1
linux/security/selinux/include/xfrm.h

91 lines
2.4 KiB
C
Raw Normal View History

[LSM-IPSec]: Per-packet access control. This patch series implements per packet access control via the extension of the Linux Security Modules (LSM) interface by hooks in the XFRM and pfkey subsystems that leverage IPSec security associations to label packets. Extensions to the SELinux LSM are included that leverage the patch for this purpose. This patch implements the changes necessary to the SELinux LSM to create, deallocate, and use security contexts for policies (xfrm_policy) and security associations (xfrm_state) that enable control of a socket's ability to send and receive packets. Patch purpose: The patch is designed to enable the SELinux LSM to implement access control on individual packets based on the strongly authenticated IPSec security association. Such access controls augment the existing ones in SELinux based on network interface and IP address. The former are very coarse-grained, and the latter can be spoofed. By using IPSec, the SELinux can control access to remote hosts based on cryptographic keys generated using the IPSec mechanism. This enables access control on a per-machine basis or per-application if the remote machine is running the same mechanism and trusted to enforce the access control policy. Patch design approach: The patch's main function is to authorize a socket's access to a IPSec policy based on their security contexts. Since the communication is implemented by a security association, the patch ensures that the security association's negotiated and used have the same security context. The patch enables allocation and deallocation of such security contexts for policies and security associations. It also enables copying of the security context when policies are cloned. Lastly, the patch ensures that packets that are sent without using a IPSec security assocation with a security context are allowed to be sent in that manner. A presentation available at www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf from the SELinux symposium describes the overall approach. Patch implementation details: The function which authorizes a socket to perform a requested operation (send/receive) on a IPSec policy (xfrm_policy) is selinux_xfrm_policy_lookup. The Netfilter and rcv_skb hooks ensure that if a IPSec SA with a securit y association has not been used, then the socket is allowed to send or receive the packet, respectively. The patch implements SELinux function for allocating security contexts when policies (xfrm_policy) are created via the pfkey or xfrm_user interfaces via selinux_xfrm_policy_alloc. When a security association is built, SELinux allocates the security context designated by the XFRM subsystem which is based on that of the authorized policy via selinux_xfrm_state_alloc. When a xfrm_policy is cloned, the security context of that policy, if any, is copied to the clone via selinux_xfrm_policy_clone. When a xfrm_policy or xfrm_state is freed, its security context, if any is also freed at selinux_xfrm_policy_free or selinux_xfrm_state_free. Testing: The SELinux authorization function is tested using ipsec-tools. We created policies and security associations with particular security contexts and added SELinux access control policy entries to verify the authorization decision. We also made sure that packets for which no security context was supplied (which either did or did not use security associations) were authorized using an unlabelled context. Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 00:12:40 -07:00
/*
* SELinux support for the XFRM LSM hooks
*
* Author : Trent Jaeger, <jaegert@us.ibm.com>
* Updated : Venkat Yekkirala, <vyekkirala@TrustedCS.com>
[LSM-IPSec]: Per-packet access control. This patch series implements per packet access control via the extension of the Linux Security Modules (LSM) interface by hooks in the XFRM and pfkey subsystems that leverage IPSec security associations to label packets. Extensions to the SELinux LSM are included that leverage the patch for this purpose. This patch implements the changes necessary to the SELinux LSM to create, deallocate, and use security contexts for policies (xfrm_policy) and security associations (xfrm_state) that enable control of a socket's ability to send and receive packets. Patch purpose: The patch is designed to enable the SELinux LSM to implement access control on individual packets based on the strongly authenticated IPSec security association. Such access controls augment the existing ones in SELinux based on network interface and IP address. The former are very coarse-grained, and the latter can be spoofed. By using IPSec, the SELinux can control access to remote hosts based on cryptographic keys generated using the IPSec mechanism. This enables access control on a per-machine basis or per-application if the remote machine is running the same mechanism and trusted to enforce the access control policy. Patch design approach: The patch's main function is to authorize a socket's access to a IPSec policy based on their security contexts. Since