sgoutham@marvell.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: https://lore.kernel.org/r/20230120143702.4035046-9-james.clark@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-01-20 07:37:01 -07:00
if (packet_queue->next_cs_timestamp) {
/*
* What was next is now where new ranges start from, overwriting
* any previous estimate in cs_timestamp
*/
packet_queue->cs_timestamp = packet_queue->next_cs_timestamp;
perf cs_etm: Set the time field in the synthetic samples If virtual timestamps are detected, set sample time field accordingly, otherwise warn the user that the samples will not include accurate time data. | Test notes (FEAT_TRF platform) | | $ ./perf record -e cs_etm//u -a -- sleep 4 | $ ./perf script --fields +time | perf 422 [000] 163.375100: 1 branches:uH: 0 [unknown] ([unknown]) | perf 422 [000] 163.375100: 1 branches:uH: ffffb8009544 ioctl+0x14 (/lib/aarch64-linux-gnu/libc-2.27.so) | perf 422 [000] 163.375100: 1 branches:uH: aaaaab6bebf4 perf_evsel__run_ioctl+0x90 (/home/german/linux/tools/perf/perf) | [...] | perf 422 [000] 167.393100: 1 branches:uH: aaaaab6bda00 __xyarray__entry+0x74 (/home/german/linux/tools/perf/perf) | perf 422 [000] 167.393099: 1 branches:uH: aaaaab6bda0c __xyarray__entry+0x80 (/home/german/linux/tools/perf/perf) | perf 422 [000] 167.393099: 1 branches:uH: ffffb8009538 ioctl+0x8 (/lib/aarch64-linux-gnu/libc-2.27.so) | | The time from the first sample to the last sample is 4 seconds Now that times are converted to nanoseconds, also try to estimate the timestamps more accurately be dividing by some fixed value for instructions per ns. This prevents long ranges from being estimated too far in the past than would be realistic. Signed-off-by: German Gomez <german.gomez@arm.com> Acked-by: Suzuki Poulouse <suzuki.poulose@arm.com> Tested-by: Tanmay Jagdale <tanmay@marvell.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Bharat Bhushan <bbhushan2@marvell.com> Cc: George Cherian <gcherian@marvell.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Garry <john.g.garry@oracle.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Linu Cherian <lcherian@marvell.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sunil Kovvuri Goutham <sgoutham@marvell.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: https://lore.kernel.org/r/20230120143702.4035046-8-james.clark@arm.com Signed-off-by: James Clark <james.clark@arm.com> Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-01-20 07:37:00 -07:00
packet_queue->next_cs_timestamp = converted_timestamp;
return OCSD_RESP_CONT;
}
perf cs_etm: Set the time field in the synthetic samples If virtual timestamps are detected, set sample time field accordingly, otherwise warn the user that the samples will not include accurate time data. | Test notes (FEAT_TRF platform) | | $ ./perf record -e cs_etm//u -a -- sleep 4 | $ ./perf script --fields +time | perf 422 [000] 163.375100: 1 branches:uH: 0 [unknown] ([unknown]) | perf 422 [000] 163.375100: 1 branches:uH: ffffb8009544 ioctl+0x14 (/lib/aarch64-linux-gnu/libc-2.27.so) | perf 422 [000] 163.375100: 1 branches:uH: aaaaab6bebf4 perf_evsel__run_ioctl+0x90 (/home/german/linux/tools/perf/perf) | [...] | perf 422 [000] 167.393100: 1 branches:uH: aaaaab6bda00 __xyarray__entry+0x74 (/home/german/linux/tools/perf/perf) | perf 422 [000] 167.393099: 1 branches:uH: aaaaab6bda0c __xyarray__entry+0x80 (/home/german/linux/tools/perf/perf) | perf 422 [000] 167.393099: 1 branches:uH: ffffb8009538 ioctl+0x8 (/lib/aarch64-linux-gnu/libc-2.27.so) | | The time from the first sample to the last sample is 4 seconds Now that times are converted to nanoseconds, also try to estimate the timestamps more accurately be dividing by some fixed value for instructions per ns. This prevents long ranges from being estimated too far in the past than would be realistic. Signed-off-by: German Gomez <german.gomez@arm.com> Acked-by: Suzuki Poulouse <suzuki.poulose@arm.com> Tested-by: Tanmay Jagdale <tanmay@marvell.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Bharat Bhushan <bbhushan2@marvell.com> Cc: George Cherian <gcherian@marvell.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Garry <john.g.garry@oracle.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Linu Cherian <lcherian@marvell.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sunil Kovvuri Goutham <sgoutham@marvell.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: https://lore.kernel.org/r/20230120143702.4035046-8-james.clark@arm.com Signed-off-by: James Clark <james.clark@arm.com> Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-01-20 07:37:00 -07:00
if (!converted_timestamp) {
perf cs-etm: Prevent and warn on underflows during timestamp calculation. When a zero timestamp is encountered, warn once. This is to make hardware or configuration issues visible. Also suggest that the issue can be worked around with the --itrace=Z option. When an underflow with a non-zero timestamp occurs, warn every time. This is an unexpected scenario, and with increasing timestamps, it's unlikely that it would occur more than once, therefore it should be ok to warn every time. Only try to calculate the timestamp by subtracting the instruction count if neither of the above cases are true. This makes attempting to decode files with zero timestamps in non-timeless mode more consistent. Currently it can half work if the timestamp wraps around and becomes non-zero, although the behavior is undefined and unpredictable. Signed-off-by: James Clark <james.clark@arm.com> Reviewed-by: Leo Yan <leo.yan@linaro.org> Cc: Al Grant <al.grant@arm.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Branislav Rankov <branislav.rankov@arm.com> Cc: Denis Nikitin <denik@chromium.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Garry <john.garry@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Suzuki Poulouse <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: http://lore.kernel.org/lkml/20210517131741.3027-4-james.clark@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-05-17 06:17:41 -07:00
/*
* Zero timestamps can be seen due to misconfiguration or hardware bugs.
* Warn once, and don't try to subtract instr_count as it would result in an
* underflow.
*/
packet_queue->cs_timestamp = 0;
if (!cs_etm__etmq_is_timeless(etmq))
pr_warning_once("Zero Coresight timestamp found at Idx:%" OCSD_TRC_IDX_STR
". Decoding may be improved by prepending 'Z' to your current --itrace arguments.\n",
indx);
perf cs_etm: Set the time field in the synthetic samples If virtual timestamps are detected, set sample time field accordingly, otherwise warn the user that the samples will not include accurate time data. | Test notes (FEAT_TRF platform) | | $ ./perf record -e cs_etm//u -a -- sleep 4 | $ ./perf script --fields +time | perf 422 [000] 163.375100: 1 branches:uH: 0 [unknown] ([unknown]) | perf 422 [000] 163.375100: 1 branches:uH: ffffb8009544 ioctl+0x14 (/lib/aarch64-linux-gnu/libc-2.27.so) | perf 422 [000] 163.375100: 1 branches:uH: aaaaab6bebf4 perf_evsel__run_ioctl+0x90 (/home/german/linux/tools/perf/perf) | [...] | perf 422 [000] 167.393100: 1 branches:uH: aaaaab6bda00 __xyarray__entry+0x74 (/home/german/linux/tools/perf/perf) | perf 422 [000] 167.393099: 1 branches:uH: aaaaab6bda0c __xyarray__entry+0x80 (/home/german/linux/tools/perf/perf) | perf 422 [000] 167.393099: 1 branches:uH: ffffb8009538 ioctl+0x8 (/lib/aarch64-linux-gnu/libc-2.27.so) | | The time from the first sample to the last sample is 4 seconds Now that times are converted to nanoseconds, also try to estimate the timestamps more accurately be dividing by some fixed value for instructions per ns. This prevents long ranges from being estimated too far in the past than would be realistic. Signed-off-by: German Gomez <german.gomez@arm.com> Acked-by: Suzuki Poulouse <suzuki.poulose@arm.com> Tested-by: Tanmay Jagdale <tanmay@marvell.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Bharat Bhushan <bbhushan2@marvell.com> Cc: George Cherian <gcherian@marvell.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Garry <john.g.garry@oracle.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Linu Cherian <lcherian@marvell.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sunil Kovvuri Goutham <sgoutham@marvell.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: https://lore.kernel.org/r/20230120143702.4035046-8-james.clark@arm.com Signed-off-by: James Clark <james.clark@arm.com> Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-01-20 07:37:00 -07:00
} else if (packet_queue->instr_count / INSTR_PER_NS > converted_timestamp) {
perf cs-etm: Prevent and warn on underflows during timestamp calculation. When a zero timestamp is encountered, warn once. This is to make hardware or configuration issues visible. Also suggest that the issue can be worked around with the --itrace=Z option. When an underflow with a non-zero timestamp occurs, warn every time. This is an unexpected scenario, and with increasing timestamps, it's unlikely that it would occur more than once, therefore it should be ok to warn every time. Only try to calculate the timestamp by subtracting the instruction count if neither of the above cases are true. This makes attempting to decode files with zero timestamps in non-timeless mode more consistent. Currently it can half work if the timestamp wraps around and becomes non-zero, although the behavior is undefined and unpredictable. Signed-off-by: James Clark <james.clark@arm.com> Reviewed-by: Leo Yan <leo.yan@linaro.org> Cc: Al Grant <al.grant@arm.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Branislav Rankov <branislav.rankov@arm.com> Cc: Denis Nikitin <denik@chromium.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Garry <john.garry@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Suzuki Poulouse <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: http://lore.kernel.org/lkml/20210517131741.3027-4-james.clark@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-05-17 06:17:41 -07:00
/*
* Sanity check that the elem->timestamp - packet_queue->instr_count would not
* result in an underflow. Warn and clamp at 0 if it would.
