1
linux/drivers/acpi/x86/utils.c

595 lines
19 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* X86 ACPI Utility Functions
*
* Copyright (C) 2017 Hans de Goede <hdegoede@redhat.com>
*
* Based on various non upstream patches to support the CHT Whiskey Cove PMIC:
* Copyright (C) 2013-2015 Intel Corporation. All rights reserved.
*/
ACPI / x86: Introduce an acpi_quirk_skip_acpi_ac_and_battery() helper Some x86 ACPI boards have broken AC and battery ACPI devices in their ACPI tables. This is often tied to these devices using certain PMICs where the factory OS image seems to be using native charger and fuel-gauge drivers instead. So far both the AC and battery drivers have almost identical checks for these PMICs including both of them having a DMI based mechanism to force usage of the ACPI AC and battery drivers on some boards even though one of these PMICs is present, with the same 2 boards listed in both driver's DMI tables for this. The only difference is that the AC driver checks for 2 PMICs and the battery driver only for one. This has grown this way because the other (Whiskey Cove) PMIC is only used on a few boards (3 known boards) and although some of these do have non working ACPI battery devices, their _STA method always returns 0, but that really should not be relied on. This patch factors out the shared checks into a new acpi_quirk_skip_acpi_ac_and_battery() helper and moves the AC and battery drivers over to this new helper. Note the DMI table is shared with acpi_quirk_skip_i2c_client_enumeration() and acpi_quirk_skip_serdev_enumeration(), because boards needing DMI quirks for either of these typically also have broken AC and battery ACPI devices. The ACPI_QUIRK_SKIP_ACPI_AC_AND_BATTERY quirk is not set yet on boards already in this DMI table, to avoid introducing any functional changes in this refactoring patch. Besided sharing the code between the AC and battery drivers this refactoring also moves this quirk handling to under #ifdef CONFIG_X86, removing this x86 specific code from non x86 ACPI builds. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-12-30 12:31:19 -07:00
#define pr_fmt(fmt) "ACPI: " fmt
#include <linux/acpi.h>
#include <linux/dmi.h>
2021-12-30 07:17:20 -07:00
#include <linux/platform_device.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include "../internal.h"
/*
* Some ACPI devices are hidden (status == 0x0) in recent BIOS-es because
* some recent Windows drivers bind to one device but poke at multiple
* devices at the same time, so the others get hidden.
*
* Some BIOS-es (temporarily) hide specific APCI devices to work around Windows
* driver bugs. We use DMI matching to match known cases of this.
*
* Likewise sometimes some not-actually present devices are sometimes
* reported as present, which may cause issues.
*
* We work around this by using the below quirk list to override the status
* reported by the _STA method with a fixed value (ACPI_STA_DEFAULT or 0).
* Note this MUST only be done for devices where this is safe.
*
* This status overriding is limited to specific CPU (SoC) models both to
* avoid potentially causing trouble on other models and because some HIDs
* are re-used on different SoCs for completely different devices.
*/
struct override_status_id {
struct acpi_device_id hid[2];
struct x86_cpu_id cpu_ids[2];
struct dmi_system_id dmi_ids[2]; /* Optional */
const char *uid;
const char *path;
unsigned long long status;
};
#define ENTRY(status, hid, uid, path, cpu_vfm, dmi...) { \
{ { hid, }, {} }, \
{ X86_MATCH_VFM(cpu_vfm, NULL), {} }, \
{ { .matches = dmi }, {} }, \
uid, \
path, \
status, \
}
#define PRESENT_ENTRY_HID(hid, uid, cpu_vfm, dmi...) \
ENTRY(ACPI_STA_DEFAULT, hid, uid, NULL, cpu_vfm, dmi)
#define NOT_PRESENT_ENTRY_HID(hid, uid, cpu_vfm, dmi...) \
ENTRY(0, hid, uid, NULL, cpu_vfm, dmi)
#define PRESENT_ENTRY_PATH(path, cpu_vfm, dmi...) \
ENTRY(ACPI_STA_DEFAULT, "", NULL, path, cpu_vfm, dmi)
#define NOT_PRESENT_ENTRY_PATH(path, cpu_vfm, dmi...) \
ENTRY(0, "", NULL, path, cpu_vfm, dmi)
static const struct override_status_id override_status_ids[] = {
/*
* Bay / Cherry Trail PWM directly poked by GPU driver in win10,
* but Linux uses a separate PWM driver, harmless if not used.
*/
PRESENT_ENTRY_HID("80860F09", "1", INTEL_ATOM_SILVERMONT, {}),
PRESENT_ENTRY_HID("80862288", "1", INTEL_ATOM_AIRMONT, {}),
/* The Xiaomi Mi Pad 2 uses PWM2 for touchkeys backlight control */
PRESENT_ENTRY_HID("80862289", "2", INTEL_ATOM_AIRMONT, {
DMI_MATCH(DMI_SYS_VENDOR, "Xiaomi Inc"),
DMI_MATCH(DMI_PRODUCT_NAME, "Mipad2"),
}),
/*
* The INT0002 device is necessary to clear wakeup interrupt sources
* on Cherry Trail devices, without it we get nobody cared IRQ msgs.
*/
PRESENT_ENTRY_HID("INT0002", "1", INTEL_ATOM_AIRMONT, {}),
/*
* On the Dell Venue 11 Pro 7130 and 7139, the DSDT hides
* the touchscreen ACPI device until a certain time
* after _SB.PCI0.GFX0.LCD.LCD1._ON gets called has passed
* *and* _STA has been called at least 3 times since.
*/
PRESENT_ENTRY_HID("SYNA7500", "1", INTEL_HASWELL_L, {
DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "Venue 11 Pro 7130"),
}),
PRESENT_ENTRY_HID("SYNA7500", "1", INTEL_HASWELL_L, {
DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "Venue 11 Pro 7139"),
}),
/*
* The Dell XPS 15 9550 has a SMO8110 accelerometer /
* HDD freefall sensor which is wrongly marked as not present.
*/
PRESENT_ENTRY_HID("SMO8810", "1", INTEL_SKYLAKE, {
DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "XPS 15 9550"),
}),
/*
* The GPD win BIOS dated 20170221 has disabled the accelerometer, the
* drivers sometimes cause crashes under Windows and this is how the
* manufacturer has solved this :| The DMI match may not seem unique,
* but it is. In the 67000+ DMI decode dumps from linux-hardware.org
* only 116 have board_vendor set to "AMI Corporation" and of those 116
* only the GPD win and pocket entries' board_name is "Default string".
*
* Unfortunately the GPD pocket also uses these strings and its BIOS
* was copy-pasted from the GPD win, so it has a disabled KIOX000A
* node which we should not enable, thus we also check the BIOS date.
