1
linux/drivers/dax/Kconfig

82 lines
2.9 KiB
Plaintext
Raw Normal View History

# SPDX-License-Identifier: GPL-2.0-only
menuconfig DAX
tristate "DAX: direct access to differentiated memory"
default m if NVDIMM_DAX
if DAX
config DEV_DAX
tristate "Device DAX: direct access mapping device"
depends on TRANSPARENT_HUGEPAGE
help
Support raw access to differentiated (persistence, bandwidth,
latency...) memory via an mmap(2) capable character
device. Platform firmware or a device driver may identify a
platform memory resource that is differentiated from the
baseline memory pool. Mappings of a /dev/daxX.Y device impose
restrictions that make the mapping behavior deterministic.
config DEV_DAX_PMEM
tristate "PMEM DAX: direct access to persistent memory"
depends on LIBNVDIMM && NVDIMM_DAX && DEV_DAX
default DEV_DAX
help
Support raw access to persistent memory. Note that this
driver consumes memory ranges allocated and exported by the
libnvdimm sub-system.
Say M if unsure
config DEV_DAX_HMEM
tristate "HMEM DAX: direct access to 'specific purpose' memory"
depends on EFI_SOFT_RESERVE
mm: make range-to-target_node lookup facility a part of numa_memblks The x86 implementation of range-to-target_node lookup (i.e. phys_to_target_node() and memory_add_physaddr_to_nid()) relies on numa_memblks. Since numa_memblks are now part of the generic code, move these functions from x86 to mm/numa_memblks.c and select CONFIG_NUMA_KEEP_MEMINFO when CONFIG_NUMA_MEMBLKS=y for dax and cxl. [rppt@kernel.org: fix build] Link: https://lkml.kernel.org/r/ZtVfSt_zloPdDqVB@kernel.org Link: https://lkml.kernel.org/r/20240807064110.1003856-26-rppt@kernel.org Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Tested-by: Zi Yan <ziy@nvidia.com> # for x86_64 and arm64 Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> [arm64 + CXL via QEMU] Reviewed-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andreas Larsson <andreas@gaisler.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: David S. Miller <davem@davemloft.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiaxun Yang <jiaxun.yang@flygoat.com> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Rafael J. Wysocki <rafael@kernel.org> Cc: Rob Herring (Arm) <robh@kernel.org> Cc: Samuel Holland <samuel.holland@sifive.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-08-06 23:41:09 -07:00
select NUMA_KEEP_MEMINFO if NUMA_MEMBLKS
default DEV_DAX
help
EFI 2.8 platforms, and others, may advertise 'specific purpose'
memory. For example, a high bandwidth memory pool. The
indication from platform firmware is meant to reserve the
memory from typical usage by default. This driver creates
device-dax instances for these memory ranges, and that also
enables the possibility to assign them to the DEV_DAX_KMEM
driver to override the reservation and add them to kernel
"System RAM" pool.
Say M if unsure.
config DEV_DAX_CXL
tristate "CXL DAX: direct access to CXL RAM regions"
depends on CXL_BUS && CXL_REGION && DEV_DAX
default CXL_REGION && DEV_DAX
help
CXL RAM regions are either mapped by platform-firmware
and published in the initial system-memory map as "System RAM", mapped
by platform-firmware as "Soft Reserved", or dynamically provisioned
after boot by the CXL driver. In the latter two cases a device-dax
instance is created to access that unmapped-by-default address range.
Per usual it can remain as dedicated access via a device interface, or
converted to "System RAM" via the dax_kmem facility.