*/
packet_queue->cs_timestamp = 0;
pr_err("Timestamp calculation underflow at Idx:%" OCSD_TRC_IDX_STR "\n", indx);
} else {
/*
* This is the first timestamp we've seen since the beginning of traces
* or a discontinuity. Since timestamps packets are generated *after*
* range packets have been generated, we need to estimate the time at
* which instructions started by subtracting the number of instructions
perf cs-etm: Ensure that Coresight timestamps don't go backwards There are some edge cases around estimated timestamps that can result in them going backwards. One is that after a discontinuity, the last used timestamp is set to 0. The duration of the next range is then subtracted which could result in an earlier timestamp than the last instruction. Fix this by not resetting the last timestamp used on a discontinuity, and make sure that new estimated timestamps are clamped to be later than that. Another case is that estimated timestamps could compound over time to end up being more than the next real timestamp in the trace. Fix this by clamping the estimates in cs_etm_decoder__do_soft_timestamp() to be no later than it. cs_etm_decoder__do_soft_timestamp() also updated next_cs_timestamp, which meant that the next real timestamp was lost and not stored anywhere. Fix that by only updating cs_timestamp for estimates and keep next_cs_timestamp untouched. Finally, use next_cs_timestamp to signify if a timestamp has been received previously. Because cs_timestamp has the first range subtracted, it could technically go to 0 which would break the logic. Testing ======= It can be verified that timestamps don't go backwards when tracing on a single core with the following commands. Across multiple cores it's expected that timestamps are interleaved: $ perf record -e cs_etm/@tmc_etr0/k -C 4 taskset -c 4 sleep 1 $ perf script --itrace=i1ns --ns -Fcomm,tid,pid,time,cpu,event,ip,sym,addr,symoff,flags,callindent > itrace $ sed 's/://g' itrace | awk -F ' ' ' { print $4 } ' | awk '{ if ($1 < prev) { print "line:" NR " " $0 } {prev=$1}}' Reported-by: Tanmay Jagdale <tanmay@marvell.com> Signed-off-by: James Clark <james.clark@arm.com> Acked-by: Suzuki Poulouse <suzuki.poulose@arm.com> Tested-by: Tanmay Jagdale <tanmay@marvell.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Bharat Bhushan <bbhushan2@marvell.com> Cc: George Cherian <gcherian@marvell.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Garry <john.g.garry@oracle.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Linu Cherian <lcherian@marvell.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sunil Kovvuri Goutham <sgoutham@marvell.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: https://lore.kernel.org/r/20230120143702.4035046-9-james.clark@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-01-20 07:37:01 -07:00
* executed to the timestamp. Don't estimate earlier than the last used
* timestamp though.
perf cs-etm: Prevent and warn on underflows during timestamp calculation. When a zero timestamp is encountered, warn once. This is to make hardware or configuration issues visible. Also suggest that the issue can be worked around with the --itrace=Z option. When an underflow with a non-zero timestamp occurs, warn every time. This is an unexpected scenario, and with increasing timestamps, it's unlikely that it would occur more than once, therefore it should be ok to warn every time. Only try to calculate the timestamp by subtracting the instruction count if neither of the above cases are true. This makes attempting to decode files with zero timestamps in non-timeless mode more consistent. Currently it can half work if the timestamp wraps around and becomes non-zero, although the behavior is undefined and unpredictable. Signed-off-by: James Clark <james.clark@arm.com> Reviewed-by: Leo Yan <leo.yan@linaro.org> Cc: Al Grant <al.grant@arm.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Branislav Rankov <branislav.rankov@arm.com> Cc: Denis Nikitin <denik@chromium.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Garry <john.garry@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Suzuki Poulouse <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: http://lore.kernel.org/lkml/20210517131741.3027-4-james.clark@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-05-17 06:17:41 -07:00
*/
perf cs-etm: Ensure that Coresight timestamps don't go backwards There are some edge cases around estimated timestamps that can result in them going backwards. One is that after a discontinuity, the last used timestamp is set to 0. The duration of the next range is then subtracted which could result in an earlier timestamp than the last instruction. Fix this by not resetting the last timestamp used on a discontinuity, and make sure that new estimated timestamps are clamped to be later than that. Another case is that estimated timestamps could compound over time to end up being more than the next real timestamp in the trace. Fix this by clamping the estimates in cs_etm_decoder__do_soft_timestamp() to be no later than it. cs_etm_decoder__do_soft_timestamp() also updated next_cs_timestamp, which meant that the next real timestamp was lost and not stored anywhere. Fix that by only updating cs_timestamp for estimates and keep next_cs_timestamp untouched. Finally, use next_cs_timestamp to signify if a timestamp has been received previously. Because cs_timestamp has the first range subtracted, it could technically go to 0 which would break the logic. Testing ======= It can be verified that timestamps don't go backwards when tracing on a single core with the following commands. Across multiple cores it's expected that timestamps are interleaved: $ perf record -e cs_etm/@tmc_etr0/k -C 4 taskset -c 4 sleep 1 $ perf script --itrace=i1ns --ns -Fcomm,tid,pid,time,cpu,event,ip,sym,addr,symoff,flags,callindent > itrace $ sed 's/://g' itrace | awk -F ' ' ' { print $4 } ' | awk '{ if ($1 < prev) { print "line:" NR " " $0 } {prev=$1}}' Reported-by: Tanmay Jagdale <tanmay@marvell.com> Signed-off-by: James Clark <james.clark@arm.com> Acked-by: Suzuki Poulouse <suzuki.poulose@arm.com> Tested-by: Tanmay Jagdale <tanmay@marvell.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Bharat Bhushan <bbhushan2@marvell.com> Cc: George Cherian <gcherian@marvell.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Garry <john.g.garry@oracle.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Linu Cherian <lcherian@marvell.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sunil Kovvuri Goutham <sgoutham@marvell.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: https://lore.kernel.org/r/20230120143702.4035046-9-james.clark@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-01-20 07:37:01 -07:00
estimated_first_ts = converted_timestamp -
(packet_queue->instr_count / INSTR_PER_NS);
packet_queue->cs_timestamp = max(packet_queue->cs_timestamp, estimated_first_ts);
perf cs-etm: Prevent and warn on underflows during timestamp calculation. When a zero timestamp is encountered, warn once. This is to make hardware or configuration issues visible. Also suggest that the issue can be worked around with the --itrace=Z option. When an underflow with a non-zero timestamp occurs, warn every time. This is an unexpected scenario, and with increasing timestamps, it's unlikely that it would occur more than once, therefore it should be ok to warn every time. Only try to calculate the timestamp by subtracting the instruction count if neither of the above cases are true. This makes attempting to decode files with zero timestamps in non-timeless mode more consistent. Currently it can half work if the timestamp wraps around and becomes non-zero, although the behavior is undefined and unpredictable. Signed-off-by: James Clark <james.clark@arm.com> Reviewed-by: Leo Yan <leo.yan@linaro.org> Cc: Al Grant <al.grant@arm.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Branislav Rankov <branislav.rankov@arm.com> Cc: Denis Nikitin <denik@chromium.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Garry <john.garry@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Suzuki Poulouse <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: http://lore.kernel.org/lkml/20210517131741.3027-4-james.clark@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-05-17 06:17:41 -07:00
}