*/
PRESENT_ENTRY_HID("KIOX000A", "1", INTEL_ATOM_AIRMONT, {
DMI_MATCH(DMI_BOARD_VENDOR, "AMI Corporation"),
DMI_MATCH(DMI_BOARD_NAME, "Default string"),
DMI_MATCH(DMI_PRODUCT_NAME, "Default string"),
DMI_MATCH(DMI_BIOS_DATE, "02/21/2017")
}),
PRESENT_ENTRY_HID("KIOX000A", "1", INTEL_ATOM_AIRMONT, {
DMI_MATCH(DMI_BOARD_VENDOR, "AMI Corporation"),
DMI_MATCH(DMI_BOARD_NAME, "Default string"),
DMI_MATCH(DMI_PRODUCT_NAME, "Default string"),
DMI_MATCH(DMI_BIOS_DATE, "03/20/2017")
}),
PRESENT_ENTRY_HID("KIOX000A", "1", INTEL_ATOM_AIRMONT, {
DMI_MATCH(DMI_BOARD_VENDOR, "AMI Corporation"),
DMI_MATCH(DMI_BOARD_NAME, "Default string"),
DMI_MATCH(DMI_PRODUCT_NAME, "Default string"),
DMI_MATCH(DMI_BIOS_DATE, "05/25/2017")
}),
/*
* The GPD win/pocket have a PCI wifi card, but its DSDT has the SDIO
* mmc controller enabled and that has a child-device which _PS3
* method sets a GPIO causing the PCI wifi card to turn off.
* See above remark about uniqueness of the DMI match.
*/
NOT_PRESENT_ENTRY_PATH("\\_SB_.PCI0.SDHB.BRC1", INTEL_ATOM_AIRMONT, {
DMI_EXACT_MATCH(DMI_BOARD_VENDOR, "AMI Corporation"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "Default string"),
DMI_EXACT_MATCH(DMI_BOARD_SERIAL, "Default string"),
DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "Default string"),
}),
/*
* The LSM303D on the Lenovo Yoga Tablet 2 series is present
* as both ACCL0001 and MAGN0001. As we can only ever register an
* i2c client for one of them, ignore MAGN0001.
*/
NOT_PRESENT_ENTRY_HID("MAGN0001", "1", INTEL_ATOM_SILVERMONT, {
DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
DMI_MATCH(DMI_PRODUCT_FAMILY, "YOGATablet2"),
}),
};
bool acpi_device_override_status(struct acpi_device *adev, unsigned long long *status)
{
bool ret = false;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(override_status_ids); i++) {
if (!x86_match_cpu(override_status_ids[i].cpu_ids))
continue;
if (override_status_ids[i].dmi_ids[0].matches[0].slot &&
!dmi_check_system(override_status_ids[i].dmi_ids))
continue;
if (override_status_ids[i].path) {
struct acpi_buffer path = { ACPI_ALLOCATE_BUFFER, NULL };
bool match;
if (acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &path))
continue;
match = strcmp((char *)path.pointer, override_status_ids[i].path) == 0;
kfree(path.pointer);
if (!match)
continue;
} else {
if (acpi_match_device_ids(adev, override_status_ids[i].hid))
continue;
if (!acpi_dev_uid_match(adev, override_status_ids[i].uid))
continue;
}
*status = override_status_ids[i].status;
ret = true;
break;
}
return ret;
}
ACPI: Add quirks for AMD Renoir/Lucienne CPUs to force the D3 hint AMD systems from Renoir and Lucienne require that the NVME controller is put into D3 over a Modern Standby / suspend-to-idle cycle. This is "typically" accomplished using the `StorageD3Enable` property in the _DSD, but this property was introduced after many of these systems launched and most OEM systems don't have it in their BIOS. On AMD Renoir without these drives going into D3 over suspend-to-idle the resume will fail with the NVME controller being reset and a trace like this in the kernel logs: ``` [ 83.556118] nvme nvme0: I/O 161 QID 2 timeout, aborting [ 83.556178] nvme nvme0: I/O 162 QID 2 timeout, aborting [ 83.556187] nvme nvme0: I/O 163 QID 2 timeout, aborting [ 83.556196] nvme nvme0: I/O 164 QID 2 timeout, aborting [ 95.332114] nvme nvme0: I/O 25 QID 0 timeout, reset controller [ 95.332843] nvme nvme0: Abort status: 0x371 [ 95.332852] nvme nvme0: Abort status: 0x371 [ 95.332856] nvme nvme0: Abort status: 0x371 [ 95.332859] nvme nvme0: Abort status: 0x371 [ 95.332909] PM: dpm_run_callback(): pci_pm_resume+0x0/0xe0 returns -16 [ 95.332936] nvme 0000:03:00.0: PM: failed to resume async: error -16 ``` The Microsoft documentation for StorageD3Enable mentioned that Windows has a hardcoded allowlist for D3 support, which was used for these platforms. Introduce quirks to hardcode them for Linux as well. As this property is now "standardized", OEM systems using AMD Cezanne and newer APU's have adopted this property, and quirks like this should not be necessary. CC: Shyam-sundar S-k <Shyam-sundar.S-k@amd.com> CC: Alexander Deucher <Alexander.Deucher@amd.com> CC: Prike Liang <prike.liang@amd.com> Link: https://docs.microsoft.com/en-us/windows-hardware/design/component-guidelines/power-management-for-storage-hardware-devices-intro Signed-off-by: Mario Limonciello <mario.limonciello@amd.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Julian Sikorski <belegdol@gmail.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2021-06-09 11:40:18 -07:00
/*
* AMD systems from Renoir onwards *require* that the NVME controller
ACPI: Add quirks for AMD Renoir/Lucienne CPUs to force the D3 hint AMD systems from Renoir and Lucienne require that the NVME controller is put into D3 over a Modern Standby / suspend-to-idle cycle. This is "typically" accomplished using the `StorageD3Enable` property in the _DSD, but this property was introduced after many of these systems launched and most OEM systems don't have it in their BIOS. On AMD Renoir without these drives going into D3 over suspend-to-idle the resume will fail with the NVME controller being reset and a trace like this in the kernel logs: ``` [ 83.556118] nvme nvme0: I/O 161 QID 2 timeout, aborting [ 83.556178] nvme nvme0: I/O 162 QID 2 timeout, aborting [ 83.556187] nvme nvme0: I/O 163 QID 2 timeout, aborting [ 83.556196] nvme nvme0: I/O 164 QID 2 timeout, aborting [ 95.332114] nvme nvme0: I/O 25 QID 0 timeout, reset controller [ 95.332843] nvme nvme0: Abort status: 0x371 [ 95.332852] nvme nvme0: Abort status: 0x371 [ 95.332856] nvme nvme0: Abort status: 0x371 [ 95.332859] nvme nvme0: Abort status: 0x371 [ 95.332909] PM: dpm_run_callback(): pci_pm_resume+0x0/0xe0 returns -16 [ 95.332936] nvme 0000:03:00.0: PM: failed to resume async: error -16 ``` The Microsoft documentation for StorageD3Enable mentioned that Windows has a hardcoded allowlist for D3 support, which was used for these platforms. Introduce quirks to hardcode them for Linux as well. As this property is now "standardized", OEM systems using AMD Cezanne and newer APU's have adopted this property, and quirks like this should not be necessary. CC: Shyam-sundar S-k <Shyam-sundar.S-k@amd.com> CC: Alexander Deucher <Alexander.Deucher@amd.com> CC: Prike Liang <prike.liang@amd.com> Link: https://docs.microsoft.com/en-us/windows-hardware/design/component-guidelines/power-management-for-storage-hardware-devices-intro Signed-off-by: Mario Limonciello <mario.limonciello@amd.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Julian Sikorski <belegdol@gmail.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2021-06-09 11:40:18 -07:00
* is put into D3 over a Modern Standby / suspend-to-idle cycle.
*
* This is "typically" accomplished using the `StorageD3Enable`
* property in the _DSD that is checked via the `acpi_storage_d3` function
* but some OEM systems still don't have it in their BIOS.
