1
linux/drivers/usb/media/sn9c102_core.c

2745 lines
65 KiB
C
Raw Normal View History

/***************************************************************************
* V4L2 driver for SN9C10x PC Camera Controllers *
* *
* Copyright (C) 2004-2005 by Luca Risolia <luca.risolia@studio.unibo.it> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the Free Software *
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *
***************************************************************************/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/moduleparam.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/device.h>
#include <linux/fs.h>
#include <linux/delay.h>
#include <linux/stddef.h>
#include <linux/compiler.h>
#include <linux/ioctl.h>
#include <linux/poll.h>
#include <linux/stat.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/page-flags.h>
#include <linux/byteorder/generic.h>
#include <asm/page.h>
#include <asm/uaccess.h>
#include "sn9c102.h"
/*****************************************************************************/
MODULE_DEVICE_TABLE(usb, sn9c102_id_table);
MODULE_AUTHOR(SN9C102_MODULE_AUTHOR " " SN9C102_AUTHOR_EMAIL);
MODULE_DESCRIPTION(SN9C102_MODULE_NAME);
MODULE_VERSION(SN9C102_MODULE_VERSION);
MODULE_LICENSE(SN9C102_MODULE_LICENSE);
static short video_nr[] = {[0 ... SN9C102_MAX_DEVICES-1] = -1};
module_param_array(video_nr, short, NULL, 0444);
MODULE_PARM_DESC(video_nr,
"\n<-1|n[,...]> Specify V4L2 minor mode number."
"\n -1 = use next available (default)"
"\n n = use minor number n (integer >= 0)"
"\nYou can specify up to "__MODULE_STRING(SN9C102_MAX_DEVICES)
" cameras this way."
"\nFor example:"
"\nvideo_nr=-1,2,-1 would assign minor number 2 to"
"\nthe second camera and use auto for the first"
"\none and for every other camera."
"\n");
static short force_munmap[] = {[0 ... SN9C102_MAX_DEVICES-1] =
SN9C102_FORCE_MUNMAP};
module_param_array(force_munmap, bool, NULL, 0444);
MODULE_PARM_DESC(force_munmap,
"\n<0|1[,...]> Force the application to unmap previously "
"\nmapped buffer memory before calling any VIDIOC_S_CROP or "
"\nVIDIOC_S_FMT ioctl's. Not all the applications support "
"\nthis feature. This parameter is specific for each "
"\ndetected camera."
"\n 0 = do not force memory unmapping"
"\n 1 = force memory unmapping (save memory)"
"\nDefault value is "__MODULE_STRING(SN9C102_FORCE_MUNMAP)"."
"\n");
#ifdef SN9C102_DEBUG
static unsigned short debug = SN9C102_DEBUG_LEVEL;
module_param(debug, ushort, 0644);
MODULE_PARM_DESC(debug,
"\n<n> Debugging information level, from 0 to 3:"
"\n0 = none (use carefully)"
"\n1 = critical errors"
"\n2 = significant informations"
"\n3 = more verbose messages"
"\nLevel 3 is useful for testing only, when only "
"one device is used."
"\nDefault value is "__MODULE_STRING(SN9C102_DEBUG_LEVEL)"."