perf cs_etm: Set the time field in the synthetic samples If virtual timestamps are detected, set sample time field accordingly, otherwise warn the user that the samples will not include accurate time data. | Test notes (FEAT_TRF platform) | | $ ./perf record -e cs_etm//u -a -- sleep 4 | $ ./perf script --fields +time | perf 422 [000] 163.375100: 1 branches:uH: 0 [unknown] ([unknown]) | perf 422 [000] 163.375100: 1 branches:uH: ffffb8009544 ioctl+0x14 (/lib/aarch64-linux-gnu/libc-2.27.so) | perf 422 [000] 163.375100: 1 branches:uH: aaaaab6bebf4 perf_evsel__run_ioctl+0x90 (/home/german/linux/tools/perf/perf) | [...] | perf 422 [000] 167.393100: 1 branches:uH: aaaaab6bda00 __xyarray__entry+0x74 (/home/german/linux/tools/perf/perf) | perf 422 [000] 167.393099: 1 branches:uH: aaaaab6bda0c __xyarray__entry+0x80 (/home/german/linux/tools/perf/perf) | perf 422 [000] 167.393099: 1 branches:uH: ffffb8009538 ioctl+0x8 (/lib/aarch64-linux-gnu/libc-2.27.so) | | The time from the first sample to the last sample is 4 seconds Now that times are converted to nanoseconds, also try to estimate the timestamps more accurately be dividing by some fixed value for instructions per ns. This prevents long ranges from being estimated too far in the past than would be realistic. Signed-off-by: German Gomez <german.gomez@arm.com> Acked-by: Suzuki Poulouse <suzuki.poulose@arm.com> Tested-by: Tanmay Jagdale <tanmay@marvell.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Bharat Bhushan <bbhushan2@marvell.com> Cc: George Cherian <gcherian@marvell.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Garry <john.g.garry@oracle.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Linu Cherian <lcherian@marvell.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sunil Kovvuri Goutham <sgoutham@marvell.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: https://lore.kernel.org/r/20230120143702.4035046-8-james.clark@arm.com Signed-off-by: James Clark <james.clark@arm.com> Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-01-20 07:37:00 -07:00
packet_queue->next_cs_timestamp = converted_timestamp;
packet_queue->instr_count = 0;
/* Tell the front end which traceid_queue needs attention */
cs_etm__etmq_set_traceid_queue_timestamp(etmq, trace_chan_id);
/* Halt processing until we are being told to proceed */
return OCSD_RESP_WAIT;
}
static void
cs_etm_decoder__reset_timestamp(struct cs_etm_packet_queue *packet_queue)
{
packet_queue->next_cs_timestamp = 0;
packet_queue->instr_count = 0;
}
static ocsd_datapath_resp_t
2024-07-22 03:11:45 -07:00
cs_etm_decoder__buffer_packet(struct cs_etm_queue *etmq,
struct cs_etm_packet_queue *packet_queue,
const u8 trace_chan_id,
enum cs_etm_sample_type sample_type)
{
u32 et = 0;
int cpu;
if (packet_queue->packet_count >= CS_ETM_PACKET_MAX_BUFFER - 1)
return OCSD_RESP_FATAL_SYS_ERR;
2024-07-22 03:11:45 -07:00
if (cs_etm__get_cpu(etmq, trace_chan_id, &cpu) < 0)
return OCSD_RESP_FATAL_SYS_ERR;
et = packet_queue->tail;
et = (et + 1) & (CS_ETM_PACKET_MAX_BUFFER - 1);
packet_queue->tail = et;
packet_queue->packet_count++;
packet_queue->packet_buffer[et].sample_type = sample_type;
packet_queue->packet_buffer[et].isa = CS_ETM_ISA_UNKNOWN;
packet_queue->packet_buffer[et].cpu = cpu;
packet_queue->packet_buffer[et].start_addr = CS_ETM_INVAL_ADDR;
packet_queue->packet_buffer[et].end_addr = CS_ETM_INVAL_ADDR;
packet_queue->packet_buffer[et].instr_count = 0;
packet_queue->packet_buffer[et].last_instr_taken_branch = false;
packet_queue->packet_buffer[et].last_instr_size = 0;
packet_queue->packet_buffer[et].last_instr_type = 0;
packet_queue->packet_buffer[et].last_instr_subtype = 0;
packet_queue->packet_buffer[et].last_instr_cond = 0;
packet_queue->packet_buffer[et].flags = 0;
packet_queue->packet_buffer[et].exception_number = UINT32_MAX;
packet_queue->packet_buffer[et].trace_chan_id = trace_chan_id;
if (packet_queue->packet_count == CS_ETM_PACKET_MAX_BUFFER - 1)
return OCSD_RESP_WAIT;
return OCSD_RESP_CONT;
}
perf cs-etm: Inject capabilitity for CoreSight traces Added user space perf functionality to translate CoreSight traces into instruction events with branch stack. To invoke the new functionality, use the perf inject tool with --itrace=il. For example, to translate the ETM trace from perf.data into last branch records in a new inj.data file: $ perf inject --itrace=i100000il128 -i perf.data -o perf.data.new The 'i' parameter to itrace generates periodic instruction events. The period between instruction events can be specified as a number of instructions suffixed by i (default 100000). The parameter to 'l' specifies the number of entries in the branch stack attached to instruction events. The 'b' parameter to itrace generates events on taken branches. This patch also fixes the contents of the branch events used in perf report - previously branch events were generated for each contiguous range of instructions executed. These are fixed to generate branch events between the last address of a range ending in an executed branch instruction and the start address of the next range. Based on patches by Sebastian Pop <s.pop@samsung.com> with additional fixes and support for specifying the instruction period. Originally-by: Sebastian Pop <s.pop@samsung.com> Signed-off-by: Robert Walker <robert.walker@arm.com> Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/1518607481-4059-2-git-send-email-robert.walker@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-02-14 04:24:39 -07:00
static ocsd_datapath_resp_t
cs_etm_decoder__buffer_range(struct cs_etm_queue *etmq,
struct cs_etm_packet_queue *packet_queue,
perf cs-etm: Inject capabilitity for CoreSight traces Added user space perf functionality to translate CoreSight traces into instruction events with branch stack. To invoke the new functionality, use the perf inject tool with --itrace=il. For example, to translate the ETM trace from perf.data into last branch records in a new inj.data file: $ perf inject --itrace=i100000il128 -i perf.data -o perf.data.new The 'i' parameter to itrace generates periodic instruction events. The period between instruction events can be specified as a number of instructions suffixed by i (default 100000). The parameter to 'l' specifies the number of entries in the branch stack attached to instruction events. The 'b' parameter to itrace generates events on taken branches. This patch also fixes the contents of the branch events used in perf report - previously branch events were generated for each contiguous range of instructions executed. These are fixed to generate branch events between the last address of a range ending in an executed branch instruction and the start address of the next range. Based on patches by Sebastian Pop <s.pop@samsung.com> with additional fixes and support for specifying the instruction period. Originally-by: Sebastian Pop <s.pop@samsung.com> Signed-off-by: Robert Walker <robert.walker@arm.com> Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/1518607481-4059-2-git-send-email-robert.walker@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-02-14 04:24:39 -07:00
const ocsd_generic_trace_elem *elem,
const uint8_t trace_chan_id)
{
int ret = 0;
struct cs_etm_packet *packet;
2024-07-22 03:11:45 -07:00
ret = cs_etm_decoder__buffer_packet(etmq, packet_queue, trace_chan_id,
perf cs-etm: Inject capabilitity for CoreSight traces Added user space perf functionality to translate CoreSight traces into instruction events with branch stack. To invoke the new functionality, use the perf inject tool with --itrace=il. For example, to translate the ETM trace from perf.data into last branch records in a new inj.data file: $ perf inject --itrace=i100000il128 -i perf.data -o perf.data.new The 'i' parameter to itrace generates periodic instruction events. The period between instruction events can be specified as a number of instructions suffixed by i (default 100000). The parameter to 'l' specifies the number of entries in the branch stack attached to instruction events. The 'b' parameter to itrace generates events on taken branches. This patch also fixes the contents of the branch events used in perf report - previously branch events were generated for each contiguous range of instructions executed. These are fixed to generate branch events between the last address of a range ending in an executed branch instruction and the start address of the next range. Based on patches by Sebastian Pop <s.pop@samsung.com> with additional fixes and support for specifying the instruction period. Originally-by: Sebastian Pop <s.pop@samsung.com> Signed-off-by: Robert Walker <robert.walker@arm.com> Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/1518607481-4059-2-git-send-email-robert.walker@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-02-14 04:24:39 -07:00
CS_ETM_RANGE);
if (ret != OCSD_RESP_CONT && ret != OCSD_RESP_WAIT)
return ret;
packet = &packet_queue->packet_buffer[packet_queue->tail];