the communication is implemented by a security association, the patch ensures that the security association's negotiated and used have the same security context. The patch enables allocation and deallocation of such security contexts for policies and security associations. It also enables copying of the security context when policies are cloned. Lastly, the patch ensures that packets that are sent without using a IPSec security assocation with a security context are allowed to be sent in that manner. A presentation available at www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf from the SELinux symposium describes the overall approach. Patch implementation details: The function which authorizes a socket to perform a requested operation (send/receive) on a IPSec policy (xfrm_policy) is selinux_xfrm_policy_lookup. The Netfilter and rcv_skb hooks ensure that if a IPSec SA with a securit y association has not been used, then the socket is allowed to send or receive the packet, respectively. The patch implements SELinux function for allocating security contexts when policies (xfrm_policy) are created via the pfkey or xfrm_user interfaces via selinux_xfrm_policy_alloc. When a security association is built, SELinux allocates the security context designated by the XFRM subsystem which is based on that of the authorized policy via selinux_xfrm_state_alloc. When a xfrm_policy is cloned, the security context of that policy, if any, is copied to the clone via selinux_xfrm_policy_clone. When a xfrm_policy or xfrm_state is freed, its security context, if any is also freed at selinux_xfrm_policy_free or selinux_xfrm_state_free. Testing: The SELinux authorization function is tested using ipsec-tools. We created policies and security associations with particular security contexts and added SELinux access control policy entries to verify the authorization decision. We also made sure that packets for which no security context was supplied (which either did or did not use security associations) were authorized using an unlabelled context. Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 00:12:40 -07:00
*/
#ifndef _SELINUX_XFRM_H_
#define _SELINUX_XFRM_H_
#include <net/flow.h>
int selinux_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
struct xfrm_user_sec_ctx *sec_ctx);
int selinux_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
struct xfrm_sec_ctx **new_ctxp);
void selinux_xfrm_policy_free(struct xfrm_sec_ctx *ctx);
int selinux_xfrm_policy_delete(struct xfrm_sec_ctx *ctx);
int selinux_xfrm_state_alloc(struct xfrm_state *x,
SELinux: Various xfrm labeling fixes Since the upstreaming of the mlsxfrm modification a few months back, testing has resulted in the identification of the following issues/bugs that are resolved in this patch set. 1. Fix the security context used in the IKE negotiation to be the context of the socket as opposed to the context of the SPD rule. 2. Fix SO_PEERSEC for tcp sockets to return the security context of the peer as opposed to the source. 3. Fix the selection of an SA for an outgoing packet to be at the same context as the originating socket/flow. The following would be the result of applying this patchset: - SO_PEERSEC will now correctly return the peer's context. - IKE deamons will receive the context of the source socket/flow as opposed to the SPD rule's context so that the negotiated SA will be at the same context as the source socket/flow. - The SELinux policy will require one or more of the following for a socket to be able to communicate with/without SAs: 1. To enable a socket to communicate without using labeled-IPSec SAs: allow socket_t unlabeled_t:association { sendto recvfrom } 2. To enable a socket to communicate with labeled-IPSec SAs: allow socket_t self:association { sendto }; allow socket_t peer_sa_t:association { recvfrom }; This Patch: Pass correct security context to IKE for use in negotiation Fix the security context passed to IKE for use in negotiation to be the context of the socket as opposed to the context of the SPD rule so that the SA carries the label of the originating socket/flow. Signed-off-by: Venkat Yekkirala <vyekkirala@TrustedCS.com> Signed-off-by: James Morris <jmorris@namei.org>
2006-11-08 16:03:44 -07:00
struct xfrm_user_sec_ctx *sec_ctx, u32 secid);
[LSM-IPSec]: Per-packet access control. This patch series implements per packet access control via the extension of the Linux Security Modules (LSM) interface by hooks in the XFRM and pfkey subsystems that leverage IPSec security associations to label packets. Extensions to the SELinux LSM are included that leverage the patch for this purpose. This patch implements the changes necessary to the SELinux LSM to create, deallocate, and use security contexts for policies (xfrm_policy) and security associations (xfrm_state) that enable control of a socket's ability to send and receive packets. Patch purpose: The patch is designed to enable the SELinux LSM to implement access control on individual packets based on the strongly authenticated IPSec security association. Such access controls augment the existing ones in