ACPI: Add quirks for AMD Renoir/Lucienne CPUs to force the D3 hint AMD systems from Renoir and Lucienne require that the NVME controller is put into D3 over a Modern Standby / suspend-to-idle cycle. This is "typically" accomplished using the `StorageD3Enable` property in the _DSD, but this property was introduced after many of these systems launched and most OEM systems don't have it in their BIOS. On AMD Renoir without these drives going into D3 over suspend-to-idle the resume will fail with the NVME controller being reset and a trace like this in the kernel logs: ``` [ 83.556118] nvme nvme0: I/O 161 QID 2 timeout, aborting [ 83.556178] nvme nvme0: I/O 162 QID 2 timeout, aborting [ 83.556187] nvme nvme0: I/O 163 QID 2 timeout, aborting [ 83.556196] nvme nvme0: I/O 164 QID 2 timeout, aborting [ 95.332114] nvme nvme0: I/O 25 QID 0 timeout, reset controller [ 95.332843] nvme nvme0: Abort status: 0x371 [ 95.332852] nvme nvme0: Abort status: 0x371 [ 95.332856] nvme nvme0: Abort status: 0x371 [ 95.332859] nvme nvme0: Abort status: 0x371 [ 95.332909] PM: dpm_run_callback(): pci_pm_resume+0x0/0xe0 returns -16 [ 95.332936] nvme 0000:03:00.0: PM: failed to resume async: error -16 ``` The Microsoft documentation for StorageD3Enable mentioned that Windows has a hardcoded allowlist for D3 support, which was used for these platforms. Introduce quirks to hardcode them for Linux as well. As this property is now "standardized", OEM systems using AMD Cezanne and newer APU's have adopted this property, and quirks like this should not be necessary. CC: Shyam-sundar S-k <Shyam-sundar.S-k@amd.com> CC: Alexander Deucher <Alexander.Deucher@amd.com> CC: Prike Liang <prike.liang@amd.com> Link: https://docs.microsoft.com/en-us/windows-hardware/design/component-guidelines/power-management-for-storage-hardware-devices-intro Signed-off-by: Mario Limonciello <mario.limonciello@amd.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Julian Sikorski <belegdol@gmail.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2021-06-09 11:40:18 -07:00
*
* The Microsoft documentation for StorageD3Enable mentioned that Windows has
* a hardcoded allowlist for D3 support as well as a registry key to override
* the BIOS, which has been used for these cases.
ACPI: Add quirks for AMD Renoir/Lucienne CPUs to force the D3 hint AMD systems from Renoir and Lucienne require that the NVME controller is put into D3 over a Modern Standby / suspend-to-idle cycle. This is "typically" accomplished using the `StorageD3Enable` property in the _DSD, but this property was introduced after many of these systems launched and most OEM systems don't have it in their BIOS. On AMD Renoir without these drives going into D3 over suspend-to-idle the resume will fail with the NVME controller being reset and a trace like this in the kernel logs: ``` [ 83.556118] nvme nvme0: I/O 161 QID 2 timeout, aborting [ 83.556178] nvme nvme0: I/O 162 QID 2 timeout, aborting [ 83.556187] nvme nvme0: I/O 163 QID 2 timeout, aborting [ 83.556196] nvme nvme0: I/O 164 QID 2 timeout, aborting [ 95.332114] nvme nvme0: I/O 25 QID 0 timeout, reset controller [ 95.332843] nvme nvme0: Abort status: 0x371 [ 95.332852] nvme nvme0: Abort status: 0x371 [ 95.332856] nvme nvme0: Abort status: 0x371 [ 95.332859] nvme nvme0: Abort status: 0x371 [ 95.332909] PM: dpm_run_callback(): pci_pm_resume+0x0/0xe0 returns -16 [ 95.332936] nvme 0000:03:00.0: PM: failed to resume async: error -16 ``` The Microsoft documentation for StorageD3Enable mentioned that Windows has a hardcoded allowlist for D3 support, which was used for these platforms. Introduce quirks to hardcode them for Linux as well. As this property is now "standardized", OEM systems using AMD Cezanne and newer APU's have adopted this property, and quirks like this should not be necessary. CC: Shyam-sundar S-k <Shyam-sundar.S-k@amd.com> CC: Alexander Deucher <Alexander.Deucher@amd.com> CC: Prike Liang <prike.liang@amd.com> Link: https://docs.microsoft.com/en-us/windows-hardware/design/component-guidelines/power-management-for-storage-hardware-devices-intro Signed-off-by: Mario Limonciello <mario.limonciello@amd.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Julian Sikorski <belegdol@gmail.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2021-06-09 11:40:18 -07:00
*
* This allows quirking on Linux in a similar fashion.
*
* Cezanne systems shouldn't *normally* need this as the BIOS includes
* StorageD3Enable. But for two reasons we have added it.
* 1) The BIOS on a number of Dell systems have ambiguity
* between the same value used for _ADR on ACPI nodes GPP1.DEV0 and GPP1.NVME.
* GPP1.NVME is needed to get StorageD3Enable node set properly.
* https://bugzilla.kernel.org/show_bug.cgi?id=216440
* https://bugzilla.kernel.org/show_bug.cgi?id=216773
* https://bugzilla.kernel.org/show_bug.cgi?id=217003
* 2) On at least one HP system StorageD3Enable is missing on the second NVME
* disk in the system.
* 3) On at least one HP Rembrandt system StorageD3Enable is missing on the only
* NVME device.