ACPI: HMAT: refactor hmat_register_target_device to hmem_register_device In preparation for exposing "Soft Reserved" memory ranges without an HMAT, move the hmem device registration to its own compilation unit and make the implementation generic. The generic implementation drops usage acpi_map_pxm_to_online_node() that was translating ACPI proximity domain values and instead relies on numa_map_to_online_node() to determine the numa node for the device. [joao.m.martins@oracle.com: CONFIG_DEV_DAX_HMEM_DEVICES should depend on CONFIG_DAX=y] Link: https://lkml.kernel.org/r/8f34727f-ec2d-9395-cb18-969ec8a5d0d4@oracle.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Joao Martins <joao.m.martins@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brice Goglin <Brice.Goglin@inria.fr> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: David Airlie <airlied@linux.ie> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Jia He <justin.he@arm.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Wei Yang <richard.weiyang@linux.alibaba.com> Cc: Will Deacon <will@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Hulk Robot <hulkci@huawei.com> Cc: Jason Yan <yanaijie@huawei.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: kernel test robot <lkp@intel.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Link: https://lkml.kernel.org/r/159643096584.4062302.5035370788475153738.stgit@dwillia2-desk3.amr.corp.intel.com Link: https://lore.kernel.org/r/158318761484.2216124.2049322072599482736.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 16:49:13 -07:00
config DEV_DAX_HMEM_DEVICES
depends on DEV_DAX_HMEM && DAX
ACPI: HMAT: refactor hmat_register_target_device to hmem_register_device In preparation for exposing "Soft Reserved" memory ranges without an HMAT, move the hmem device registration to its own compilation unit and make the implementation generic. The generic implementation drops usage acpi_map_pxm_to_online_node() that was translating ACPI proximity domain values and instead relies on numa_map_to_online_node() to determine the numa node for the device. [joao.m.martins@oracle.com: CONFIG_DEV_DAX_HMEM_DEVICES should depend on CONFIG_DAX=y] Link: https://lkml.kernel.org/r/8f34727f-ec2d-9395-cb18-969ec8a5d0d4@oracle.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Joao Martins <joao.m.martins@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brice Goglin <Brice.Goglin@inria.fr> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: David Airlie <airlied@linux.ie> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Jia He <justin.he@arm.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Wei Yang <richard.weiyang@linux.alibaba.com> Cc: Will Deacon <will@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Hulk Robot <hulkci@huawei.com> Cc: Jason Yan <yanaijie@huawei.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: kernel test robot <lkp@intel.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Link: https://lkml.kernel.org/r/159643096584.4062302.5035370788475153738.stgit@dwillia2-desk3.amr.corp.intel.com Link: https://lore.kernel.org/r/158318761484.2216124.2049322072599482736.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 16:49:13 -07:00
def_bool y
device-dax: "Hotplug" persistent memory for use like normal RAM This is intended for use with NVDIMMs that are physically persistent (physically like flash) so that they can be used as a cost-effective RAM replacement. Intel Optane DC persistent memory is one implementation of this kind of NVDIMM. Currently, a persistent memory region is "owned" by a device driver, either the "Direct DAX" or "Filesystem DAX" drivers. These drivers allow applications to explicitly use persistent memory, generally by being modified to use special, new libraries. (DIMM-based persistent memory hardware/software is described in great detail here: Documentation/nvdimm/nvdimm.txt). However, this limits persistent memory use to applications which *have* been modified. To make it more broadly usable, this driver "hotplugs" memory into the kernel, to be managed and used just like normal RAM would be. To make this work, management software must remove the device from being controlled by the "Device DAX" infrastructure: echo dax0.0 > /sys/bus/dax/drivers/device_dax/unbind and then tell the new driver that it can bind to the device: echo dax0.0 > /sys/bus/dax/drivers/kmem/new_id After this, there will be a number of new memory sections visible in sysfs that can be onlined, or that may get onlined by existing udev-initiated memory hotplug rules. This rebinding procedure is currently a one-way trip. Once memory is bound to "kmem", it's there permanently and can not be unbound and assigned back to device_dax. The kmem driver will never bind to a dax device unless the device is *explicitly* bound to the driver. There are two reasons for this: One, since it is a one-way trip, it can not be undone if bound incorrectly. Two, the kmem driver destroys data on the device. Think of if you had good data on a pmem device. It would be catastrophic if you compile-in "kmem", but leave out the "device_dax" driver. kmem would take over the device and write volatile data all over your good data. This inherits