"\n");
#endif
/*****************************************************************************/
static sn9c102_sof_header_t sn9c102_sof_header[] = {
{0xff, 0xff, 0x00, 0xc4, 0xc4, 0x96, 0x00},
{0xff, 0xff, 0x00, 0xc4, 0xc4, 0x96, 0x01},
};
static sn9c102_eof_header_t sn9c102_eof_header[] = {
{0x00, 0x00, 0x00, 0x00},
{0x40, 0x00, 0x00, 0x00},
{0x80, 0x00, 0x00, 0x00},
{0xc0, 0x00, 0x00, 0x00},
};
/*****************************************************************************/
static void* rvmalloc(size_t size)
{
void* mem;
unsigned long adr;
size = PAGE_ALIGN(size);
mem = vmalloc_32((unsigned long)size);
if (!mem)
return NULL;
memset(mem, 0, size);
adr = (unsigned long)mem;
while (size > 0) {
SetPageReserved(vmalloc_to_page((void *)adr));
adr += PAGE_SIZE;
size -= PAGE_SIZE;
}
return mem;
}
static void rvfree(void* mem, size_t size)
{
unsigned long adr;
if (!mem)
return;
size = PAGE_ALIGN(size);
adr = (unsigned long)mem;
while (size > 0) {
ClearPageReserved(vmalloc_to_page((void *)adr));
adr += PAGE_SIZE;
size -= PAGE_SIZE;
}
vfree(mem);
}
static u32
sn9c102_request_buffers(struct sn9c102_device* cam, u32 count,
enum sn9c102_io_method io)
{
struct v4l2_pix_format* p = &(cam->sensor->pix_format);
struct v4l2_rect* r = &(cam->sensor->cropcap.bounds);
const size_t imagesize = cam->module_param.force_munmap ||
io == IO_READ ?
(p->width * p->height * p->priv) / 8 :
(r->width * r->height * p->priv) / 8;
void* buff = NULL;
u32 i;
if (count > SN9C102_MAX_FRAMES)
count = SN9C102_MAX_FRAMES;
cam->nbuffers = count;
while (cam->nbuffers > 0) {
if ((buff = rvmalloc(cam->nbuffers * PAGE_ALIGN(imagesize))))
break;
cam->nbuffers--;
}
for (i = 0; i < cam->nbuffers; i++) {
cam->frame[i].bufmem = buff + i*PAGE_ALIGN(imagesize);
cam->frame[i].buf.index = i;
cam->frame[i].buf.m.offset = i*PAGE_ALIGN(imagesize);
cam->frame[i].buf.length = imagesize;
cam->frame[i].buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
cam->frame[i].buf.sequence = 0;
cam->frame[i].buf.field = V4L2_FIELD_NONE;
cam->frame[i].buf.memory = V4L2_MEMORY_MMAP;
cam->frame[i].buf.flags = 0;
}
return cam->nbuffers;
}
static void sn9c102_release_buffers(struct sn9c102_device* cam)
{
if (cam->nbuffers) {
rvfree(cam->frame[0].bufmem,
cam->nbuffers * cam->frame[0].buf.length);
cam->nbuffers = 0;
}
}
static void sn9c102_empty_framequeues(struct sn9c102_device* cam)
{
u32 i;
INIT_LIST_HEAD(&cam->inqueue);
INIT_LIST_HEAD(&cam->outqueue);
for (i = 0; i < SN9C102_MAX_FRAMES; i++) {
cam->frame[i].state = F_UNUSED;
cam->frame[i].buf.bytesused = 0;
}
}
static void sn9c102_queue_unusedframes(struct sn9c102_device* cam)
{
unsigned long lock_flags;
u32 i;
for (i = 0; i < cam->nbuffers; i++)
if (cam->frame[i].state == F_UNUSED) {
cam->frame[i].state = F_QUEUED;
spin_lock_irqsave(&cam->queue_lock, lock_flags);
list_add_tail(&cam->frame[i].frame, &cam->inqueue);
spin_unlock_irqrestore(&cam->queue_lock, lock_flags);
}
}
/*****************************************************************************/
int sn9c102_write_reg(struct sn9c102_device* cam, u8 value, u16 index)
{
struct usb_device* udev = cam->usbdev;
u8* buff = cam->control_buffer;
int res;
*buff = value;
res = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), 0x08, 0x41,
index, 0, buff, 1, SN9C102_CTRL_TIMEOUT);
if (res < 0) {
DBG(3, "Failed to write a register (value 0x%02X, index "
"0x%02X, error %d)", value, index, res)
return -1;
}
cam->reg[index] = value;
return 0;
}
/* NOTE: reading some registers always returns 0 */