ACPI: Add quirks for AMD Renoir/Lucienne CPUs to force the D3 hint AMD systems from Renoir and Lucienne require that the NVME controller is put into D3 over a Modern Standby / suspend-to-idle cycle. This is "typically" accomplished using the `StorageD3Enable` property in the _DSD, but this property was introduced after many of these systems launched and most OEM systems don't have it in their BIOS. On AMD Renoir without these drives going into D3 over suspend-to-idle the resume will fail with the NVME controller being reset and a trace like this in the kernel logs: ``` [ 83.556118] nvme nvme0: I/O 161 QID 2 timeout, aborting [ 83.556178] nvme nvme0: I/O 162 QID 2 timeout, aborting [ 83.556187] nvme nvme0: I/O 163 QID 2 timeout, aborting [ 83.556196] nvme nvme0: I/O 164 QID 2 timeout, aborting [ 95.332114] nvme nvme0: I/O 25 QID 0 timeout, reset controller [ 95.332843] nvme nvme0: Abort status: 0x371 [ 95.332852] nvme nvme0: Abort status: 0x371 [ 95.332856] nvme nvme0: Abort status: 0x371 [ 95.332859] nvme nvme0: Abort status: 0x371 [ 95.332909] PM: dpm_run_callback(): pci_pm_resume+0x0/0xe0 returns -16 [ 95.332936] nvme 0000:03:00.0: PM: failed to resume async: error -16 ``` The Microsoft documentation for StorageD3Enable mentioned that Windows has a hardcoded allowlist for D3 support, which was used for these platforms. Introduce quirks to hardcode them for Linux as well. As this property is now "standardized", OEM systems using AMD Cezanne and newer APU's have adopted this property, and quirks like this should not be necessary. CC: Shyam-sundar S-k <Shyam-sundar.S-k@amd.com> CC: Alexander Deucher <Alexander.Deucher@amd.com> CC: Prike Liang <prike.liang@amd.com> Link: https://docs.microsoft.com/en-us/windows-hardware/design/component-guidelines/power-management-for-storage-hardware-devices-intro Signed-off-by: Mario Limonciello <mario.limonciello@amd.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Julian Sikorski <belegdol@gmail.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2021-06-09 11:40:18 -07:00
*/
bool force_storage_d3(void)
{
if (!cpu_feature_enabled(X86_FEATURE_ZEN))
return false;
return acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0;
ACPI: Add quirks for AMD Renoir/Lucienne CPUs to force the D3 hint AMD systems from Renoir and Lucienne require that the NVME controller is put into D3 over a Modern Standby / suspend-to-idle cycle. This is "typically" accomplished using the `StorageD3Enable` property in the _DSD, but this property was introduced after many of these systems launched and most OEM systems don't have it in their BIOS. On AMD Renoir without these drives going into D3 over suspend-to-idle the resume will fail with the NVME controller being reset and a trace like this in the kernel logs: ``` [ 83.556118] nvme nvme0: I/O 161 QID 2 timeout, aborting [ 83.556178] nvme nvme0: I/O 162 QID 2 timeout, aborting [ 83.556187] nvme nvme0: I/O 163 QID 2 timeout, aborting [ 83.556196] nvme nvme0: I/O 164 QID 2 timeout, aborting [ 95.332114] nvme nvme0: I/O 25 QID 0 timeout, reset controller [ 95.332843] nvme nvme0: Abort status: 0x371 [ 95.332852] nvme nvme0: Abort status: 0x371 [ 95.332856] nvme nvme0: Abort status: 0x371 [ 95.332859] nvme nvme0: Abort status: 0x371 [ 95.332909] PM: dpm_run_callback(): pci_pm_resume+0x0/0xe0 returns -16 [ 95.332936] nvme 0000:03:00.0: PM: failed to resume async: error -16 ``` The Microsoft documentation for StorageD3Enable mentioned that Windows has a hardcoded allowlist for D3 support, which was used for these platforms. Introduce quirks to hardcode them for Linux as well. As this property is now "standardized", OEM systems using AMD Cezanne and newer APU's have adopted this property, and quirks like this should not be necessary. CC: Shyam-sundar S-k <Shyam-sundar.S-k@amd.com> CC: Alexander Deucher <Alexander.Deucher@amd.com> CC: Prike Liang <prike.liang@amd.com> Link: https://docs.microsoft.com/en-us/windows-hardware/design/component-guidelines/power-management-for-storage-hardware-devices-intro Signed-off-by: Mario Limonciello <mario.limonciello@amd.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Julian Sikorski <belegdol@gmail.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2021-06-09 11:40:18 -07:00
}
2021-12-30 07:17:20 -07:00
/*
* x86 ACPI boards which ship with only Android as their factory image usually
* declare a whole bunch of bogus I2C devices in their ACPI tables and sometimes
* there are issues with serdev devices on these boards too, e.g. the resource
* points to the wrong serdev_controller.
*
* Instantiating I2C / serdev devs for these bogus devs causes various issues,
* e.g. GPIO/IRQ resource conflicts because sometimes drivers do bind to them.
* The Android x86 kernel fork shipped on these devices has some special code
* to remove the bogus I2C clients (and AFAICT serdevs are ignored completely).
*
* The acpi_quirk_skip_*_enumeration() functions below are used by the I2C or
* serdev code to skip instantiating any I2C or serdev devs on broken boards.
*
* In case of I2C an exception is made for HIDs on the i2c_acpi_known_good_ids
* list. These are known to always be correct (and in case of the audio-codecs
* the drivers heavily rely on the codec being enumerated through ACPI).
*
* Note these boards typically do actually have I2C and serdev devices,
* just different ones then the ones described in their DSDT. The devices
* which are actually present are manually instantiated by the
* drivers/platform/x86/x86-android-tablets.c kernel module.
*/
#define ACPI_QUIRK_SKIP_I2C_CLIENTS BIT(0)
#define ACPI_QUIRK_UART1_SKIP BIT(1)
#define ACPI_QUIRK_UART1_TTY_UART2_SKIP BIT(2)
#define ACPI_QUIRK_PNP_UART1_SKIP BIT(3)
#define ACPI_QUIRK_SKIP_ACPI_AC_AND_BATTERY BIT(4)
#define ACPI_QUIRK_USE_ACPI_AC_AND_BATTERY BIT(5)
#define ACPI_QUIRK_SKIP_GPIO_EVENT_HANDLERS BIT(6)
ACPI / x86: Introduce an acpi_quirk_skip_acpi_ac_and_battery() helper Some x86 ACPI boards have broken AC and battery ACPI devices in their ACPI tables. This is often tied to these devices using certain PMICs where the factory OS image seems to be using native charger and fuel-gauge drivers instead. So far both the AC and battery drivers have almost identical checks for these PMICs including both of them having a DMI based mechanism to force usage of the ACPI AC and battery drivers on some boards even though one of these PMICs is present, with the same 2 boards listed in both driver's DMI tables for this. The only difference is that the AC driver checks for 2 PMICs and the battery driver only for one. This has grown this way because the other (Whiskey Cove) PMIC is only used on a few boards (3 known boards) and although some of these do have non working ACPI battery devices, their _STA method always returns 0, but that really should not be relied on. This patch factors out the shared checks into a new acpi_quirk_skip_acpi_ac_and_battery() helper and moves the AC and battery drivers over to this new helper. Note the DMI table is shared with acpi_quirk_skip_i2c_client_enumeration() and acpi_quirk_skip_serdev_enumeration(), because boards needing DMI quirks for either of these typically also have broken AC and battery ACPI devices. The ACPI_QUIRK_SKIP_ACPI_AC_AND_BATTERY quirk is not set yet on boards already in this DMI table, to avoid introducing any functional changes in this refactoring patch. Besided sharing the code between the AC and battery drivers this refactoring also moves this quirk handling to under #ifdef CONFIG_X86, removing this x86 specific code from non x86 ACPI builds. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-12-30 12:31:19 -07:00
static const struct dmi_system_id acpi_quirk_skip_dmi_ids[] = {
/*
* 1. Devices with only the skip / don't-skip AC and battery quirks,
* sorted alphabetically.