any existing NUMA information for the newly-added memory from the persistent memory device that came from the firmware. On Intel platforms, the firmware has guarantees that require each socket's persistent memory to be in a separate memory-only NUMA node. That means that this patch is not expected to create NUMA nodes, but will simply hotplug memory into existing nodes. Because NUMA nodes are created, the existing NUMA APIs and tools are sufficient to create policies for applications or memory areas to have affinity for or an aversion to using this memory. There is currently some metadata at the beginning of pmem regions. The section-size memory hotplug restrictions, plus this small reserved area can cause the "loss" of a section or two of capacity. This should be fixable in follow-on patches. But, as a first step, losing 256MB of memory (worst case) out of hundreds of gigabytes is a good tradeoff vs. the required code to fix this up precisely. This calculation is also the reason we export memory_block_size_bytes(). Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Keith Busch <keith.busch@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@suse.com> Cc: linux-nvdimm@lists.01.org Cc: linux-kernel@vger.kernel.org Cc: linux-mm@kvack.org Cc: Huang Ying <ying.huang@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Borislav Petkov <bp@suse.de> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Jerome Glisse <jglisse@redhat.com> Reviewed-by: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-25 11:57:40 -07:00
config DEV_DAX_KMEM
dax: Assign RAM regions to memory-hotplug by default The default mode for device-dax instances is backwards for RAM-regions as evidenced by the fact that it tends to catch end users by surprise. "Where is my memory?". Recall that platforms are increasingly shipping with performance-differentiated memory pools beyond typical DRAM and NUMA effects. This includes HBM (high-bandwidth-memory) and CXL (dynamic interleave, varied media types, and future fabric attached possibilities). For this reason the EFI_MEMORY_SP (EFI Special Purpose Memory => Linux 'Soft Reserved') attribute is expected to be applied to all memory-pools that are not the general purpose pool. This designation gives an Operating System a chance to defer usage of a memory pool until later in the boot process where its performance properties can be interrogated and administrator policy can be applied. 'Soft Reserved' memory can be anything from too limited and precious to be part of the general purpose pool (HBM), too slow to host hot kernel data structures (some PMEM media), or anything in between. However, in the absence of an explicit policy, the memory should at least be made usable by default. The current device-dax default hides all non-general-purpose memory behind a device interface. The expectation is that the distribution of users that want the memory online by default vs device-dedicated-access by default follows the Pareto principle. A small number of enlightened users may want to do userspace memory management through a device, but general users just want the kernel to make the memory available with an option to get more advanced later. Arrange for all device-dax instances not backed by PMEM to default to attaching to the dax_kmem driver. From there the baseline memory hotplug policy (CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE / memhp_default_state=) gates whether the memory comes online or stays offline. Where, if it stays offline, it can be reliably converted back to device-mode where it can be partitioned, or fronted by a userspace allocator. So, if someone wants device-dax instances for their 'Soft Reserved' memory: 1/ Build a kernel with CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE=n or boot with memhp_default_state=offline, or roll the dice and hope that the kernel has not pinned a page in that memory before step 2. 2/ Write a udev rule to convert the target dax device(s) from 'system-ram' mode to 'devdax' mode: daxctl reconfigure-device $dax -m devdax -f Cc: Michal Hocko <mhocko@suse.com> Cc: David Hildenbrand <david@redhat.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Gregory Price <gregory.price@memverge.com> Tested-by: Fan Ni <fan.ni@samsung.com> Reviewed-by: Dave Jiang <dave.jiang@intel.com> Link: https://lore.kernel.org/r/167602003336.1924368.6809503401422267885.stgit@dwillia2-xfh.jf.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2023-02-10 02:07:13 -07:00
tristate "KMEM DAX: map dax-devices as System-RAM"