SELinux based on network interface and IP address. The former are very coarse-grained, and the latter can be spoofed. By using IPSec, the SELinux can control access to remote hosts based on cryptographic keys generated using the IPSec mechanism. This enables access control on a per-machine basis or per-application if the remote machine is running the same mechanism and trusted to enforce the access control policy. Patch design approach: The patch's main function is to authorize a socket's access to a IPSec policy based on their security contexts. Since the communication is implemented by a security association, the patch ensures that the security association's negotiated and used have the same security context. The patch enables allocation and deallocation of such security contexts for policies and security associations. It also enables copying of the security context when policies are cloned. Lastly, the patch ensures that packets that are sent without using a IPSec security assocation with a security context are allowed to be sent in that manner. A presentation available at www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf from the SELinux symposium describes the overall approach. Patch implementation details: The function which authorizes a socket to perform a requested operation (send/receive) on a IPSec policy (xfrm_policy) is selinux_xfrm_policy_lookup. The Netfilter and rcv_skb hooks ensure that if a IPSec SA with a securit y association has not been used, then the socket is allowed to send or receive the packet, respectively. The patch implements SELinux function for allocating security contexts when policies (xfrm_policy) are created via the pfkey or xfrm_user interfaces via selinux_xfrm_policy_alloc. When a security association is built, SELinux allocates the security context designated by the XFRM subsystem which is based on that of the authorized policy via selinux_xfrm_state_alloc. When a xfrm_policy is cloned, the security context of that policy, if any, is copied to the clone via selinux_xfrm_policy_clone. When a xfrm_policy or xfrm_state is freed, its security context, if any is also freed at selinux_xfrm_policy_free or selinux_xfrm_state_free. Testing: The SELinux authorization function is tested using ipsec-tools. We created policies and security associations with particular security contexts and added SELinux access control policy entries to verify the authorization decision. We also made sure that packets for which no security context was supplied (which either did or did not use security associations) were authorized using an unlabelled context. Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 00:12:40 -07:00
void selinux_xfrm_state_free(struct xfrm_state *x);
[LSM-IPsec]: SELinux Authorize This patch contains a fix for the previous patch that adds security contexts to IPsec policies and security associations. In the previous patch, no authorization (besides the check for write permissions to SAD and SPD) is required to delete IPsec policies and security assocations with security contexts. Thus a user authorized to change SAD and SPD can bypass the IPsec policy authorization by simply deleteing policies with security contexts. To fix this security hole, an additional authorization check is added for removing security policies and security associations with security contexts. Note that if no security context is supplied on add or present on policy to be deleted, the SELinux module allows the change unconditionally. The hook is called on deletion when no context is present, which we may want to change. At present, I left it up to the module. LSM changes: The patch adds two new LSM hooks: xfrm_policy_delete and xfrm_state_delete. The new hooks are necessary to authorize deletion of IPsec policies that have security contexts. The existing hooks xfrm_policy_free and xfrm_state_free lack the context to do the authorization, so I decided to split authorization of deletion and memory management of security data, as is typical in the LSM interface. Use: The new delete hooks are checked when xfrm_policy or xfrm_state are deleted by either the xfrm_user interface (xfrm_get_policy, xfrm_del_sa) or the pfkey interface (pfkey_spddelete, pfkey_delete). SELinux changes: The new policy_delete and state_delete functions are added. Signed-off-by: Catherine Zhang <cxzhang@watson.ibm.com> Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-06-08 23:39:49 -07:00
int selinux_xfrm_state_delete(struct xfrm_state *x);
int selinux_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir);
int selinux_xfrm_state_pol_flow_match(struct xfrm_state *x,
struct xfrm_policy *xp, const struct flowi *fl);