static int sn9c102_read_reg(struct sn9c102_device* cam, u16 index)
{
struct usb_device* udev = cam->usbdev;
u8* buff = cam->control_buffer;
int res;
res = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), 0x00, 0xc1,
index, 0, buff, 1, SN9C102_CTRL_TIMEOUT);
if (res < 0)
DBG(3, "Failed to read a register (index 0x%02X, error %d)",
index, res)
return (res >= 0) ? (int)(*buff) : -1;
}
int sn9c102_pread_reg(struct sn9c102_device* cam, u16 index)
{
if (index > 0x1f)
return -EINVAL;
return cam->reg[index];
}
static int
sn9c102_i2c_wait(struct sn9c102_device* cam, struct sn9c102_sensor* sensor)
{
int i, r;
for (i = 1; i <= 5; i++) {
r = sn9c102_read_reg(cam, 0x08);
if (r < 0)
return -EIO;
if (r & 0x04)
return 0;
if (sensor->frequency & SN9C102_I2C_400KHZ)
udelay(5*16);
else
udelay(16*16);
}
return -EBUSY;
}
static int
sn9c102_i2c_detect_read_error(struct sn9c102_device* cam,
struct sn9c102_sensor* sensor)
{
int r;
r = sn9c102_read_reg(cam, 0x08);
return (r < 0 || (r >= 0 && !(r & 0x08))) ? -EIO : 0;
}
static int
sn9c102_i2c_detect_write_error(struct sn9c102_device* cam,
struct sn9c102_sensor* sensor)
{
int r;
r = sn9c102_read_reg(cam, 0x08);
return (r < 0 || (r >= 0 && (r & 0x08))) ? -EIO : 0;
}
int
sn9c102_i2c_try_raw_read(struct sn9c102_device* cam,
struct sn9c102_sensor* sensor, u8 data0, u8 data1,
u8 n, u8 buffer[])
{
struct usb_device* udev = cam->usbdev;
u8* data = cam->control_buffer;
int err = 0, res;
/* Write cycle */
data[0] = ((sensor->interface == SN9C102_I2C_2WIRES) ? 0x80 : 0) |
((sensor->frequency & SN9C102_I2C_400KHZ) ? 0x01 : 0) | 0x10;
data[1] = data0; /* I2C slave id */
data[2] = data1; /* address */
data[7] = 0x10;
res = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), 0x08, 0x41,
0x08, 0, data, 8, SN9C102_CTRL_TIMEOUT);
if (res < 0)
err += res;
err += sn9c102_i2c_wait(cam, sensor);
/* Read cycle - n bytes */
data[0] = ((sensor->interface == SN9C102_I2C_2WIRES) ? 0x80 : 0) |
((sensor->frequency & SN9C102_I2C_400KHZ) ? 0x01 : 0) |
(n << 4) | 0x02;
data[1] = data0;
data[7] = 0x10;
res = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), 0x08, 0x41,
0x08, 0, data, 8, SN9C102_CTRL_TIMEOUT);
if (res < 0)
err += res;
err += sn9c102_i2c_wait(cam, sensor);
/* The first read byte will be placed in data[4] */
res = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), 0x00, 0xc1,
0x0a, 0, data, 5, SN9C102_CTRL_TIMEOUT);
if (res < 0)
err += res;
err += sn9c102_i2c_detect_read_error(cam, sensor);
PDBGG("I2C read: address 0x%02X, first read byte: 0x%02X", data1,
data[4])
if (err) {
DBG(3, "I2C read failed for %s image sensor", sensor->name)
return -1;
}
if (buffer)
memcpy(buffer, data, sizeof(buffer));
return (int)data[4];
}
int
sn9c102_i2c_try_raw_write(struct sn9c102_device* cam,
struct sn9c102_sensor* sensor, u8 n, u8 data0,
u8 data1, u8 data2, u8 data3, u8 data4, u8 data5)
{
struct usb_device* udev = cam->usbdev;
u8* data = cam->control_buffer;
int err = 0, res;
/* Write cycle. It usually is address + value */
data[0] = ((sensor->interface == SN9C102_I2C_2WIRES) ? 0x80 : 0) |
((sensor->frequency & SN9C102_I2C_400KHZ) ? 0x01 : 0)
| ((n - 1) << 4);
data[1] = data0;
data[2] = data1;
data[3] = data2;
data[4] = data3;
data[5] = data4;
data[6] = data5;
data[7] = 0x14;
res = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), 0x08, 0x41,
0x08, 0, data, 8, SN9C102_CTRL_TIMEOUT);
if (res < 0)
err += res;
err += sn9c102_i2c_wait(cam, sensor);
