2005-04-16 15:20:36 -07:00
|
|
|
/* pgalloc.c: page directory & page table allocation
|
|
|
|
*
|
|
|
|
* Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
|
|
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
* as published by the Free Software Foundation; either version
|
|
|
|
* 2 of the License, or (at your option) any later version.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/highmem.h>
|
2007-05-09 02:32:48 -07:00
|
|
|
#include <linux/quicklist.h>
|
2005-04-16 15:20:36 -07:00
|
|
|
#include <asm/pgalloc.h>
|
|
|
|
#include <asm/page.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
|
|
|
|
|
|
pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__((aligned(PAGE_SIZE)));
|
|
|
|
|
|
|
|
pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
|
|
|
|
{
|
|
|
|
pte_t *pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT);
|
|
|
|
if (pte)
|
|
|
|
clear_page(pte);
|
|
|
|
return pte;
|
|
|
|
}
|
|
|
|
|
2008-02-08 05:22:04 -07:00
|
|
|
pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
#ifdef CONFIG_HIGHPTE
|
|
|
|
page = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT, 0);
|
|
|
|
#else
|
|
|
|
page = alloc_pages(GFP_KERNEL|__GFP_REPEAT, 0);
|
|
|
|
#endif
|
2008-02-08 05:22:04 -07:00
|
|
|
if (page) {
|
2005-04-16 15:20:36 -07:00
|
|
|
clear_highpage(page);
|
2008-02-08 05:22:04 -07:00
|
|
|
pgtable_page_ctor(page);
|
|
|
|
flush_dcache_page(page);
|
|
|
|
}
|
2005-04-16 15:20:36 -07:00
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
|
|
|
void __set_pmd(pmd_t *pmdptr, unsigned long pmd)
|
|
|
|
{
|
|
|
|
unsigned long *__ste_p = pmdptr->ste;
|
|
|
|
int loop;
|
|
|
|
|
|
|
|
if (!pmd) {
|
|
|
|
memset(__ste_p, 0, PME_SIZE);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
BUG_ON(pmd & (0x3f00 | xAMPRx_SS | 0xe));
|
|
|
|
|
|
|
|
for (loop = PME_SIZE; loop > 0; loop -= 4) {
|
|
|
|
*__ste_p++ = pmd;
|
|
|
|
pmd += __frv_PT_SIZE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
frv_dcache_writeback((unsigned long) pmdptr, (unsigned long) (pmdptr + 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* List of all pgd's needed for non-PAE so it can invalidate entries
|
|
|
|
* in both cached and uncached pgd's; not needed for PAE since the
|
|
|
|
* kernel pmd is shared. If PAE were not to share the pmd a similar
|
|
|
|
* tactic would be needed. This is essentially codepath-based locking
|
|
|
|
* against pageattr.c; it is the unique case in which a valid change
|
|
|
|
* of kernel pagetables can't be lazily synchronized by vmalloc faults.
|
|
|
|
* vmalloc faults work because attached pagetables are never freed.
|
|
|
|
* If the locking proves to be non-performant, a ticketing scheme with
|
|
|
|
* checks at dup_mmap(), exec(), and other mmlist addition points
|
|
|
|
* could be used. The locking scheme was chosen on the basis of
|
|
|
|
* manfred's recommendations and having no core impact whatsoever.
|
|
|
|
* -- wli
|
|
|
|
*/
|
|
|
|
DEFINE_SPINLOCK(pgd_lock);
|
|
|
|
struct page *pgd_list;
|
|
|
|
|
|
|
|
static inline void pgd_list_add(pgd_t *pgd)
|
|
|
|
{
|
|
|
|
struct page *page = virt_to_page(pgd);
|
|
|
|
page->index = (unsigned long) pgd_list;
|
|
|
|
if (pgd_list)
|
2005-11-28 14:43:51 -07:00
|
|
|
set_page_private(pgd_list, (unsigned long) &page->index);
|
2005-04-16 15:20:36 -07:00
|
|
|
pgd_list = page;
|
[PATCH] mm: split page table lock
Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with
a many-threaded application which concurrently initializes different parts of
a large anonymous area.
This patch corrects that, by using a separate spinlock per page table page, to
guard the page table entries in that page, instead of using the mm's single
page_table_lock. (But even then, page_table_lock is still used to guard page
table allocation, and anon_vma allocation.)