perf cs-etm: Inject capabilitity for CoreSight traces Added user space perf functionality to translate CoreSight traces into instruction events with branch stack. To invoke the new functionality, use the perf inject tool with --itrace=il. For example, to translate the ETM trace from perf.data into last branch records in a new inj.data file: $ perf inject --itrace=i100000il128 -i perf.data -o perf.data.new The 'i' parameter to itrace generates periodic instruction events. The period between instruction events can be specified as a number of instructions suffixed by i (default 100000). The parameter to 'l' specifies the number of entries in the branch stack attached to instruction events. The 'b' parameter to itrace generates events on taken branches. This patch also fixes the contents of the branch events used in perf report - previously branch events were generated for each contiguous range of instructions executed. These are fixed to generate branch events between the last address of a range ending in an executed branch instruction and the start address of the next range. Based on patches by Sebastian Pop <s.pop@samsung.com> with additional fixes and support for specifying the instruction period. Originally-by: Sebastian Pop <s.pop@samsung.com> Signed-off-by: Robert Walker <robert.walker@arm.com> Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/1518607481-4059-2-git-send-email-robert.walker@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-02-14 04:24:39 -07:00
switch (elem->isa) {
case ocsd_isa_aarch64:
packet->isa = CS_ETM_ISA_A64;
break;
case ocsd_isa_arm:
packet->isa = CS_ETM_ISA_A32;
break;
case ocsd_isa_thumb2:
packet->isa = CS_ETM_ISA_T32;
break;
case ocsd_isa_tee:
case ocsd_isa_jazelle:
case ocsd_isa_custom:
case ocsd_isa_unknown:
default:
packet->isa = CS_ETM_ISA_UNKNOWN;
}
perf cs-etm: Inject capabilitity for CoreSight traces Added user space perf functionality to translate CoreSight traces into instruction events with branch stack. To invoke the new functionality, use the perf inject tool with --itrace=il. For example, to translate the ETM trace from perf.data into last branch records in a new inj.data file: $ perf inject --itrace=i100000il128 -i perf.data -o perf.data.new The 'i' parameter to itrace generates periodic instruction events. The period between instruction events can be specified as a number of instructions suffixed by i (default 100000). The parameter to 'l' specifies the number of entries in the branch stack attached to instruction events. The 'b' parameter to itrace generates events on taken branches. This patch also fixes the contents of the branch events used in perf report - previously branch events were generated for each contiguous range of instructions executed. These are fixed to generate branch events between the last address of a range ending in an executed branch instruction and the start address of the next range. Based on patches by Sebastian Pop <s.pop@samsung.com> with additional fixes and support for specifying the instruction period. Originally-by: Sebastian Pop <s.pop@samsung.com> Signed-off-by: Robert Walker <robert.walker@arm.com> Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/1518607481-4059-2-git-send-email-robert.walker@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-02-14 04:24:39 -07:00
packet->start_addr = elem->st_addr;
packet->end_addr = elem->en_addr;
packet->instr_count = elem->num_instr_range;
perf cs-etm: Add last instruction information in packet Decoder provides last instruction related information, these information can be used for trace analysis; specifically we can get to know what kind of branch instruction has been executed, mainly the information are contained in three element fields: last_i_type: this is significant type for waypoint calculation, it indicates the last instruction is one of immediate branch instruction, indirect branch instruction, instruction barrier (ISB), or data barrier (DSB/DMB). last_i_subtype: this is used for instruction sub type, it can be branch with link, ARMv8 return instruction, ARMv8 eret instruction (return from exception), or ARMv7 instruction which could imply return (e.g. MOV PC, LR; POP { ,PC}). last_instr_cond: it indicates if the last instruction was conditional. But these three fields are not saved into cs_etm_packet struct, thus cs-etm layer don't know related information and cannot generate sample flags for branch instructions. This patch add corresponding three new fields in cs_etm_packet struct and save related value into the packet structure, it is preparation for supporting sample flags. Signed-off-by: Leo Yan <leo.yan@linaro.org> Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Robert Walker <robert.walker@arm.com> Cc: Suzuki K Poulouse <suzuki.poulose@arm.com> Cc: coresight ml <coresight@lists.linaro.org> Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/20190129122842.32041-2-leo.yan@linaro.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-01-29 05:28:35 -07:00
packet->last_instr_type = elem->last_i_type;
packet->last_instr_subtype = elem->last_i_subtype;
packet->last_instr_cond = elem->last_instr_cond;
if (elem->last_i_type == OCSD_INSTR_BR || elem->last_i_type == OCSD_INSTR_BR_INDIRECT)
perf cs-etm: Inject capabilitity for CoreSight traces Added user space perf functionality to translate CoreSight traces into instruction events with branch stack. To invoke the new functionality, use the perf inject tool with --itrace=il. For example, to translate the ETM trace from perf.data into last branch records in a new inj.data file: $ perf inject --itrace=i100000il128 -i perf.data -o perf.data.new The 'i' parameter to itrace generates periodic instruction events. The period between instruction events can be specified as a number of instructions suffixed by i (default 100000). The parameter to 'l' specifies the number of entries in the branch stack attached to instruction events. The 'b' parameter to itrace generates events on taken branches. This patch also fixes the contents of the branch events used in perf report - previously branch events were generated for each contiguous range of instructions executed. These are fixed to generate branch events between the last address of a range ending in an executed branch instruction and the start address of the next range. Based on patches by Sebastian Pop <s.pop@samsung.com> with additional fixes and support for specifying the instruction period. Originally-by: Sebastian Pop <s.pop@samsung.com> Signed-off-by: Robert Walker <robert.walker@arm.com> Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/1518607481-4059-2-git-send-email-robert.walker@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-02-14 04:24:39 -07:00
packet->last_instr_taken_branch = elem->last_instr_exec;
else
perf cs-etm: Inject capabilitity for CoreSight traces Added user space perf functionality to translate CoreSight traces into instruction events with branch stack. To invoke the new functionality, use the perf inject tool with --itrace=il. For example, to translate the ETM trace from perf.data into last branch records in a new inj.data file: $ perf inject --itrace=i100000il128 -i perf.data -o perf.data.new The 'i' parameter to itrace generates periodic instruction events. The period between instruction events can be specified as a number of instructions suffixed by i (default 100000). The parameter to 'l' specifies the number of entries in the branch stack attached to instruction events. The 'b' parameter to itrace generates events on taken branches. This patch also fixes the contents of the branch events used in perf report - previously branch events were generated for each contiguous range of instructions executed. These are fixed to generate branch events between the last address of a range ending in an executed branch instruction and the start address of the next range. Based on patches by Sebastian Pop <s.pop@samsung.com> with additional fixes and support for specifying the instruction period. Originally-by: Sebastian Pop <s.pop@samsung.com> Signed-off-by: Robert Walker <robert.walker@arm.com> Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/1518607481-4059-2-git-send-email-robert.walker@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-02-14 04:24:39 -07:00
packet->last_instr_taken_branch = false;
packet->last_instr_size = elem->last_instr_sz;
/* per-thread scenario, no need to generate a timestamp */
if (cs_etm__etmq_is_timeless(etmq))
goto out;
/*
* The packet queue is full and we haven't seen a timestamp (had we
* seen one the packet queue wouldn't be full). Let the front end
* deal with it.