*/
{
/* ECS EF20EA, AXP288 PMIC but uses separate fuel-gauge */
.matches = {
DMI_MATCH(DMI_PRODUCT_NAME, "EF20EA"),
},
.driver_data = (void *)ACPI_QUIRK_USE_ACPI_AC_AND_BATTERY
},
{
/* Lenovo Ideapad Miix 320, AXP288 PMIC, separate fuel-gauge */
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
DMI_MATCH(DMI_PRODUCT_NAME, "80XF"),
DMI_MATCH(DMI_PRODUCT_VERSION, "Lenovo MIIX 320-10ICR"),
},
.driver_data = (void *)ACPI_QUIRK_USE_ACPI_AC_AND_BATTERY
},
2021-12-30 07:17:20 -07:00
ACPI / x86: Introduce an acpi_quirk_skip_acpi_ac_and_battery() helper Some x86 ACPI boards have broken AC and battery ACPI devices in their ACPI tables. This is often tied to these devices using certain PMICs where the factory OS image seems to be using native charger and fuel-gauge drivers instead. So far both the AC and battery drivers have almost identical checks for these PMICs including both of them having a DMI based mechanism to force usage of the ACPI AC and battery drivers on some boards even though one of these PMICs is present, with the same 2 boards listed in both driver's DMI tables for this. The only difference is that the AC driver checks for 2 PMICs and the battery driver only for one. This has grown this way because the other (Whiskey Cove) PMIC is only used on a few boards (3 known boards) and although some of these do have non working ACPI battery devices, their _STA method always returns 0, but that really should not be relied on. This patch factors out the shared checks into a new acpi_quirk_skip_acpi_ac_and_battery() helper and moves the AC and battery drivers over to this new helper. Note the DMI table is shared with acpi_quirk_skip_i2c_client_enumeration() and acpi_quirk_skip_serdev_enumeration(), because boards needing DMI quirks for either of these typically also have broken AC and battery ACPI devices. The ACPI_QUIRK_SKIP_ACPI_AC_AND_BATTERY quirk is not set yet on boards already in this DMI table, to avoid introducing any functional changes in this refactoring patch. Besided sharing the code between the AC and battery drivers this refactoring also moves this quirk handling to under #ifdef CONFIG_X86, removing this x86 specific code from non x86 ACPI builds. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-12-30 12:31:19 -07:00
/*
* 2. Devices which also have the skip i2c/serdev quirks and which
* need the x86-android-tablets module to properly work.
*/
#if IS_ENABLED(CONFIG_X86_ANDROID_TABLETS)
{
/* Acer Iconia One 7 B1-750 */
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Insyde"),
DMI_MATCH(DMI_PRODUCT_NAME, "VESPA2"),
},
.driver_data = (void *)(ACPI_QUIRK_SKIP_I2C_CLIENTS |
ACPI_QUIRK_SKIP_ACPI_AC_AND_BATTERY |
ACPI_QUIRK_SKIP_GPIO_EVENT_HANDLERS),
},
2021-12-30 07:17:20 -07:00
{
.matches = {
DMI_EXACT_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "ME176C"),
},
.driver_data = (void *)(ACPI_QUIRK_SKIP_I2C_CLIENTS |
ACPI_QUIRK_UART1_TTY_UART2_SKIP |
ACPI_QUIRK_SKIP_ACPI_AC_AND_BATTERY |
ACPI_QUIRK_SKIP_GPIO_EVENT_HANDLERS),
},
{
/* Lenovo Yoga Book X90F/L */
.matches = {
DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Intel Corporation"),
DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "CHERRYVIEW D1 PLATFORM"),
DMI_EXACT_MATCH(DMI_PRODUCT_VERSION, "YETI-11"),
},
.driver_data = (void *)(ACPI_QUIRK_SKIP_I2C_CLIENTS |
ACPI_QUIRK_UART1_SKIP |
ACPI: x86: Introduce an acpi_quirk_skip_gpio_event_handlers() helper x86 ACPI boards which ship with only Android as their factory image usually have pretty broken ACPI tables, relying on everything being hardcoded in the factory kernel image and often disabling parts of the ACPI enumeration kernel code to avoid the broken tables causing issues. Part of this broken ACPI code is that sometimes these boards have _AEI ACPI GPIO event handlers which are broken. So far this has been dealt with in the platform/x86/x86-android-tablets.c module, which contains various workarounds for these devices, by it calling acpi_gpiochip_free_interrupts() on gpiochip-s with troublesome handlers to disable the handlers. But in some cases this is too late, if the handlers are of the edge type then gpiolib-acpi.c's code will already have run them at boot. This can cause issues such as GPIOs ending up as owned by "ACPI:OpRegion", making them unavailable for drivers which actually need them. Boards with these broken ACPI tables are already listed in drivers/acpi/x86/utils.c for e.g. acpi_quirk_skip_i2c_client_enumeration(). Extend the quirks mechanism for a new acpi_quirk_skip_gpio_event_handlers() helper, this re-uses the DMI-ids rather then having to duplicate the same DMI table in gpiolib-acpi.c . Also add the new ACPI_QUIRK_SKIP_GPIO_EVENT_HANDLERS quirk to existing boards with troublesome ACPI gpio event handlers, so that the current acpi_gpiochip_free_interrupts() hack can be removed from x86-android-tablets.c . Signed-off-by: Hans de Goede <hdegoede@redhat.com> Acked-by: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Rafael J. Wysocki <rjw@rjwysocki.net>
2023-03-01 03:04:34 -07:00
ACPI_QUIRK_SKIP_ACPI_AC_AND_BATTERY |
ACPI_QUIRK_SKIP_GPIO_EVENT_HANDLERS),
2021-12-30 07:17:20 -07:00
},
{
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
DMI_MATCH(DMI_PRODUCT_NAME, "TF103C"),
},
.driver_data = (void *)(ACPI_QUIRK_SKIP_I2C_CLIENTS |
ACPI: x86: Introduce an acpi_quirk_skip_gpio_event_handlers() helper x86 ACPI boards which ship with only Android as their factory image usually have pretty broken ACPI tables, relying on everything being hardcoded in the factory kernel image and often disabling parts of the ACPI enumeration kernel code to avoid the broken tables causing issues. Part of this broken ACPI code is that sometimes these boards have _AEI ACPI GPIO event handlers which are broken. So far this has been dealt with in the platform/x86/x86-android-tablets.c module, which contains various workarounds for these devices, by it calling acpi_gpiochip_free_interrupts() on gpiochip-s with troublesome handlers to disable the handlers. But in some cases this is too late, if the handlers are of the edge type then gpiolib-acpi.c's code will already have run them at boot. This can cause issues such as GPIOs ending up as owned by "ACPI:OpRegion", making them unavailable for drivers which actually need them. Boards with these broken ACPI tables are already listed in drivers/acpi/x86/utils.c for e.g. acpi_quirk_skip_i2c_client_enumeration(). Extend the quirks mechanism for a new acpi_quirk_skip_gpio_event_handlers() helper, this re-uses the DMI-ids rather then having to duplicate the same DMI table in gpiolib-acpi.c . Also add the new ACPI_QUIRK_SKIP_GPIO_EVENT_HANDLERS quirk to existing boards with troublesome ACPI gpio event handlers, so that the current acpi_gpiochip_free_interrupts() hack can be removed from x86-android-tablets.c . Signed-off-by: Hans de Goede <hdegoede@redhat.com> Acked-by: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Rafael J. Wysocki <rjw@rjwysocki.net>
2023-03-01 03:04:34 -07:00
ACPI_QUIRK_SKIP_ACPI_AC_AND_BATTERY |
ACPI_QUIRK_SKIP_GPIO_EVENT_HANDLERS),
},
{
/* Lenovo Yoga Tablet 2 1050F/L */