[LSM-IPSec]: Per-packet access control. This patch series implements per packet access control via the extension of the Linux Security Modules (LSM) interface by hooks in the XFRM and pfkey subsystems that leverage IPSec security associations to label packets. Extensions to the SELinux LSM are included that leverage the patch for this purpose. This patch implements the changes necessary to the SELinux LSM to create, deallocate, and use security contexts for policies (xfrm_policy) and security associations (xfrm_state) that enable control of a socket's ability to send and receive packets. Patch purpose: The patch is designed to enable the SELinux LSM to implement access control on individual packets based on the strongly authenticated IPSec security association. Such access controls augment the existing ones in SELinux based on network interface and IP address. The former are very coarse-grained, and the latter can be spoofed. By using IPSec, the SELinux can control access to remote hosts based on cryptographic keys generated using the IPSec mechanism. This enables access control on a per-machine basis or per-application if the remote machine is running the same mechanism and trusted to enforce the access control policy. Patch design approach: The patch's main function is to authorize a socket's access to a IPSec policy based on their security contexts. Since the communication is implemented by a security association, the patch ensures that the security association's negotiated and used have the same security context. The patch enables allocation and deallocation of such security contexts for policies and security associations. It also enables copying of the security context when policies are cloned. Lastly, the patch ensures that packets that are sent without using a IPSec security assocation with a security context are allowed to be sent in that manner. A presentation available at www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf from the SELinux symposium describes the overall approach. Patch implementation details: The function which authorizes a socket to perform a requested operation (send/receive) on a IPSec policy (xfrm_policy) is selinux_xfrm_policy_lookup. The Netfilter and rcv_skb hooks ensure that if a IPSec SA with a securit y association has not been used, then the socket is allowed to send or receive the packet, respectively. The patch implements SELinux function for allocating security contexts when policies (xfrm_policy) are created via the pfkey or xfrm_user interfaces via selinux_xfrm_policy_alloc. When a security association is built, SELinux allocates the security context designated by the XFRM subsystem which is based on that of the authorized policy via selinux_xfrm_state_alloc. When a xfrm_policy is cloned, the security context of that policy, if any, is copied to the clone via selinux_xfrm_policy_clone. When a xfrm_policy or xfrm_state is freed, its security context, if any is also freed at selinux_xfrm_policy_free or selinux_xfrm_state_free. Testing: The SELinux authorization function is tested using ipsec-tools. We created policies and security associations with particular security contexts and added SELinux access control policy entries to verify the authorization decision. We also made sure that packets for which no security context was supplied (which either did or did not use security associations) were authorized using an unlabelled context. Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 00:12:40 -07:00
/*
* Extract the security blob from the sock (it's actually on the socket)
*/
static inline struct inode_security_struct *get_sock_isec(struct sock *sk)
{
if (!sk->sk_socket)
return NULL;
return SOCK_INODE(sk->sk_socket)->i_security;
}
#ifdef CONFIG_SECURITY_NETWORK_XFRM
extern atomic_t selinux_xfrm_refcount;
static inline int selinux_xfrm_enabled(void)
{
return (atomic_read(&selinux_xfrm_refcount) > 0);
}
int selinux_xfrm_sock_rcv_skb(u32 sid, struct sk_buff *skb,
struct common_audit_data *ad);
int selinux_xfrm_postroute_last(u32 isec_sid, struct sk_buff *skb,
struct common_audit_data *ad, u8 proto);
int selinux_xfrm_decode_session(struct sk_buff *skb, u32 *sid, int ckall);
static inline void selinux_xfrm_notify_policyload(void)
{
atomic_inc(&flow_cache_genid);
}
[LSM-IPSec]: Per-packet access control. This patch series implements per packet access control via the extension of the Linux Security Modules (LSM) interface by hooks in the XFRM and pfkey subsystems that leverage IPSec security associations to label packets. Extensions to the SELinux LSM are included that leverage the patch for this purpose. This patch implements the changes necessary to the SELinux LSM to create, deallocate, and use security contexts for policies (xfrm_policy) and security associations (xfrm_state) that enable control of a socket's ability to send and receive packets. Patch purpose: The patch is designed to enable the SELinux LSM to implement access control on individual packets based on the strongly authenticated IPSec security association. Such access controls augment the existing ones in SELinux based on network interface and IP address. The former are very coarse-grained, and the latter can be spoofed. By using IPSec, the SELinux can control access to remote hosts based on cryptographic keys generated using the IPSec mechanism. This enables access control on a per-machine basis or per-application if the remote machine is running the same mechanism and trusted to enforce the access control policy. Patch design approach: The