*/
if (ret == OCSD_RESP_WAIT)
goto out;
packet_queue->instr_count += elem->num_instr_range;
/* Tell the front end we have a new timestamp to process */
ret = cs_etm_decoder__do_soft_timestamp(etmq, packet_queue,
trace_chan_id);
out:
perf cs-etm: Inject capabilitity for CoreSight traces Added user space perf functionality to translate CoreSight traces into instruction events with branch stack. To invoke the new functionality, use the perf inject tool with --itrace=il. For example, to translate the ETM trace from perf.data into last branch records in a new inj.data file: $ perf inject --itrace=i100000il128 -i perf.data -o perf.data.new The 'i' parameter to itrace generates periodic instruction events. The period between instruction events can be specified as a number of instructions suffixed by i (default 100000). The parameter to 'l' specifies the number of entries in the branch stack attached to instruction events. The 'b' parameter to itrace generates events on taken branches. This patch also fixes the contents of the branch events used in perf report - previously branch events were generated for each contiguous range of instructions executed. These are fixed to generate branch events between the last address of a range ending in an executed branch instruction and the start address of the next range. Based on patches by Sebastian Pop <s.pop@samsung.com> with additional fixes and support for specifying the instruction period. Originally-by: Sebastian Pop <s.pop@samsung.com> Signed-off-by: Robert Walker <robert.walker@arm.com> Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/1518607481-4059-2-git-send-email-robert.walker@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-02-14 04:24:39 -07:00
return ret;
}
perf cs-etm: Inject capabilitity for CoreSight traces Added user space perf functionality to translate CoreSight traces into instruction events with branch stack. To invoke the new functionality, use the perf inject tool with --itrace=il. For example, to translate the ETM trace from perf.data into last branch records in a new inj.data file: $ perf inject --itrace=i100000il128 -i perf.data -o perf.data.new The 'i' parameter to itrace generates periodic instruction events. The period between instruction events can be specified as a number of instructions suffixed by i (default 100000). The parameter to 'l' specifies the number of entries in the branch stack attached to instruction events. The 'b' parameter to itrace generates events on taken branches. This patch also fixes the contents of the branch events used in perf report - previously branch events were generated for each contiguous range of instructions executed. These are fixed to generate branch events between the last address of a range ending in an executed branch instruction and the start address of the next range. Based on patches by Sebastian Pop <s.pop@samsung.com> with additional fixes and support for specifying the instruction period. Originally-by: Sebastian Pop <s.pop@samsung.com> Signed-off-by: Robert Walker <robert.walker@arm.com> Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/1518607481-4059-2-git-send-email-robert.walker@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-02-14 04:24:39 -07:00
static ocsd_datapath_resp_t
2024-07-22 03:11:45 -07:00
cs_etm_decoder__buffer_discontinuity(struct cs_etm_queue *etmq,
struct cs_etm_packet_queue *queue,
const uint8_t trace_chan_id)
{
/*
* Something happened and who knows when we'll get new traces so
* reset time statistics.
*/
cs_etm_decoder__reset_timestamp(queue);
2024-07-22 03:11:45 -07:00
return cs_etm_decoder__buffer_packet(etmq, queue, trace_chan_id,
CS_ETM_DISCONTINUITY);
perf cs-etm: Inject capabilitity for CoreSight traces Added user space perf functionality to translate CoreSight traces into instruction events with branch stack. To invoke the new functionality, use the perf inject tool with --itrace=il. For example, to translate the ETM trace from perf.data into last branch records in a new inj.data file: $ perf inject --itrace=i100000il128 -i perf.data -o perf.data.new The 'i' parameter to itrace generates periodic instruction events. The period between instruction events can be specified as a number of instructions suffixed by i (default 100000). The parameter to 'l' specifies the number of entries in the branch stack attached to instruction events. The 'b' parameter to itrace generates events on taken branches. This patch also fixes the contents of the branch events used in perf report - previously branch events were generated for each contiguous range of instructions executed. These are fixed to generate branch events between the last address of a range ending in an executed branch instruction and the start address of the next range. Based on patches by Sebastian Pop <s.pop@samsung.com> with additional fixes and support for specifying the instruction period. Originally-by: Sebastian Pop <s.pop@samsung.com> Signed-off-by: Robert Walker <robert.walker@arm.com> Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/1518607481-4059-2-git-send-email-robert.walker@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-02-14 04:24:39 -07:00
}
perf cs-etm: Generate branch sample for exception packet The exception packet appears as one element with 'elem_type' == OCSD_GEN_TRC_ELEM_EXCEPTION or OCSD_GEN_TRC_ELEM_EXCEPTION_RET, which is present for exception entry and exit respectively. The decoder sets the packet fields 'packet->exc' and 'packet->exc_ret' to indicate the exception packets; but exception packets don't have a dedicated sample type and shares the same sample type CS_ETM_RANGE with normal instruction packets. As a result, the exception packets are taken as normal instruction packets and this introduces confusion in mixing different packet types. Furthermore, these instruction range packets will be processed for branch samples only when 'packet->last_instr_taken_branch' is true, otherwise they will be omitted, this can introduce a mess for exception and exception returning due to not having the complete address range info for context switching. To process exception packets properly, this patch introduces two new sample types: CS_ETM_EXCEPTION and CS_ETM_EXCEPTION_RET; these two types of packets will be handled by cs_etm__exception(). The function cs_etm__exception() forces setting the previous CS_ETM_RANGE packet flag 'prev_packet->last_instr_taken_branch' to true, this matches well with the program flow when the exception is trapped from user space to kernel space, no matter if the most recent flow has branch taken or not; this is also safe for returning to user space after exception handling. After exception packets have their own sample type, the packet fields 'packet->exc' and 'packet->exc_ret' aren't needed anymore, so remove them. Signed-off-by: Leo Yan <leo.yan@linaro.org> Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Robert Walker <robert.walker@arm.com> Cc: coresight ml <coresight@lists.linaro.org> Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/1544513908-16805-9-git-send-email-leo.yan@linaro.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-12-11 00:38:28 -07:00
static ocsd_datapath_resp_t
2024-07-22 03:11:45 -07:00
cs_etm_decoder__buffer_exception(struct cs_etm_queue *etmq,
struct cs_etm_packet_queue *queue,
const ocsd_generic_trace_elem *elem,
perf cs-etm: Generate branch sample for exception packet The exception packet appears as one element with 'elem_type' == OCSD_GEN_TRC_ELEM_EXCEPTION or OCSD_GEN_TRC_ELEM_EXCEPTION_RET, which is present for exception entry and exit respectively. The decoder sets the packet fields 'packet->exc' and 'packet->exc_ret' to indicate the exception packets; but exception packets don't have a dedicated sample type and shares the same sample type CS_ETM_RANGE with normal instruction packets. As a result, the exception packets are taken as normal instruction packets and this introduces confusion in mixing different packet types. Furthermore, these instruction range packets will be processed for branch samples only when 'packet->last_instr_taken_branch' is true, otherwise they will be omitted, this can introduce a mess for exception and exception returning due to not having the complete address range info for context switching. To process exception packets properly, this patch introduces two new sample types: CS_ETM_EXCEPTION and CS_ETM_EXCEPTION_RET; these two types of packets will be handled by cs_etm__exception(). The function cs_etm__exception() forces setting the previous CS_ETM_RANGE packet flag 'prev_packet->last_instr_taken_branch' to true, this matches well with the program flow when the exception is trapped from user space to kernel space, no matter if the most recent flow has branch taken or not; this is also safe for returning to user space after exception handling. After exception packets have their own sample type, the packet fields 'packet->exc' and 'packet->exc_ret' aren't needed anymore, so remove them. Signed-off-by: Leo Yan <leo.yan@linaro.org> Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Robert Walker <robert.walker@arm.com> Cc: coresight ml <coresight@lists.linaro.org> Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/1544513908-16805-9-git-send-email-leo.yan@linaro.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-12-11 00:38:28 -07:00