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Intel Corp."),
DMI_MATCH(DMI_PRODUCT_NAME, "VALLEYVIEW C0 PLATFORM"),
DMI_MATCH(DMI_BOARD_NAME, "BYT-T FFD8"),
/* Partial match on beginning of BIOS version */
DMI_MATCH(DMI_BIOS_VERSION, "BLADE_21"),
},
.driver_data = (void *)(ACPI_QUIRK_SKIP_I2C_CLIENTS |
ACPI_QUIRK_PNP_UART1_SKIP |
ACPI_QUIRK_SKIP_ACPI_AC_AND_BATTERY),
},
{
/* Lenovo Yoga Tab 3 Pro X90F */
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Intel Corporation"),
DMI_MATCH(DMI_PRODUCT_VERSION, "Blade3-10A-001"),
},
.driver_data = (void *)(ACPI_QUIRK_SKIP_I2C_CLIENTS |
ACPI_QUIRK_SKIP_ACPI_AC_AND_BATTERY),
},
{
/* Medion Lifetab S10346 */
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "AMI Corporation"),
DMI_MATCH(DMI_BOARD_NAME, "Aptio CRB"),
/* Way too generic, also match on BIOS data */
DMI_MATCH(DMI_BIOS_DATE, "10/22/2015"),
},
.driver_data = (void *)(ACPI_QUIRK_SKIP_I2C_CLIENTS |
ACPI_QUIRK_SKIP_ACPI_AC_AND_BATTERY),
},
{
/* Nextbook Ares 8 (BYT version)*/
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Insyde"),
DMI_MATCH(DMI_PRODUCT_NAME, "M890BAP"),
},
.driver_data = (void *)(ACPI_QUIRK_SKIP_I2C_CLIENTS |
ACPI: x86: Introduce an acpi_quirk_skip_gpio_event_handlers() helper x86 ACPI boards which ship with only Android as their factory image usually have pretty broken ACPI tables, relying on everything being hardcoded in the factory kernel image and often disabling parts of the ACPI enumeration kernel code to avoid the broken tables causing issues. Part of this broken ACPI code is that sometimes these boards have _AEI ACPI GPIO event handlers which are broken. So far this has been dealt with in the platform/x86/x86-android-tablets.c module, which contains various workarounds for these devices, by it calling acpi_gpiochip_free_interrupts() on gpiochip-s with troublesome handlers to disable the handlers. But in some cases this is too late, if the handlers are of the edge type then gpiolib-acpi.c's code will already have run them at boot. This can cause issues such as GPIOs ending up as owned by "ACPI:OpRegion", making them unavailable for drivers which actually need them. Boards with these broken ACPI tables are already listed in drivers/acpi/x86/utils.c for e.g. acpi_quirk_skip_i2c_client_enumeration(). Extend the quirks mechanism for a new acpi_quirk_skip_gpio_event_handlers() helper, this re-uses the DMI-ids rather then having to duplicate the same DMI table in gpiolib-acpi.c . Also add the new ACPI_QUIRK_SKIP_GPIO_EVENT_HANDLERS quirk to existing boards with troublesome ACPI gpio event handlers, so that the current acpi_gpiochip_free_interrupts() hack can be removed from x86-android-tablets.c . Signed-off-by: Hans de Goede <hdegoede@redhat.com> Acked-by: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Rafael J. Wysocki <rjw@rjwysocki.net>
2023-03-01 03:04:34 -07:00
ACPI_QUIRK_SKIP_ACPI_AC_AND_BATTERY |
ACPI_QUIRK_SKIP_GPIO_EVENT_HANDLERS),
2021-12-30 07:17:20 -07:00
},
{
/* Nextbook Ares 8A (CHT version)*/
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Insyde"),
DMI_MATCH(DMI_PRODUCT_NAME, "CherryTrail"),
DMI_MATCH(DMI_BIOS_VERSION, "M882"),
},
.driver_data = (void *)(ACPI_QUIRK_SKIP_I2C_CLIENTS |
ACPI_QUIRK_SKIP_ACPI_AC_AND_BATTERY),
},
2021-12-30 07:17:20 -07:00
{
/* Whitelabel (sold as various brands) TM800A550L */
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "AMI Corporation"),
DMI_MATCH(DMI_BOARD_NAME, "Aptio CRB"),
/* Above strings are too generic, also match on BIOS version */
DMI_MATCH(DMI_BIOS_VERSION, "ZY-8-BI-PX4S70VTR400-X423B-005-D"),
},
.driver_data = (void *)(ACPI_QUIRK_SKIP_I2C_CLIENTS |
ACPI_QUIRK_SKIP_ACPI_AC_AND_BATTERY),
2021-12-30 07:17:20 -07:00
},
ACPI / x86: Introduce an acpi_quirk_skip_acpi_ac_and_battery() helper Some x86 ACPI boards have broken AC and battery ACPI devices in their ACPI tables. This is often tied to these devices using certain PMICs where the factory OS image seems to be using native charger and fuel-gauge drivers instead. So far both the AC and battery drivers have almost identical checks for these PMICs including both of them having a DMI based mechanism to force usage of the ACPI AC and battery drivers on some boards even though one of these PMICs is present, with the same 2 boards listed in both driver's DMI tables for this. The only difference is that the AC driver checks for 2 PMICs and the battery driver only for one. This has grown this way because the other (Whiskey Cove) PMIC is only used on a few boards (3 known boards) and although some of these do have non working ACPI battery devices, their _STA method always returns 0, but that really should not be relied on. This patch factors out the shared checks into a new acpi_quirk_skip_acpi_ac_and_battery() helper and moves the AC and battery drivers over to this new helper. Note the DMI table is shared with acpi_quirk_skip_i2c_client_enumeration() and acpi_quirk_skip_serdev_enumeration(), because boards needing DMI quirks for either of these typically also have broken AC and battery ACPI devices. The ACPI_QUIRK_SKIP_ACPI_AC_AND_BATTERY quirk is not set yet on boards already in this DMI table, to avoid introducing any functional changes in this refactoring patch. Besided sharing the code between the AC and battery drivers this refactoring also moves this quirk handling to under #ifdef CONFIG_X86, removing this x86 specific code from non x86 ACPI builds. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-12-30 12:31:19 -07:00
#endif
2021-12-30 07:17:20 -07:00
{}
};
ACPI / x86: Introduce an acpi_quirk_skip_acpi_ac_and_battery() helper Some x86 ACPI boards have broken AC and battery ACPI devices in their ACPI tables. This is often tied to these devices using certain PMICs where the factory OS image seems to be using native charger and fuel-gauge drivers instead. So far both the AC and battery drivers have almost identical checks for these PMICs including both of them having a DMI based mechanism to force usage of the ACPI AC and battery drivers on some boards even though one of these PMICs is present, with the same 2 boards listed in both driver's DMI tables for this. The only difference is that the AC driver checks for 2 PMICs and the battery driver only for one. This has grown this way because the other (Whiskey Cove) PMIC is only used on a few boards (3 known boards) and although some of these do have non working ACPI battery devices, their _STA method always returns 0, but that really should not be relied on. This patch factors out the shared checks into a new acpi_quirk_skip_acpi_ac_and_battery() helper and moves the AC and battery drivers over to this new helper. Note the DMI table is shared with acpi_quirk_skip_i2c_client_enumeration() and acpi_quirk_skip_serdev_enumeration(), because boards needing DMI quirks for either of these typically also have broken AC and battery ACPI devices. The ACPI_QUIRK_SKIP_ACPI_AC_AND_BATTERY quirk is not set yet on boards already in this DMI table, to avoid introducing any functional changes in this refactoring patch. Besided sharing the code between the AC and battery drivers this refactoring also moves this quirk handling to under #ifdef CONFIG_X86, removing this x86 specific code from non x86 ACPI builds. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-12-30 12:31:19 -07:00