patch's main function is to authorize a socket's access to a IPSec policy based on their security contexts. Since the communication is implemented by a security association, the patch ensures that the security association's negotiated and used have the same security context. The patch enables allocation and deallocation of such security contexts for policies and security associations. It also enables copying of the security context when policies are cloned. Lastly, the patch ensures that packets that are sent without using a IPSec security assocation with a security context are allowed to be sent in that manner. A presentation available at www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf from the SELinux symposium describes the overall approach. Patch implementation details: The function which authorizes a socket to perform a requested operation (send/receive) on a IPSec policy (xfrm_policy) is selinux_xfrm_policy_lookup. The Netfilter and rcv_skb hooks ensure that if a IPSec SA with a securit y association has not been used, then the socket is allowed to send or receive the packet, respectively. The patch implements SELinux function for allocating security contexts when policies (xfrm_policy) are created via the pfkey or xfrm_user interfaces via selinux_xfrm_policy_alloc. When a security association is built, SELinux allocates the security context designated by the XFRM subsystem which is based on that of the authorized policy via selinux_xfrm_state_alloc. When a xfrm_policy is cloned, the security context of that policy, if any, is copied to the clone via selinux_xfrm_policy_clone. When a xfrm_policy or xfrm_state is freed, its security context, if any is also freed at selinux_xfrm_policy_free or selinux_xfrm_state_free. Testing: The SELinux authorization function is tested using ipsec-tools. We created policies and security associations with particular security contexts and added SELinux access control policy entries to verify the authorization decision. We also made sure that packets for which no security context was supplied (which either did or did not use security associations) were authorized using an unlabelled context. Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 00:12:40 -07:00
#else
static inline int selinux_xfrm_enabled(void)
{
return 0;
}
static inline int selinux_xfrm_sock_rcv_skb(u32 isec_sid, struct sk_buff *skb,
struct common_audit_data *ad)
[LSM-IPSec]: Per-packet access control. This patch series implements per packet access control via the extension of the Linux Security Modules (LSM) interface by hooks in the XFRM and pfkey subsystems that leverage IPSec security associations to label packets. Extensions to the SELinux LSM are included that leverage the patch for this purpose. This patch implements the changes necessary to the SELinux LSM to create, deallocate, and use security contexts for policies (xfrm_policy) and security associations (xfrm_state) that enable control of a socket's ability to send and receive packets. Patch purpose: The patch is designed to enable the SELinux LSM to implement access control on individual packets based on the strongly authenticated IPSec security association. Such access controls augment the existing ones in SELinux based on network interface and IP address. The former are very coarse-grained, and the latter can be spoofed. By using IPSec, the SELinux can control access to remote hosts based on cryptographic keys generated using the IPSec mechanism. This enables access control on a per-machine basis or per-application if the remote machine is running the same mechanism and trusted to enforce the access control policy. Patch design approach: The patch's main function is to authorize a socket's access to a IPSec policy based on their security contexts. Since the communication is implemented by a security association, the patch ensures that the security association's negotiated and used have the same security context. The patch enables allocation and deallocation of such security contexts for policies and security associations. It also enables copying of the security context when policies are cloned. Lastly, the patch ensures that packets that are sent without using a IPSec security assocation with a security context are allowed to be sent in that manner. A presentation available at www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf from the SELinux symposium describes the overall approach. Patch implementation details: The function which authorizes a socket to perform a requested operation (send/receive) on a IPSec policy (xfrm_policy) is selinux_xfrm_policy_lookup. The Netfilter and rcv_skb hooks ensure that if a IPSec SA with a securit y association has not been used, then the socket is allowed to send or receive the packet, respectively. The patch implements SELinux function for allocating security contexts when policies (xfrm_policy) are created via the pfkey or xfrm_user interfaces via selinux_xfrm_policy_alloc. When a security association is built, SELinux allocates the security context designated by the XFRM subsystem which is based on that of the authorized policy via selinux_xfrm_state_alloc. When a xfrm_policy is cloned, the security context of that policy, if any, is copied to the clone via selinux_xfrm_policy_clone. When a xfrm_policy or xfrm_state is freed, its security context, if any is also freed at selinux_xfrm_policy_free or selinux_xfrm_state_free. Testing: The SELinux authorization function is tested using ipsec-tools. We created policies and security associations with particular security contexts and added SELinux access control policy entries to verify the authorization decision. We also made sure that packets for which no security context was supplied (which either did or did not use security associations) were authorized using an unlabelled context. Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 00:12:40 -07:00
{
return 0;
}
static inline int selinux_xfrm_postroute_last(u32 isec_sid, struct sk_buff *skb,
struct common_audit_data *ad, u8 proto)
[LSM-IPSec]: Per-packet access control. This patch series implements per packet access control via the extension of the Linux Security Modules (LSM) interface by hooks in the XFRM and pfkey subsystems that leverage IPSec security associations to label packets. Extensions to the SELinux LSM are included that leverage the patch for this purpose. This patch implements the changes necessary to the SELinux LSM to create, deallocate, and use security contexts for policies (xfrm_policy) and security associations (xfrm_state) that enable control of a socket's ability to send and receive packets. Patch purpose: The patch is designed to enable the SELinux LSM to implement access control on individual packets based on the strongly authenticated IPSec security association. Such access controls augment the existing ones in SELinux based on network interface and IP address. The former are very coarse-grained, and the latter can be spoofed. By using IPSec, the SELinux can control access to remote hosts based on cryptographic keys generated using the IPSec mechanism. This enables access control on a per-machine basis or per-application if the remote machine is running the same mechanism and trusted to enforce the access control policy. Patch design approach: The patch's main function is to authorize a socket's access to a IPSec policy based on their security contexts. Since the communication is implemented by a security association, the patch ensures that the security association's negotiated and used have the same security context. The patch enables allocation and deallocation of such security contexts for policies and security associations. It also enables copying of the security context when policies are cloned. Lastly, the patch ensures that packets that are sent without using a IPSec security assocation with a security context are allowed to be sent in that manner. A presentation available at www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf from the SELinux symposium describes the overall approach. Patch implementation details: The function which authorizes a socket to perform a requested operation (send/receive) on a IPSec policy (xfrm_policy) is selinux_xfrm_policy_lookup. The Netfilter and rcv_skb hooks ensure that if a IPSec SA with a securit y association has not been used, then the socket is allowed to send or receive the packet, respectively. The patch implements SELinux function for allocating security contexts when policies (xfrm_policy) are created via the pfkey or xfrm_user interfaces via selinux_xfrm_policy_alloc. When a security association is built, SELinux allocates the security context designated by the XFRM subsystem which is based on that of the authorized policy via selinux_xfrm_state_alloc. When a xfrm_policy is cloned, the security context of that policy, if any, is copied to the clone via selinux_xfrm_policy_clone. When a xfrm_policy or xfrm_state is freed, its security context, if any is also freed at selinux_xfrm_policy_free or selinux_xfrm_state_free. Testing: The SELinux authorization function is tested using ipsec-tools. We created policies and security associations with particular security contexts and added SELinux access control policy entries to verify the authorization decision. We also made sure that packets for which no security context was supplied (which either did or did not use security associations) were authorized using an unlabelled context. Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 00:12:40 -07:00
{
return 0;