const uint8_t trace_chan_id)
{ int ret = 0;
struct cs_etm_packet *packet;
2024-07-22 03:11:45 -07:00
ret = cs_etm_decoder__buffer_packet(etmq, queue, trace_chan_id,
CS_ETM_EXCEPTION);
if (ret != OCSD_RESP_CONT && ret != OCSD_RESP_WAIT)
return ret;
packet = &queue->packet_buffer[queue->tail];
packet->exception_number = elem->exception_number;
return ret;
perf cs-etm: Generate branch sample for exception packet The exception packet appears as one element with 'elem_type' == OCSD_GEN_TRC_ELEM_EXCEPTION or OCSD_GEN_TRC_ELEM_EXCEPTION_RET, which is present for exception entry and exit respectively. The decoder sets the packet fields 'packet->exc' and 'packet->exc_ret' to indicate the exception packets; but exception packets don't have a dedicated sample type and shares the same sample type CS_ETM_RANGE with normal instruction packets. As a result, the exception packets are taken as normal instruction packets and this introduces confusion in mixing different packet types. Furthermore, these instruction range packets will be processed for branch samples only when 'packet->last_instr_taken_branch' is true, otherwise they will be omitted, this can introduce a mess for exception and exception returning due to not having the complete address range info for context switching. To process exception packets properly, this patch introduces two new sample types: CS_ETM_EXCEPTION and CS_ETM_EXCEPTION_RET; these two types of packets will be handled by cs_etm__exception(). The function cs_etm__exception() forces setting the previous CS_ETM_RANGE packet flag 'prev_packet->last_instr_taken_branch' to true, this matches well with the program flow when the exception is trapped from user space to kernel space, no matter if the most recent flow has branch taken or not; this is also safe for returning to user space after exception handling. After exception packets have their own sample type, the packet fields 'packet->exc' and 'packet->exc_ret' aren't needed anymore, so remove them. Signed-off-by: Leo Yan <leo.yan@linaro.org> Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Robert Walker <robert.walker@arm.com> Cc: coresight ml <coresight@lists.linaro.org> Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/1544513908-16805-9-git-send-email-leo.yan@linaro.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-12-11 00:38:28 -07:00
}
static ocsd_datapath_resp_t
2024-07-22 03:11:45 -07:00
cs_etm_decoder__buffer_exception_ret(struct cs_etm_queue *etmq,
struct cs_etm_packet_queue *queue,
perf cs-etm: Generate branch sample for exception packet The exception packet appears as one element with 'elem_type' == OCSD_GEN_TRC_ELEM_EXCEPTION or OCSD_GEN_TRC_ELEM_EXCEPTION_RET, which is present for exception entry and exit respectively. The decoder sets the packet fields 'packet->exc' and 'packet->exc_ret' to indicate the exception packets; but exception packets don't have a dedicated sample type and shares the same sample type CS_ETM_RANGE with normal instruction packets. As a result, the exception packets are taken as normal instruction packets and this introduces confusion in mixing different packet types. Furthermore, these instruction range packets will be processed for branch samples only when 'packet->last_instr_taken_branch' is true, otherwise they will be omitted, this can introduce a mess for exception and exception returning due to not having the complete address range info for context switching. To process exception packets properly, this patch introduces two new sample types: CS_ETM_EXCEPTION and CS_ETM_EXCEPTION_RET; these two types of packets will be handled by cs_etm__exception(). The function cs_etm__exception() forces setting the previous CS_ETM_RANGE packet flag 'prev_packet->last_instr_taken_branch' to true, this matches well with the program flow when the exception is trapped from user space to kernel space, no matter if the most recent flow has branch taken or not; this is also safe for returning to user space after exception handling. After exception packets have their own sample type, the packet fields 'packet->exc' and 'packet->exc_ret' aren't needed anymore, so remove them. Signed-off-by: Leo Yan <leo.yan@linaro.org> Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Robert Walker <robert.walker@arm.com> Cc: coresight ml <coresight@lists.linaro.org> Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/1544513908-16805-9-git-send-email-leo.yan@linaro.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-12-11 00:38:28 -07:00
const uint8_t trace_chan_id)
{
2024-07-22 03:11:45 -07:00
return cs_etm_decoder__buffer_packet(etmq, queue, trace_chan_id,
perf cs-etm: Generate branch sample for exception packet The exception packet appears as one element with 'elem_type' == OCSD_GEN_TRC_ELEM_EXCEPTION or OCSD_GEN_TRC_ELEM_EXCEPTION_RET, which is present for exception entry and exit respectively. The decoder sets the packet fields 'packet->exc' and 'packet->exc_ret' to indicate the exception packets; but exception packets don't have a dedicated sample type and shares the same sample type CS_ETM_RANGE with normal instruction packets. As a result, the exception packets are taken as normal instruction packets and this introduces confusion in mixing different packet types. Furthermore, these instruction range packets will be processed for branch samples only when 'packet->last_instr_taken_branch' is true, otherwise they will be omitted, this can introduce a mess for exception and exception returning due to not having the complete address range info for context switching. To process exception packets properly, this patch introduces two new sample types: CS_ETM_EXCEPTION and CS_ETM_EXCEPTION_RET; these two types of packets will be handled by cs_etm__exception(). The function cs_etm__exception() forces setting the previous CS_ETM_RANGE packet flag 'prev_packet->last_instr_taken_branch' to true, this matches well with the program flow when the exception is trapped from user space to kernel space, no matter if the most recent flow has branch taken or not; this is also safe for returning to user space after exception handling. After exception packets have their own sample type, the packet fields 'packet->exc' and 'packet->exc_ret' aren't needed anymore, so remove them. Signed-off-by: Leo Yan <leo.yan@linaro.org> Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Robert Walker <robert.walker@arm.com> Cc: coresight ml <coresight@lists.linaro.org> Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/1544513908-16805-9-git-send-email-leo.yan@linaro.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-12-11 00:38:28 -07:00
CS_ETM_EXCEPTION_RET);
}
static ocsd_datapath_resp_t
cs_etm_decoder__set_tid(struct cs_etm_queue *etmq,
struct cs_etm_packet_queue *packet_queue,
const ocsd_generic_trace_elem *elem,
const uint8_t trace_chan_id)
{
pid_t tid = -1;
/*
* Process the PE_CONTEXT packets if we have a valid contextID or VMID.
* If the kernel is running at EL2, the PID is traced in CONTEXTIDR_EL2
* as VMID, Bit ETM_OPT_CTXTID2 is set in this case.
*/
switch (cs_etm__get_pid_fmt(etmq)) {
case CS_ETM_PIDFMT_CTXTID:
if (elem->context.ctxt_id_valid)
tid = elem->context.context_id;
break;
case CS_ETM_PIDFMT_CTXTID2:
if (elem->context.vmid_valid)
tid = elem->context.vmid;
break;
case CS_ETM_PIDFMT_NONE:
default:
break;
}
if (cs_etm__etmq_set_tid_el(etmq, tid, trace_chan_id,
elem->context.exception_level))
return OCSD_RESP_FATAL_SYS_ERR;
if (tid == -1)
return OCSD_RESP_CONT;
/*
* A timestamp is generated after a PE_CONTEXT element so make sure
* to rely on that coming one.