#if IS_ENABLED(CONFIG_X86_ANDROID_TABLETS)
2021-12-30 07:17:20 -07:00
static const struct acpi_device_id i2c_acpi_known_good_ids[] = {
{ "10EC5640", 0 }, /* RealTek ALC5640 audio codec */
{ "10EC5651", 0 }, /* RealTek ALC5651 audio codec */
2021-12-30 07:17:20 -07:00
{ "INT33F4", 0 }, /* X-Powers AXP288 PMIC */
{ "INT33FD", 0 }, /* Intel Crystal Cove PMIC */
{ "INT34D3", 0 }, /* Intel Whiskey Cove PMIC */
2021-12-30 07:17:20 -07:00
{ "NPCE69A", 0 }, /* Asus Transformer keyboard dock */
{}
};
bool acpi_quirk_skip_i2c_client_enumeration(struct acpi_device *adev)
{
const struct dmi_system_id *dmi_id;
long quirks;
ACPI / x86: Introduce an acpi_quirk_skip_acpi_ac_and_battery() helper Some x86 ACPI boards have broken AC and battery ACPI devices in their ACPI tables. This is often tied to these devices using certain PMICs where the factory OS image seems to be using native charger and fuel-gauge drivers instead. So far both the AC and battery drivers have almost identical checks for these PMICs including both of them having a DMI based mechanism to force usage of the ACPI AC and battery drivers on some boards even though one of these PMICs is present, with the same 2 boards listed in both driver's DMI tables for this. The only difference is that the AC driver checks for 2 PMICs and the battery driver only for one. This has grown this way because the other (Whiskey Cove) PMIC is only used on a few boards (3 known boards) and although some of these do have non working ACPI battery devices, their _STA method always returns 0, but that really should not be relied on. This patch factors out the shared checks into a new acpi_quirk_skip_acpi_ac_and_battery() helper and moves the AC and battery drivers over to this new helper. Note the DMI table is shared with acpi_quirk_skip_i2c_client_enumeration() and acpi_quirk_skip_serdev_enumeration(), because boards needing DMI quirks for either of these typically also have broken AC and battery ACPI devices. The ACPI_QUIRK_SKIP_ACPI_AC_AND_BATTERY quirk is not set yet on boards already in this DMI table, to avoid introducing any functional changes in this refactoring patch. Besided sharing the code between the AC and battery drivers this refactoring also moves this quirk handling to under #ifdef CONFIG_X86, removing this x86 specific code from non x86 ACPI builds. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-12-30 12:31:19 -07:00
dmi_id = dmi_first_match(acpi_quirk_skip_dmi_ids);
2021-12-30 07:17:20 -07:00
if (!dmi_id)
return false;
quirks = (unsigned long)dmi_id->driver_data;
if (!(quirks & ACPI_QUIRK_SKIP_I2C_CLIENTS))
return false;
return acpi_match_device_ids(adev, i2c_acpi_known_good_ids);
}
EXPORT_SYMBOL_GPL(acpi_quirk_skip_i2c_client_enumeration);
static int acpi_dmi_skip_serdev_enumeration(struct device *controller_parent, bool *skip)
2021-12-30 07:17:20 -07:00
{
struct acpi_device *adev = ACPI_COMPANION(controller_parent);
const struct dmi_system_id *dmi_id;
long quirks = 0;
u64 uid;
int ret;
2021-12-30 07:17:20 -07:00
ret = acpi_dev_uid_to_integer(adev, &uid);
if (ret)
return 0;
ACPI / x86: Introduce an acpi_quirk_skip_acpi_ac_and_battery() helper Some x86 ACPI boards have broken AC and battery ACPI devices in their ACPI tables. This is often tied to these devices using certain PMICs where the factory OS image seems to be using native charger and fuel-gauge drivers instead. So far both the AC and battery drivers have almost identical checks for these PMICs including both of them having a DMI based mechanism to force usage of the ACPI AC and battery drivers on some boards even though one of these PMICs is present, with the same 2 boards listed in both driver's DMI tables for this. The only difference is that the AC driver checks for 2 PMICs and the battery driver only for one. This has grown this way because the other (Whiskey Cove) PMIC is only used on a few boards (3 known boards) and although some of these do have non working ACPI battery devices, their _STA method always returns 0, but that really should not be relied on. This patch factors out the shared checks into a new acpi_quirk_skip_acpi_ac_and_battery() helper and moves the AC and battery drivers over to this new helper. Note the DMI table is shared with acpi_quirk_skip_i2c_client_enumeration() and acpi_quirk_skip_serdev_enumeration(), because boards needing DMI quirks for either of these typically also have broken AC and battery ACPI devices. The ACPI_QUIRK_SKIP_ACPI_AC_AND_BATTERY quirk is not set yet on boards already in this DMI table, to avoid introducing any functional changes in this refactoring patch. Besided sharing the code between the AC and battery drivers this refactoring also moves this quirk handling to under #ifdef CONFIG_X86, removing this x86 specific code from non x86 ACPI builds. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-12-30 12:31:19 -07:00
dmi_id = dmi_first_match(acpi_quirk_skip_dmi_ids);
2021-12-30 07:17:20 -07:00
if (dmi_id)
quirks = (unsigned long)dmi_id->driver_data;
if (!dev_is_platform(controller_parent)) {
/* PNP enumerated UARTs */
if ((quirks & ACPI_QUIRK_PNP_UART1_SKIP) && uid == 1)
*skip = true;
return 0;
}
if ((quirks & ACPI_QUIRK_UART1_SKIP) && uid == 1)
*skip = true;
2021-12-30 07:17:20 -07:00
if (quirks & ACPI_QUIRK_UART1_TTY_UART2_SKIP) {
if (uid == 1)
2021-12-30 07:17:20 -07:00
return -ENODEV; /* Create tty cdev instead of serdev */
if (uid == 2)
2021-12-30 07:17:20 -07:00
*skip = true;
}
return 0;
}
ACPI: x86: Introduce an acpi_quirk_skip_gpio_event_handlers() helper x86 ACPI boards which ship with only Android as their factory image usually have pretty broken ACPI tables, relying on everything being hardcoded in the factory kernel image and often disabling parts of the ACPI enumeration kernel code to avoid the broken tables causing issues. Part of this broken ACPI code is that sometimes these boards have _AEI ACPI GPIO event handlers which are broken. So far this has been dealt with in the platform/x86/x86-android-tablets.c module, which contains various workarounds for these devices, by it calling acpi_gpiochip_free_interrupts() on gpiochip-s with troublesome handlers to disable the handlers. But in some cases this is too late, if the handlers are of the edge type then gpiolib-acpi.c's code will already have run them at boot. This can cause issues such as GPIOs ending up as owned by "ACPI:OpRegion", making them unavailable for drivers which actually need them. Boards with these broken ACPI tables are already listed in drivers/acpi/x86/utils.c for e.g. acpi_quirk_skip_i2c_client_enumeration(). Extend the quirks mechanism for a new acpi_quirk_skip_gpio_event_handlers() helper, this re-uses the DMI-ids rather then having to duplicate the same DMI table in gpiolib-acpi.c . Also add the new ACPI_QUIRK_SKIP_GPIO_EVENT_HANDLERS quirk to existing boards with troublesome ACPI gpio event handlers, so that the current acpi_gpiochip_free_interrupts() hack can be removed from x86-android-tablets.c . Signed-off-by: Hans de Goede <hdegoede@redhat.com> Acked-by: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Rafael J. Wysocki <rjw@rjwysocki.net>