[LSM-IPSec]: Per-packet access control. This patch series implements per packet access control via the extension of the Linux Security Modules (LSM) interface by hooks in the XFRM and pfkey subsystems that leverage IPSec security associations to label packets. Extensions to the SELinux LSM are included that leverage the patch for this purpose. This patch implements the changes necessary to the SELinux LSM to create, deallocate, and use security contexts for policies (xfrm_policy) and security associations (xfrm_state) that enable control of a socket's ability to send and receive packets. Patch purpose: The patch is designed to enable the SELinux LSM to implement access control on individual packets based on the strongly authenticated IPSec security association. Such access controls augment the existing ones in SELinux based on network interface and IP address. The former are very coarse-grained, and the latter can be spoofed. By using IPSec, the SELinux can control access to remote hosts based on cryptographic keys generated using the IPSec mechanism. This enables access control on a per-machine basis or per-application if the remote machine is running the same mechanism and trusted to enforce the access control policy. Patch design approach: The patch's main function is to authorize a socket's access to a IPSec policy based on their security contexts. Since the communication is implemented by a security association, the patch ensures that the security association's negotiated and used have the same security context. The patch enables allocation and deallocation of such security contexts for policies and security associations. It also enables copying of the security context when policies are cloned. Lastly, the patch ensures that packets that are sent without using a IPSec security assocation with a security context are allowed to be sent in that manner. A presentation available at www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf from the SELinux symposium describes the overall approach. Patch implementation details: The function which authorizes a socket to perform a requested operation (send/receive) on a IPSec policy (xfrm_policy) is selinux_xfrm_policy_lookup. The Netfilter and rcv_skb hooks ensure that if a IPSec SA with a securit y association has not been used, then the socket is allowed to send or receive the packet, respectively. The patch implements SELinux function for allocating security contexts when policies (xfrm_policy) are created via the pfkey or xfrm_user interfaces via selinux_xfrm_policy_alloc. When a security association is built, SELinux allocates the security context designated by the XFRM subsystem which is based on that of the authorized policy via selinux_xfrm_state_alloc. When a xfrm_policy is cloned, the security context of that policy, if any, is copied to the clone via selinux_xfrm_policy_clone. When a xfrm_policy or xfrm_state is freed, its security context, if any is also freed at selinux_xfrm_policy_free or selinux_xfrm_state_free. Testing: The SELinux authorization function is tested using ipsec-tools. We created policies and security associations with particular security contexts and added SELinux access control policy entries to verify the authorization decision. We also made sure that packets for which no security context was supplied (which either did or did not use security associations) were authorized using an unlabelled context. Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 00:12:40 -07:00
}
static inline int selinux_xfrm_decode_session(struct sk_buff *skb, u32 *sid, int ckall)
{
*sid = SECSID_NULL;
return 0;
}
static inline void selinux_xfrm_notify_policyload(void)
{
}
[LSM-IPSec]: Per-packet access control. This patch series implements per packet access control via the extension of the Linux Security Modules (LSM) interface by hooks in the XFRM and pfkey subsystems that leverage IPSec security associations to label packets. Extensions to the SELinux LSM are included that leverage the patch for this purpose. This patch implements the changes necessary to the SELinux LSM to create, deallocate, and use security contexts for policies (xfrm_policy) and security associations (xfrm_state) that enable control of a socket's ability to send and receive packets. Patch purpose: The patch is designed to enable the SELinux LSM to implement access control on individual packets based on the strongly authenticated IPSec security association. Such access controls augment the existing ones in SELinux based on network interface and IP address. The former are very coarse-grained, and the latter can be spoofed. By using IPSec, the SELinux can control access to remote hosts based on cryptographic keys generated using the IPSec mechanism. This enables access control on a per-machine basis or per-application if the remote machine is running the same mechanism and trusted to enforce the access control policy. Patch design approach: The patch's main function is to authorize a socket's access to a IPSec policy based on their security contexts. Since the communication is implemented by a security association, the patch ensures that the security association's negotiated and used have the same security context. The patch enables allocation and deallocation of such security contexts for policies and security associations. It also enables copying of the security context when policies are cloned. Lastly, the patch ensures that packets that are sent without using a IPSec security assocation with a security context are allowed to be sent in that manner. A presentation available at www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf from the SELinux symposium describes the overall approach. Patch implementation details: The function which