*/
cs_etm_decoder__reset_timestamp(packet_queue);
return OCSD_RESP_CONT;
}
static ocsd_datapath_resp_t cs_etm_decoder__gen_trace_elem_printer(
const void *context,
perf cs-etm: Prevent and warn on underflows during timestamp calculation. When a zero timestamp is encountered, warn once. This is to make hardware or configuration issues visible. Also suggest that the issue can be worked around with the --itrace=Z option. When an underflow with a non-zero timestamp occurs, warn every time. This is an unexpected scenario, and with increasing timestamps, it's unlikely that it would occur more than once, therefore it should be ok to warn every time. Only try to calculate the timestamp by subtracting the instruction count if neither of the above cases are true. This makes attempting to decode files with zero timestamps in non-timeless mode more consistent. Currently it can half work if the timestamp wraps around and becomes non-zero, although the behavior is undefined and unpredictable. Signed-off-by: James Clark <james.clark@arm.com> Reviewed-by: Leo Yan <leo.yan@linaro.org> Cc: Al Grant <al.grant@arm.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Branislav Rankov <branislav.rankov@arm.com> Cc: Denis Nikitin <denik@chromium.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Garry <john.garry@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Suzuki Poulouse <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: http://lore.kernel.org/lkml/20210517131741.3027-4-james.clark@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-05-17 06:17:41 -07:00
const ocsd_trc_index_t indx,
const u8 trace_chan_id __maybe_unused,
const ocsd_generic_trace_elem *elem)
{
ocsd_datapath_resp_t resp = OCSD_RESP_CONT;
struct cs_etm_decoder *decoder = (struct cs_etm_decoder *) context;
struct cs_etm_queue *etmq = decoder->data;
struct cs_etm_packet_queue *packet_queue;
/* First get the packet queue for this traceID */
packet_queue = cs_etm__etmq_get_packet_queue(etmq, trace_chan_id);
if (!packet_queue)
return OCSD_RESP_FATAL_SYS_ERR;
switch (elem->elem_type) {
case OCSD_GEN_TRC_ELEM_UNKNOWN:
break;
case OCSD_GEN_TRC_ELEM_EO_TRACE:
case OCSD_GEN_TRC_ELEM_NO_SYNC:
case OCSD_GEN_TRC_ELEM_TRACE_ON:
2024-07-22 03:11:45 -07:00
resp = cs_etm_decoder__buffer_discontinuity(etmq, packet_queue,
trace_chan_id);
break;
case OCSD_GEN_TRC_ELEM_INSTR_RANGE:
resp = cs_etm_decoder__buffer_range(etmq, packet_queue, elem,
perf cs-etm: Inject capabilitity for CoreSight traces Added user space perf functionality to translate CoreSight traces into instruction events with branch stack. To invoke the new functionality, use the perf inject tool with --itrace=il. For example, to translate the ETM trace from perf.data into last branch records in a new inj.data file: $ perf inject --itrace=i100000il128 -i perf.data -o perf.data.new The 'i' parameter to itrace generates periodic instruction events. The period between instruction events can be specified as a number of instructions suffixed by i (default 100000). The parameter to 'l' specifies the number of entries in the branch stack attached to instruction events. The 'b' parameter to itrace generates events on taken branches. This patch also fixes the contents of the branch events used in perf report - previously branch events were generated for each contiguous range of instructions executed. These are fixed to generate branch events between the last address of a range ending in an executed branch instruction and the start address of the next range. Based on patches by Sebastian Pop <s.pop@samsung.com> with additional fixes and support for specifying the instruction period. Originally-by: Sebastian Pop <s.pop@samsung.com> Signed-off-by: Robert Walker <robert.walker@arm.com> Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/1518607481-4059-2-git-send-email-robert.walker@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-02-14 04:24:39 -07:00
trace_chan_id);
break;
case OCSD_GEN_TRC_ELEM_EXCEPTION:
2024-07-22 03:11:45 -07:00
resp = cs_etm_decoder__buffer_exception(etmq, packet_queue, elem,
perf cs-etm: Generate branch sample for exception packet The exception packet appears as one element with 'elem_type' == OCSD_GEN_TRC_ELEM_EXCEPTION or OCSD_GEN_TRC_ELEM_EXCEPTION_RET, which is present for exception entry and exit respectively. The decoder sets the packet fields 'packet->exc' and 'packet->exc_ret' to indicate the exception packets; but exception packets don't have a dedicated sample type and shares the same sample type CS_ETM_RANGE with normal instruction packets. As a result, the exception packets are taken as normal instruction packets and this introduces confusion in mixing different packet types. Furthermore, these instruction range packets will be processed for branch samples only when 'packet->last_instr_taken_branch' is true, otherwise they will be omitted, this can introduce a mess for exception and exception returning due to not having the complete address range info for context switching. To process exception packets properly, this patch introduces two new sample types: CS_ETM_EXCEPTION and CS_ETM_EXCEPTION_RET; these two types of packets will be handled by cs_etm__exception(). The function cs_etm__exception() forces setting the previous CS_ETM_RANGE packet flag 'prev_packet->last_instr_taken_branch' to true, this matches well with the program flow when the exception is trapped from user space to kernel space, no matter if the most recent flow has branch taken or not; this is also safe for returning to user space after exception handling. After exception packets have their own sample type, the packet fields 'packet->exc' and 'packet->exc_ret' aren't needed anymore, so remove them. Signed-off-by: Leo Yan <leo.yan@linaro.org> Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Robert Walker <robert.walker@arm.com> Cc: coresight ml <coresight@lists.linaro.org> Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/1544513908-16805-9-git-send-email-leo.yan@linaro.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-12-11 00:38:28 -07:00
trace_chan_id);
break;
case OCSD_GEN_TRC_ELEM_EXCEPTION_RET:
2024-07-22 03:11:45 -07:00
resp = cs_etm_decoder__buffer_exception_ret(etmq, packet_queue,
perf cs-etm: Generate branch sample for exception packet The exception packet appears as one element with 'elem_type' == OCSD_GEN_TRC_ELEM_EXCEPTION or OCSD_GEN_TRC_ELEM_EXCEPTION_RET, which is present for exception entry and exit respectively. The decoder sets the packet fields 'packet->exc' and 'packet->exc_ret' to indicate the exception packets; but exception packets don't have a dedicated sample type and shares the same sample type CS_ETM_RANGE with normal instruction packets. As a result, the exception packets are taken as normal instruction packets and this introduces confusion in mixing different packet types. Furthermore, these instruction range packets will be processed for branch samples only when 'packet->last_instr_taken_branch' is true, otherwise they will be omitted, this can introduce a mess for exception and exception returning due to not having the complete address range info for context switching. To process exception packets properly, this patch introduces two new sample types: CS_ETM_EXCEPTION and CS_ETM_EXCEPTION_RET; these two types of packets will be handled by cs_etm__exception(). The function cs_etm__exception() forces setting the previous CS_ETM_RANGE packet flag 'prev_packet->last_instr_taken_branch' to true, this matches well with the program flow when the exception is trapped from user space to kernel space, no matter if the most recent flow has branch taken or not; this is also safe for returning to user space after exception handling. After exception packets have their own sample type, the packet fields 'packet->exc' and 'packet->exc_ret' aren't needed anymore, so remove them. Signed-off-by: Leo Yan <leo.yan@linaro.org> Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Robert Walker <robert.walker@arm.com> Cc: coresight ml <coresight@lists.linaro.org> Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/1544513908-16805-9-git-send-email-leo.yan@linaro.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-12-11 00:38:28 -07:00
