1
linux/kernel/sched_idletask.c

72 lines
1.6 KiB
C
Raw Normal View History

/*
* idle-task scheduling class.
*
* (NOTE: these are not related to SCHED_IDLE tasks which are
* handled in sched_fair.c)
*/
/*
* Idle tasks are unconditionally rescheduled:
*/
static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p)
{
resched_task(rq->idle);
}
static struct task_struct *pick_next_task_idle(struct rq *rq, u64 now)
{
schedstat_inc(rq, sched_goidle);
return rq->idle;
}
/*
* It is not legal to sleep in the idle task - print a warning
* message if some code attempts to do it:
*/
static void
dequeue_task_idle(struct rq *rq, struct task_struct *p, int sleep, u64 now)
{
spin_unlock_irq(&rq->lock);
printk(KERN_ERR "bad: scheduling from the idle thread!\n");
dump_stack();
spin_lock_irq(&rq->lock);
}
static void put_prev_task_idle(struct rq *rq, struct task_struct *prev, u64 now)
{
}
sched: simplify move_tasks() The move_tasks() function is currently multiplexed with two distinct capabilities: 1. attempt to move a specified amount of weighted load from one run queue to another; and 2. attempt to move a specified number of tasks from one run queue to another. The first of these capabilities is used in two places, load_balance() and load_balance_idle(), and in both of these cases the return value of move_tasks() is used purely to decide if tasks/load were moved and no notice of the actual number of tasks moved is taken. The second capability is used in exactly one place, active_load_balance(), to attempt to move exactly one task and, as before, the return value is only used as an indicator of success or failure. This multiplexing of sched_task() was introduced, by me, as part of the smpnice patches and was motivated by the fact that the alternative, one function to move specified load and one to move a single task, would have led to two functions of roughly the same complexity as the old move_tasks() (or the new balance_tasks()). However, the new modular design of the new CFS scheduler allows a simpler solution to be adopted and this patch addresses that solution by: 1. adding a new function, move_one_task(), to be used by active_load_balance(); and 2. making move_tasks() a single purpose function that tries to move a specified weighted load and returns 1 for success and 0 for failure. One of the consequences of these changes is that neither move_one_task() or the new move_tasks() care how many tasks sched_class.load_balance() moves and this enables its interface to be simplified by returning the amount of load moved as its result and removing the load_moved pointer from the argument list. This helps simplify the new move_tasks() and slightly reduces the amount of work done in each of sched_class.load_balance()'s implementations. Further simplification, e.g. changes to balance_tasks(), are possible but (slightly) complicated by the special needs of load_balance_fair() so I've left them to a later patch (if this one gets accepted). NB Since move_tasks() gets called with two run queue locks held even small reductions in overhead are worthwhile. [ mingo@elte.hu ] this change also reduces code size nicely: text data bss dec hex filename 39216 3618 24 42858 a76a sched.o.before 39173 3618 24 42815 a73f sched.o.after Signed-off-by: Peter Williams <pwil3058@bigpond.net.au> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 02:16:46 -07:00
static unsigned long
load_balance_idle(struct rq *this_rq, int this_cpu, struct rq *busiest,
unsigned long max_nr_move, unsigned long max_load_move,
struct sched_domain *sd, enum cpu_idle_type idle,
sched: simplify move_tasks() The move_tasks() function is currently multiplexed with two distinct capabilities: 1. attempt to move a specified amount of weighted load from one run queue to another; and 2. attempt to move a specified number of tasks from one run queue to another. The first of these capabilities is used in two places, load_balance() and load_balance_idle(), and in both of these cases the return value of move_tasks() is used purely to decide if tasks/load were moved and no notice of the actual number of tasks moved is taken. The second capability is used in exactly one place, active_load_balance(), to attempt to move exactly one task and, as before, the return value is only used as an indicator of success or failure. This multiplexing of sched_task() was introduced, by me, as part of the smpnice patches and was motivated by the fact that the alternative, one function to move specified load and one to move a single task, would have led to two functions of roughly the same complexity as the old move_tasks() (or the new balance_tasks()). However, the new modular design of the new CFS scheduler allows a simpler solution to be adopted and this patch addresses that solution by: 1. adding a new function, move_one_task(), to be used by active_load_balance(); and 2. making move_tasks() a single purpose function that tries to move a specified weighted load and returns 1 for success and 0 for failure. One of the consequences of these changes is that neither move_one_task() or the new move_tasks() care how many tasks sched_class.load_balance() moves and this enables its interface to be simplified by returning the amount of load moved as its result and removing the load_moved pointer from the argument list. This helps simplify the new move_tasks() and slightly reduces the amount of work done in each of sched_class.load_balance()'s implementations. Further simplification, e.g. changes to balance_tasks(), are possible but (slightly) complicated by the special needs of load_balance_fair() so I've left them to a later patch (if this one gets accepted). NB Since move_tasks() gets called with two run queue locks held even small reductions in overhead are worthwhile. [ mingo@elte.hu ] this change also reduces code size nicely: text data bss dec hex filename 39216 3618 24 42858 a76a sched.o.before 39173 3618 24 42815 a73f sched.o.after Signed-off-by: Peter Williams <pwil3058@bigpond.net.au> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 02:16:46 -07:00
int *all_pinned)
{
return 0;
}
static void task_tick_idle(struct rq *rq, struct task_struct *curr)
{
}
/*
* Simple, special scheduling class for the per-CPU idle tasks:
*/
static struct sched_class idle_sched_class __read_mostly = {
/* no enqueue/yield_task for idle tasks */
/* dequeue is not valid, we print a debug message there: */
.dequeue_task = dequeue_task_idle,
.check_preempt_curr = check_preempt_curr_idle,
.pick_next_task = pick_next_task_idle,
.put_prev_task = put_prev_task_idle,
.load_balance = load_balance_idle,
.task_tick = task_tick_idle,
/* no .task_new for idle tasks */
};