err += sn9c102_i2c_detect_write_error(cam, sensor);
if (err)
DBG(3, "I2C write failed for %s image sensor", sensor->name)
PDBGG("I2C raw write: %u bytes, data0 = 0x%02X, data1 = 0x%02X, "
"data2 = 0x%02X, data3 = 0x%02X, data4 = 0x%02X, data5 = 0x%02X",
n, data0, data1, data2, data3, data4, data5)
return err ? -1 : 0;
}
int
sn9c102_i2c_try_read(struct sn9c102_device* cam,
struct sn9c102_sensor* sensor, u8 address)
{
return sn9c102_i2c_try_raw_read(cam, sensor, sensor->i2c_slave_id,
address, 1, NULL);
}
int
sn9c102_i2c_try_write(struct sn9c102_device* cam,
struct sn9c102_sensor* sensor, u8 address, u8 value)
{
return sn9c102_i2c_try_raw_write(cam, sensor, 3,
sensor->i2c_slave_id, address,
value, 0, 0, 0);
}
int sn9c102_i2c_read(struct sn9c102_device* cam, u8 address)
{
if (!cam->sensor)
return -1;
return sn9c102_i2c_try_read(cam, cam->sensor, address);
}
int sn9c102_i2c_write(struct sn9c102_device* cam, u8 address, u8 value)
{
if (!cam->sensor)
return -1;
return sn9c102_i2c_try_write(cam, cam->sensor, address, value);
}
/*****************************************************************************/
static void*
sn9c102_find_sof_header(struct sn9c102_device* cam, void* mem, size_t len)
{
size_t soflen = sizeof(sn9c102_sof_header_t), i;
u8 j, n = sizeof(sn9c102_sof_header) / soflen;
for (i = 0; (len >= soflen) && (i <= len - soflen); i++)
for (j = 0; j < n; j++)
/* It's enough to compare 7 bytes */
if (!memcmp(mem + i, sn9c102_sof_header[j], 7)) {
memcpy(cam->sof_header, mem + i, soflen);
/* Skip the header */
return mem + i + soflen;
}
return NULL;
}
static void*
sn9c102_find_eof_header(struct sn9c102_device* cam, void* mem, size_t len)
{
size_t eoflen = sizeof(sn9c102_eof_header_t), i;
unsigned j, n = sizeof(sn9c102_eof_header) / eoflen;
if (cam->sensor->pix_format.pixelformat == V4L2_PIX_FMT_SN9C10X)
return NULL; /* EOF header does not exist in compressed data */
for (i = 0; (len >= eoflen) && (i <= len - eoflen); i++)
for (j = 0; j < n; j++)
if (!memcmp(mem + i, sn9c102_eof_header[j], eoflen))
return mem + i;
return NULL;
}
static void sn9c102_urb_complete(struct urb *urb, struct pt_regs* regs)
{
struct sn9c102_device* cam = urb->context;
struct sn9c102_frame_t** f;
size_t imagesize;
unsigned long lock_flags;
u8 i;
int err = 0;
if (urb->status == -ENOENT)
return;
f = &cam->frame_current;
if (cam->stream == STREAM_INTERRUPT) {
cam->stream = STREAM_OFF;
if ((*f))
(*f)->state = F_QUEUED;
DBG(3, "Stream interrupted")
wake_up_interruptible(&cam->wait_stream);
}
if (cam->state & DEV_DISCONNECTED)
return;
if (cam->state & DEV_MISCONFIGURED) {
wake_up_interruptible(&cam->wait_frame);
return;
}
if (cam->stream == STREAM_OFF || list_empty(&cam->inqueue))
goto resubmit_urb;
if (!(*f))
(*f) = list_entry(cam->inqueue.next, struct sn9c102_frame_t,
frame);
imagesize = (cam->sensor->pix_format.width *
cam->sensor->pix_format.height *
cam->sensor->pix_format.priv) / 8;
for (i = 0; i < urb->number_of_packets; i++) {
unsigned int img, len, status;
void *pos, *sof, *eof;
len = urb->iso_frame_desc[i].actual_length;
status = urb->iso_frame_desc[i].status;
pos = urb->iso_frame_desc[i].offset + urb->transfer_buffer;
if (status) {
DBG(3, "Error in isochronous frame")
(*f)->state = F_ERROR;
continue;
}
PDBGG("Isochrnous frame: length %u, #%u i", len, i)
/*
NOTE: It is probably correct to assume that SOF and EOF
headers do not occur between two consecutive packets,
but who knows..Whatever is the truth, this assumption
doesn't introduce bugs.