2023-03-01 03:04:34 -07:00
bool acpi_quirk_skip_gpio_event_handlers(void)
{
const struct dmi_system_id *dmi_id;
long quirks;
dmi_id = dmi_first_match(acpi_quirk_skip_dmi_ids);
if (!dmi_id)
return false;
quirks = (unsigned long)dmi_id->driver_data;
return (quirks & ACPI_QUIRK_SKIP_GPIO_EVENT_HANDLERS);
}
EXPORT_SYMBOL_GPL(acpi_quirk_skip_gpio_event_handlers);
#else
static int acpi_dmi_skip_serdev_enumeration(struct device *controller_parent, bool *skip)
{
return 0;
}
2021-12-30 07:17:20 -07:00
#endif
ACPI / x86: Introduce an acpi_quirk_skip_acpi_ac_and_battery() helper Some x86 ACPI boards have broken AC and battery ACPI devices in their ACPI tables. This is often tied to these devices using certain PMICs where the factory OS image seems to be using native charger and fuel-gauge drivers instead. So far both the AC and battery drivers have almost identical checks for these PMICs including both of them having a DMI based mechanism to force usage of the ACPI AC and battery drivers on some boards even though one of these PMICs is present, with the same 2 boards listed in both driver's DMI tables for this. The only difference is that the AC driver checks for 2 PMICs and the battery driver only for one. This has grown this way because the other (Whiskey Cove) PMIC is only used on a few boards (3 known boards) and although some of these do have non working ACPI battery devices, their _STA method always returns 0, but that really should not be relied on. This patch factors out the shared checks into a new acpi_quirk_skip_acpi_ac_and_battery() helper and moves the AC and battery drivers over to this new helper. Note the DMI table is shared with acpi_quirk_skip_i2c_client_enumeration() and acpi_quirk_skip_serdev_enumeration(), because boards needing DMI quirks for either of these typically also have broken AC and battery ACPI devices. The ACPI_QUIRK_SKIP_ACPI_AC_AND_BATTERY quirk is not set yet on boards already in this DMI table, to avoid introducing any functional changes in this refactoring patch. Besided sharing the code between the AC and battery drivers this refactoring also moves this quirk handling to under #ifdef CONFIG_X86, removing this x86 specific code from non x86 ACPI builds. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-12-30 12:31:19 -07:00
int acpi_quirk_skip_serdev_enumeration(struct device *controller_parent, bool *skip)
{
struct acpi_device *adev = ACPI_COMPANION(controller_parent);
*skip = false;
/*
* The DELL0501 ACPI HID represents an UART (CID is set to PNP0501) with
* a backlight-controller attached. There is no separate ACPI device with
* an UartSerialBusV2() resource to model the backlight-controller.
* Set skip to true so that the tty core creates a serdev ctrl device.
* The backlight driver will manually create the serdev client device.
*/
if (acpi_dev_hid_match(adev, "DELL0501")) {
*skip = true;
/*
* Create a platform dev for dell-uart-backlight to bind to.
* This is a static device, so no need to store the result.
*/
platform_device_register_simple("dell-uart-backlight", PLATFORM_DEVID_NONE,
NULL, 0);
return 0;
}
return acpi_dmi_skip_serdev_enumeration(controller_parent, skip);
}
EXPORT_SYMBOL_GPL(acpi_quirk_skip_serdev_enumeration);
ACPI / x86: Introduce an acpi_quirk_skip_acpi_ac_and_battery() helper Some x86 ACPI boards have broken AC and battery ACPI devices in their ACPI tables. This is often tied to these devices using certain PMICs where the factory OS image seems to be using native charger and fuel-gauge drivers instead. So far both the AC and battery drivers have almost identical checks for these PMICs including both of them having a DMI based mechanism to force usage of the ACPI AC and battery drivers on some boards even though one of these PMICs is present, with the same 2 boards listed in both driver's DMI tables for this. The only difference is that the AC driver checks for 2 PMICs and the battery driver only for one. This has grown this way because the other (Whiskey Cove) PMIC is only used on a few boards (3 known boards) and although some of these do have non working ACPI battery devices, their _STA method always returns 0, but that really should not be relied on. This patch factors out the shared checks into a new acpi_quirk_skip_acpi_ac_and_battery() helper and moves the AC and battery drivers over to this new helper. Note the DMI table is shared with acpi_quirk_skip_i2c_client_enumeration() and acpi_quirk_skip_serdev_enumeration(), because boards needing DMI quirks for either of these typically also have broken AC and battery ACPI devices. The ACPI_QUIRK_SKIP_ACPI_AC_AND_BATTERY quirk is not set yet on boards already in this DMI table, to avoid introducing any functional changes in this refactoring patch. Besided sharing the code between the AC and battery drivers this refactoring also moves this quirk handling to under #ifdef CONFIG_X86, removing this x86 specific code from non x86 ACPI builds. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-12-30 12:31:19 -07:00
/* Lists of PMIC ACPI HIDs with an (often better) native charger driver */
static const struct {
const char *hid;
int hrv;
} acpi_skip_ac_and_battery_pmic_ids[] = {
{ "INT33F4", -1 }, /* X-Powers AXP288 PMIC */
{ "INT34D3", 3 }, /* Intel Cherrytrail Whiskey Cove PMIC */
};
bool acpi_quirk_skip_acpi_ac_and_battery(void)
{
const struct dmi_system_id *dmi_id;
long quirks = 0;
int i;
dmi_id = dmi_first_match(acpi_quirk_skip_dmi_ids);
if (dmi_id)
quirks = (unsigned long)dmi_id->driver_data;
if (quirks & ACPI_QUIRK_SKIP_ACPI_AC_AND_BATTERY)
return true;
if (quirks & ACPI_QUIRK_USE_ACPI_AC_AND_BATTERY)
return false;
for (i = 0; i < ARRAY_SIZE(acpi_skip_ac_and_battery_pmic_ids); i++) {
if (acpi_dev_present(acpi_skip_ac_and_battery_pmic_ids[i].hid, "1",
acpi_skip_ac_and_battery_pmic_ids[i].hrv)) {
pr_info_once("found native %s PMIC, skipping ACPI AC and battery devices\n",
acpi_skip_ac_and_battery_pmic_ids[i].hid);
return true;
}
}
return false;
}
EXPORT_SYMBOL_GPL(acpi_quirk_skip_acpi_ac_and_battery);
/* This section provides a workaround for a specific x86 system
* which requires disabling of mwait to work correctly.
*/
static int __init acpi_proc_quirk_set_no_mwait(const struct dmi_system_id *id)
{
pr_notice("%s detected - disabling mwait for CPU C-states\n",
id->ident);
boot_option_idle_override = IDLE_NOMWAIT;
return 0;
}
static const struct dmi_system_id acpi_proc_quirk_mwait_dmi_table[] __initconst = {
{
.callback = acpi_proc_quirk_set_no_mwait,
.ident = "Extensa 5220",
.matches = {
DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies LTD"),
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_VERSION, "0100"),
DMI_MATCH(DMI_BOARD_NAME, "Columbia"),
},
.driver_data = NULL,
},
{}
};
void __init acpi_proc_quirk_mwait_check(void)
{
/*
* Check whether the system is DMI table. If yes, OSPM
* should not use mwait for CPU-states.
*/
dmi_check_system(acpi_proc_quirk_mwait_dmi_table);
}