device-dax: "Hotplug" persistent memory for use like normal RAM This is intended for use with NVDIMMs that are physically persistent (physically like flash) so that they can be used as a cost-effective RAM replacement. Intel Optane DC persistent memory is one implementation of this kind of NVDIMM. Currently, a persistent memory region is "owned" by a device driver, either the "Direct DAX" or "Filesystem DAX" drivers. These drivers allow applications to explicitly use persistent memory, generally by being modified to use special, new libraries. (DIMM-based persistent memory hardware/software is described in great detail here: Documentation/nvdimm/nvdimm.txt). However, this limits persistent memory use to applications which *have* been modified. To make it more broadly usable, this driver "hotplugs" memory into the kernel, to be managed and used just like normal RAM would be. To make this work, management software must remove the device from being controlled by the "Device DAX" infrastructure: echo dax0.0 > /sys/bus/dax/drivers/device_dax/unbind and then tell the new driver that it can bind to the device: echo dax0.0 > /sys/bus/dax/drivers/kmem/new_id After this, there will be a number of new memory sections visible in sysfs that can be onlined, or that may get onlined by existing udev-initiated memory hotplug rules. This rebinding procedure is currently a one-way trip. Once memory is bound to "kmem", it's there permanently and can not be unbound and assigned back to device_dax. The kmem driver will never bind to a dax device unless the device is *explicitly* bound to the driver. There are two reasons for this: One, since it is a one-way trip, it can not be undone if bound incorrectly. Two, the kmem driver destroys data on the device. Think of if you had good data on a pmem device. It would be catastrophic if you compile-in "kmem", but leave out the "device_dax" driver. kmem would take over the device and write volatile data all over your good data. This inherits any existing NUMA information for the newly-added memory from the persistent memory device that came from the firmware. On Intel platforms, the firmware has guarantees that require each socket's persistent memory to be in a separate memory-only NUMA node. That means that this patch is not expected to create NUMA nodes, but will simply hotplug memory into existing nodes. Because NUMA nodes are created, the existing NUMA APIs and tools are sufficient to create policies for applications or memory areas to have affinity for or an aversion to using this memory. There is currently some metadata at the beginning of pmem regions. The section-size memory hotplug restrictions, plus this small reserved area can cause the "loss" of a section or two of capacity. This should be fixable in follow-on patches. But, as a first step, losing 256MB of memory (worst case) out of hundreds of gigabytes is a good tradeoff vs. the required code to fix this up precisely. This calculation is also the reason we export memory_block_size_bytes(). Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Keith Busch <keith.busch@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@suse.com> Cc: linux-nvdimm@lists.01.org Cc: linux-kernel@vger.kernel.org Cc: linux-mm@kvack.org Cc: Huang Ying <ying.huang@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Borislav Petkov <bp@suse.de> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Jerome Glisse <jglisse@redhat.com> Reviewed-by: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-25 11:57:40 -07:00
default DEV_DAX
depends on DEV_DAX
depends on MEMORY_HOTPLUG # for add_memory() and friends
help
Support access to persistent, or other performance
differentiated memory as if it were System RAM. This allows
easier use of persistent memory by unmodified applications, or
adds core kernel memory services to heterogeneous memory types
(HMEM) marked "reserved" by platform firmware.
device-dax: "Hotplug" persistent memory for use like normal RAM This is intended for use with NVDIMMs that are physically persistent (physically like flash) so that they can be used as a cost-effective RAM replacement. Intel Optane DC persistent memory is one implementation of this kind of NVDIMM. Currently, a persistent memory region is "owned" by a device driver, either the "Direct DAX" or "Filesystem DAX" drivers. These drivers allow applications to explicitly use persistent memory, generally by being modified to use special, new libraries. (DIMM-based persistent memory hardware/software is described in great detail here: Documentation/nvdimm/nvdimm.txt). However, this limits persistent memory use to applications which *have* been modified. To make it more broadly usable, this driver "hotplugs" memory into the kernel, to be managed and used just like normal RAM would be. To make this work, management software must remove the device from being controlled by the "Device DAX" infrastructure: echo dax0.0 > /sys/bus/dax/drivers/device_dax/unbind and then tell the new driver that it can bind to the device: echo dax0.0 > /sys/bus/dax/drivers/kmem/new_id After this, there will be a number of new memory sections visible in sysfs that can be onlined, or that may get onlined by existing udev-initiated memory hotplug rules. This rebinding procedure is currently a one-way trip. Once memory is bound to "kmem", it's there permanently and can not be unbound and assigned back to device_dax. The kmem driver will never bind to a dax device unless the device is *explicitly* bound to the driver. There are two reasons for this: One, since it is a one-way trip, it can not be undone if bound incorrectly. Two, the kmem driver destroys data on the device. Think of if you had good data on a pmem device. It would be catastrophic if you compile-in "kmem", but leave out the "device_dax" driver. kmem would take over the device and write volatile data all over your good data. This