authorizes a socket to perform a requested operation (send/receive) on a IPSec policy (xfrm_policy) is selinux_xfrm_policy_lookup. The Netfilter and rcv_skb hooks ensure that if a IPSec SA with a securit y association has not been used, then the socket is allowed to send or receive the packet, respectively. The patch implements SELinux function for allocating security contexts when policies (xfrm_policy) are created via the pfkey or xfrm_user interfaces via selinux_xfrm_policy_alloc. When a security association is built, SELinux allocates the security context designated by the XFRM subsystem which is based on that of the authorized policy via selinux_xfrm_state_alloc. When a xfrm_policy is cloned, the security context of that policy, if any, is copied to the clone via selinux_xfrm_policy_clone. When a xfrm_policy or xfrm_state is freed, its security context, if any is also freed at selinux_xfrm_policy_free or selinux_xfrm_state_free. Testing: The SELinux authorization function is tested using ipsec-tools. We created policies and security associations with particular security contexts and added SELinux access control policy entries to verify the authorization decision. We also made sure that packets for which no security context was supplied (which either did or did not use security associations) were authorized using an unlabelled context. Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 00:12:40 -07:00
#endif
static inline void selinux_skb_xfrm_sid(struct sk_buff *skb, u32 *sid)
{
int err = selinux_xfrm_decode_session(skb, sid, 0);
BUG_ON(err);
}
[LSM-IPSec]: Per-packet access control. This patch series implements per packet access control via the extension of the Linux Security Modules (LSM) interface by hooks in the XFRM and pfkey subsystems that leverage IPSec security associations to label packets. Extensions to the SELinux LSM are included that leverage the patch for this purpose. This patch implements the changes necessary to the SELinux LSM to create, deallocate, and use security contexts for policies (xfrm_policy) and security associations (xfrm_state) that enable control of a socket's ability to send and receive packets. Patch purpose: The patch is designed to enable the SELinux LSM to implement access control on individual packets based on the strongly authenticated IPSec security association. Such access controls augment the existing ones in SELinux based on network interface and IP address. The former are very coarse-grained, and the latter can be spoofed. By using IPSec, the SELinux can control access to remote hosts based on cryptographic keys generated using the IPSec mechanism. This enables access control on a per-machine basis or per-application if the remote machine is running the same mechanism and trusted to enforce the access control policy. Patch design approach: The patch's main function is to authorize a socket's access to a IPSec policy based on their security contexts. Since the communication is implemented by a security association, the patch ensures that the security association's negotiated and used have the same security context. The patch enables allocation and deallocation of such security contexts for policies and security associations. It also enables copying of the security context when policies are cloned. Lastly, the patch ensures that packets that are sent without using a IPSec security assocation with a security context are allowed to be sent in that manner. A presentation available at www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf from the SELinux symposium describes the overall approach. Patch implementation details: The function which authorizes a socket to perform a requested operation (send/receive) on a IPSec policy (xfrm_policy) is selinux_xfrm_policy_lookup. The Netfilter and rcv_skb hooks ensure that if a IPSec SA with a securit y association has not been used, then the socket is allowed to send or receive the packet, respectively. The patch implements SELinux function for allocating security contexts when policies (xfrm_policy) are created via the pfkey or xfrm_user interfaces via selinux_xfrm_policy_alloc. When a security association is built, SELinux allocates the security context designated by the XFRM subsystem which is based on that of the authorized policy via selinux_xfrm_state_alloc. When a xfrm_policy is cloned, the security context of that policy, if any, is copied to the clone via selinux_xfrm_policy_clone. When a xfrm_policy or xfrm_state is freed, its security context, if any is also freed at selinux_xfrm_policy_free or selinux_xfrm_state_free. Testing: The SELinux authorization function is tested using ipsec-tools. We created policies and security associations with particular security contexts and added SELinux access control policy entries to verify the authorization decision. We also made sure that packets for which no security context was supplied (which either did or did not use security associations) were authorized using an unlabelled context. Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 00:12:40 -07:00
#endif /* _SELINUX_XFRM_H_ */