In this implementation, the spinlock is tucked inside the struct page of the
page table page: with a BUILD_BUG_ON in case it overflows - which it would in
the case of 32-bit PA-RISC with spinlock debugging enabled.
Splitting the lock is not quite for free: another cacheline access. Ideally,
I suppose we would use split ptlock only for multi-threaded processes on
multi-cpu machines; but deciding that dynamically would have its own costs.
So for now enable it by config, at some number of cpus - since the Kconfig
language doesn't support inequalities, let preprocessor compare that with
NR_CPUS. But I don't think it's worth being user-configurable: for good
testing of both split and unsplit configs, split now at 4 cpus, and perhaps
change that to 8 later.
There is a benefit even for singly threaded processes: kswapd can be attacking
one part of the mm while another part is busy faulting.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-29 18:16:40 -07:00
|
|
|
set_page_private(page, (unsigned long)&pgd_list);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void pgd_list_del(pgd_t *pgd)
|
|
|
|
{
|
|
|
|
struct page *next, **pprev, *page = virt_to_page(pgd);
|
|
|
|
next = (struct page *) page->index;
|
2005-11-28 14:43:51 -07:00
|
|
|
pprev = (struct page **) page_private(page);
|
2005-04-16 15:20:36 -07:00
|
|
|
*pprev = next;
|
|
|
|
if (next)
|
2005-11-28 14:43:51 -07:00
|
|
|
set_page_private(next, (unsigned long) pprev);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
|
2007-05-09 02:32:48 -07:00
|
|
|
void pgd_ctor(void *pgd)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
if (PTRS_PER_PMD == 1)
|
|
|
|
spin_lock_irqsave(&pgd_lock, flags);
|
|
|
|
|
|
|
|
memcpy((pgd_t *) pgd + USER_PGDS_IN_LAST_PML4,
|
|
|
|
swapper_pg_dir + USER_PGDS_IN_LAST_PML4,
|
|
|
|
(PTRS_PER_PGD - USER_PGDS_IN_LAST_PML4) * sizeof(pgd_t));
|
|
|
|
|
|
|
|
if (PTRS_PER_PMD > 1)
|
|
|
|
return;
|
|
|
|
|
|
|
|
pgd_list_add(pgd);
|
|
|
|
spin_unlock_irqrestore(&pgd_lock, flags);
|
|
|
|
memset(pgd, 0, USER_PGDS_IN_LAST_PML4 * sizeof(pgd_t));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* never called when PTRS_PER_PMD > 1 */
|
2007-05-09 02:32:48 -07:00
|
|
|
void pgd_dtor(void *pgd)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
|
|
|
unsigned long flags; /* can be called from interrupt context */
|
|
|
|
|
|
|
|
spin_lock_irqsave(&pgd_lock, flags);
|
|
|
|
pgd_list_del(pgd);
|
|
|
|
spin_unlock_irqrestore(&pgd_lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
pgd_t *pgd_alloc(struct mm_struct *mm)
|
|
|
|
{
|
|
|
|
pgd_t *pgd;
|
|
|
|
|
2007-05-09 02:32:48 -07:00
|
|
|
pgd = quicklist_alloc(0, GFP_KERNEL, pgd_ctor);
|
2005-04-16 15:20:36 -07:00
|
|
|
if (!pgd)
|
|
|
|
return pgd;
|
|
|
|
|
|
|
|
return pgd;
|
|
|
|
}
|
|
|
|
|
2008-02-04 23:29:14 -07:00
|
|
|
void pgd_free(struct mm_struct *mm, pgd_t *pgd)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
|
|
|
/* in the non-PAE case, clear_page_tables() clears user pgd entries */
|
2007-05-09 02:32:48 -07:00
|
|
|
quicklist_free(0, pgd_dtor, pgd);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
void __init pgtable_cache_init(void)
|
|
|
|
{
|
|
|
|
}
|
2007-05-09 02:32:48 -07:00
|
|
|
|
|
|
|
void check_pgt_cache(void)
|
|
|
|
{
|
|
|
|
quicklist_trim(0, pgd_dtor, 25, 16);
|
|
|
|
}
|
|
|
|
|