inherits any existing NUMA information for the newly-added memory from the persistent memory device that came from the firmware. On Intel platforms, the firmware has guarantees that require each socket's persistent memory to be in a separate memory-only NUMA node. That means that this patch is not expected to create NUMA nodes, but will simply hotplug memory into existing nodes. Because NUMA nodes are created, the existing NUMA APIs and tools are sufficient to create policies for applications or memory areas to have affinity for or an aversion to using this memory. There is currently some metadata at the beginning of pmem regions. The section-size memory hotplug restrictions, plus this small reserved area can cause the "loss" of a section or two of capacity. This should be fixable in follow-on patches. But, as a first step, losing 256MB of memory (worst case) out of hundreds of gigabytes is a good tradeoff vs. the required code to fix this up precisely. This calculation is also the reason we export memory_block_size_bytes(). Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Keith Busch <keith.busch@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@suse.com> Cc: linux-nvdimm@lists.01.org Cc: linux-kernel@vger.kernel.org Cc: linux-mm@kvack.org Cc: Huang Ying <ying.huang@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Borislav Petkov <bp@suse.de> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Jerome Glisse <jglisse@redhat.com> Reviewed-by: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-25 11:57:40 -07:00
To use this feature, a DAX device must be unbound from the
device_dax driver and bound to this kmem driver on each boot.
device-dax: "Hotplug" persistent memory for use like normal RAM This is intended for use with NVDIMMs that are physically persistent (physically like flash) so that they can be used as a cost-effective RAM replacement. Intel Optane DC persistent memory is one implementation of this kind of NVDIMM. Currently, a persistent memory region is "owned" by a device driver, either the "Direct DAX" or "Filesystem DAX" drivers. These drivers allow applications to explicitly use persistent memory, generally by being modified to use special, new libraries. (DIMM-based persistent memory hardware/software is described in great detail here: Documentation/nvdimm/nvdimm.txt). However, this limits persistent memory use to applications which *have* been modified. To make it more broadly usable, this driver "hotplugs" memory into the kernel, to be managed and used just like normal RAM would be. To make this work, management software must remove the device from being controlled by the "Device DAX" infrastructure: echo dax0.0 > /sys/bus/dax/drivers/device_dax/unbind and then tell the new driver that it can bind to the device: echo dax0.0 > /sys/bus/dax/drivers/kmem/new_id After this, there will be a number of new memory sections visible in sysfs that can be onlined, or that may get onlined by existing udev-initiated memory hotplug rules. This rebinding procedure is currently a one-way trip. Once memory is bound to "kmem", it's there permanently and can not be unbound and assigned back to device_dax. The kmem driver will never bind to a dax device unless the device is *explicitly* bound to the driver. There are two reasons for this: One, since it is a one-way trip, it can not be undone if bound incorrectly. Two, the kmem driver destroys data on the device. Think of if you had good data on a pmem device. It would be catastrophic if you compile-in "kmem", but leave out the "device_dax" driver. kmem would take over the device and write volatile data all over your good data. This inherits any existing NUMA information for the newly-added memory from the persistent memory device that came from the firmware. On Intel platforms, the firmware has guarantees that require each socket's persistent memory to be in a separate memory-only NUMA node. That means that this patch is not expected to create NUMA nodes, but will simply hotplug memory into existing nodes. Because NUMA nodes are created, the existing NUMA APIs and tools are sufficient to create policies for applications or memory areas to have affinity for or an aversion to using this memory. There is currently some metadata at the beginning of pmem regions. The section-size memory hotplug restrictions, plus this small reserved area can cause the "loss" of a section or two of capacity. This should be fixable in follow-on patches. But, as a first step, losing 256MB of memory (worst case) out of hundreds of gigabytes is a good tradeoff vs. the required code to fix this up precisely. This calculation is also the reason we export memory_block_size_bytes(). Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Keith Busch <keith.busch@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@suse.com> Cc: linux-nvdimm@lists.01.org Cc: linux-kernel@vger.kernel.org Cc: linux-mm@kvack.org Cc: Huang Ying <ying.huang@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Borislav Petkov <bp@suse.de> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Jerome Glisse <jglisse@redhat.com> Reviewed-by: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-25 11:57:40 -07:00
Say N if unsure.
endif