trace_chan_id);
break;
case OCSD_GEN_TRC_ELEM_TIMESTAMP:
resp = cs_etm_decoder__do_hard_timestamp(etmq, elem,
perf cs-etm: Prevent and warn on underflows during timestamp calculation. When a zero timestamp is encountered, warn once. This is to make hardware or configuration issues visible. Also suggest that the issue can be worked around with the --itrace=Z option. When an underflow with a non-zero timestamp occurs, warn every time. This is an unexpected scenario, and with increasing timestamps, it's unlikely that it would occur more than once, therefore it should be ok to warn every time. Only try to calculate the timestamp by subtracting the instruction count if neither of the above cases are true. This makes attempting to decode files with zero timestamps in non-timeless mode more consistent. Currently it can half work if the timestamp wraps around and becomes non-zero, although the behavior is undefined and unpredictable. Signed-off-by: James Clark <james.clark@arm.com> Reviewed-by: Leo Yan <leo.yan@linaro.org> Cc: Al Grant <al.grant@arm.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Branislav Rankov <branislav.rankov@arm.com> Cc: Denis Nikitin <denik@chromium.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Garry <john.garry@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Suzuki Poulouse <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: http://lore.kernel.org/lkml/20210517131741.3027-4-james.clark@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-05-17 06:17:41 -07:00
trace_chan_id,
indx);
break;
case OCSD_GEN_TRC_ELEM_PE_CONTEXT:
resp = cs_etm_decoder__set_tid(etmq, packet_queue,
elem, trace_chan_id);
break;
/* Unused packet types */
case OCSD_GEN_TRC_ELEM_I_RANGE_NOPATH:
case OCSD_GEN_TRC_ELEM_ADDR_NACC:
case OCSD_GEN_TRC_ELEM_CYCLE_COUNT:
case OCSD_GEN_TRC_ELEM_ADDR_UNKNOWN:
case OCSD_GEN_TRC_ELEM_EVENT:
case OCSD_GEN_TRC_ELEM_SWTRACE:
case OCSD_GEN_TRC_ELEM_CUSTOM:
case OCSD_GEN_TRC_ELEM_SYNC_MARKER:
case OCSD_GEN_TRC_ELEM_MEMTRANS:
#if (OCSD_VER_NUM >= 0x010400)
case OCSD_GEN_TRC_ELEM_INSTRUMENTATION:
#endif
default:
break;
}
return resp;
}
static int
cs_etm_decoder__create_etm_decoder(struct cs_etm_decoder_params *d_params,
struct cs_etm_trace_params *t_params,
struct cs_etm_decoder *decoder)
{
ocsd_etmv3_cfg config_etmv3;
ocsd_etmv4_cfg trace_config_etmv4;
ocsd_ete_cfg trace_config_ete;
void *trace_config;
u8 csid;
switch (t_params->protocol) {
case CS_ETM_PROTO_ETMV3:
case CS_ETM_PROTO_PTM:
csid = (t_params->etmv3.reg_idr & CORESIGHT_TRACE_ID_VAL_MASK);
cs_etm_decoder__gen_etmv3_config(t_params, &config_etmv3);
decoder->decoder_name = (t_params->protocol == CS_ETM_PROTO_ETMV3) ?
OCSD_BUILTIN_DCD_ETMV3 :
OCSD_BUILTIN_DCD_PTM;
trace_config = &config_etmv3;
break;
case CS_ETM_PROTO_ETMV4i:
csid = (t_params->etmv4.reg_traceidr & CORESIGHT_TRACE_ID_VAL_MASK);
cs_etm_decoder__gen_etmv4_config(t_params, &trace_config_etmv4);
decoder->decoder_name = OCSD_BUILTIN_DCD_ETMV4I;
trace_config = &trace_config_etmv4;
break;
case CS_ETM_PROTO_ETE:
csid = (t_params->ete.reg_traceidr & CORESIGHT_TRACE_ID_VAL_MASK);
cs_etm_decoder__gen_ete_config(t_params, &trace_config_ete);
decoder->decoder_name = OCSD_BUILTIN_DCD_ETE;
trace_config = &trace_config_ete;
break;
default:
return -1;
}
if (d_params->operation == CS_ETM_OPERATION_DECODE) {
if (ocsd_dt_create_decoder(decoder->dcd_tree,
decoder->decoder_name,
OCSD_CREATE_FLG_FULL_DECODER,
trace_config, &csid))
return -1;
if (ocsd_dt_set_gen_elem_outfn(decoder->dcd_tree,
cs_etm_decoder__gen_trace_elem_printer,
decoder))
return -1;
return 0;
} else if (d_params->operation == CS_ETM_OPERATION_PRINT) {
if (ocsd_dt_create_decoder(decoder->dcd_tree, decoder->decoder_name,
OCSD_CREATE_FLG_PACKET_PROC,
trace_config, &csid))
return -1;
if (ocsd_dt_set_pkt_protocol_printer(decoder->dcd_tree, csid, 0))
return -1;
return 0;
}
return -1;
}
struct cs_etm_decoder *
cs_etm_decoder__new(int decoders, struct cs_etm_decoder_params *d_params,
struct cs_etm_trace_params t_params[])
{
struct cs_etm_decoder *decoder;
ocsd_dcd_tree_src_t format;
u32 flags;
int i, ret;
if ((!t_params) || (!d_params))
return NULL;
decoder = zalloc(sizeof(*decoder));
if (!decoder)
return NULL;
decoder->data = d_params->data;
decoder->prev_return = OCSD_RESP_CONT;
format = (d_params->formatted ? OCSD_TRC_SRC_FRAME_FORMATTED :
OCSD_TRC_SRC_SINGLE);
flags = 0;
flags |= (d_params->fsyncs ? OCSD_DFRMTR_HAS_FSYNCS : 0);
flags |= (d_params->hsyncs ? OCSD_DFRMTR_HAS_HSYNCS : 0);
flags |= (d_params->frame_aligned ? OCSD_DFRMTR_FRAME_MEM_ALIGN : 0);
/*
* Drivers may add barrier frames when used with perf, set up to
* handle this. Barriers const of FSYNC packet repeated 4 times.
*/
flags |= OCSD_DFRMTR_RESET_ON_4X_FSYNC;
/* Create decode tree for the data source */
decoder->dcd_tree = ocsd_create_dcd_tree(format, flags);
if (decoder->dcd_tree == 0)
goto err_free_decoder;
/* init library print logging support */
ret = cs_etm_decoder__init_def_logger_printing(d_params, decoder);
if (ret != 0)
goto err_free_decoder;
/* init raw frame logging if required */
cs_etm_decoder__init_raw_frame_logging(d_params, decoder);
for (i = 0; i < decoders; i++) {
ret = cs_etm_decoder__create_etm_decoder(d_params,
&t_params[i],
decoder);
if (ret != 0)
goto err_free_decoder;
}
return decoder;
err_free_decoder:
cs_etm_decoder__free(decoder);
return NULL;
}
int cs_etm_decoder__process_data_block(struct cs_etm_decoder *decoder,
u64 indx, const u8 *buf,
size_t len, size_t *consumed)
{
int ret = 0;
ocsd_datapath_resp_t cur = OCSD_RESP_CONT;
ocsd_datapath_resp_t prev_return = decoder->prev_return;
size_t processed = 0;
u32 count;
while (processed < len) {
if (OCSD_DATA_RESP_IS_WAIT(prev_return)) {
cur = ocsd_dt_process_data(decoder->dcd_tree,
OCSD_OP_FLUSH,
0,
0,
NULL,
NULL);
} else if (OCSD_DATA_RESP_IS_CONT(prev_return)) {
cur = ocsd_dt_process_data(decoder->dcd_tree,
OCSD_OP_DATA,
indx + processed,
len - processed,
&buf[processed],
&count);
processed += count;
} else {
ret = -EINVAL;
break;
}
/*
* Return to the input code if the packet buffer is full.
* Flushing will get done once the packet buffer has been
* processed.
*/
if (OCSD_DATA_RESP_IS_WAIT(cur))
break;
prev_return = cur;
}
decoder->prev_return = cur;
*consumed = processed;
return ret;
}
void cs_etm_decoder__free(struct cs_etm_decoder *decoder)
{
if (!decoder)
return;
ocsd_destroy_dcd_tree(decoder->dcd_tree);
decoder->dcd_tree = NULL;
free(decoder);
}
const char *cs_etm_decoder__get_name(struct cs_etm_decoder *decoder)
{
return decoder->decoder_name;
}