*/
redo:
sof = sn9c102_find_sof_header(cam, pos, len);
if (!sof) {
eof = sn9c102_find_eof_header(cam, pos, len);
if ((*f)->state == F_GRABBING) {
end_of_frame:
img = len;
if (eof)
img = (eof > pos) ? eof - pos - 1 : 0;
if ((*f)->buf.bytesused+img > imagesize) {
u32 b = (*f)->buf.bytesused + img -
imagesize;
img = imagesize - (*f)->buf.bytesused;
DBG(3, "Expected EOF not found: "
"video frame cut")
if (eof)
DBG(3, "Exceeded limit: +%u "
"bytes", (unsigned)(b))
}
memcpy((*f)->bufmem + (*f)->buf.bytesused, pos,
img);
if ((*f)->buf.bytesused == 0)
do_gettimeofday(&(*f)->buf.timestamp);
(*f)->buf.bytesused += img;
if ((*f)->buf.bytesused == imagesize ||
(cam->sensor->pix_format.pixelformat ==
V4L2_PIX_FMT_SN9C10X && eof)) {
u32 b = (*f)->buf.bytesused;
(*f)->state = F_DONE;
(*f)->buf.sequence= ++cam->frame_count;
spin_lock_irqsave(&cam->queue_lock,
lock_flags);
list_move_tail(&(*f)->frame,
&cam->outqueue);
if (!list_empty(&cam->inqueue))
(*f) = list_entry(
cam->inqueue.next,
struct sn9c102_frame_t,
frame );
else
(*f) = NULL;
spin_unlock_irqrestore(&cam->queue_lock
, lock_flags);
memcpy(cam->sysfs.frame_header,
cam->sof_header,
sizeof(sn9c102_sof_header_t));
DBG(3, "Video frame captured: "
"%lu bytes", (unsigned long)(b))
if (!(*f))
goto resubmit_urb;
} else if (eof) {
(*f)->state = F_ERROR;
DBG(3, "Not expected EOF after %lu "
"bytes of image data",
(unsigned long)((*f)->buf.bytesused))
}
if (sof) /* (1) */
goto start_of_frame;
} else if (eof) {
DBG(3, "EOF without SOF")
continue;
} else {
PDBGG("Ignoring pointless isochronous frame")
continue;
}
} else if ((*f)->state == F_QUEUED || (*f)->state == F_ERROR) {
start_of_frame:
(*f)->state = F_GRABBING;
(*f)->buf.bytesused = 0;
len -= (sof - pos);
pos = sof;
DBG(3, "SOF detected: new video frame")
if (len)
goto redo;
} else if ((*f)->state == F_GRABBING) {
eof = sn9c102_find_eof_header(cam, pos, len);
if (eof && eof < sof)
goto end_of_frame; /* (1) */
else {
if (cam->sensor->pix_format.pixelformat ==
V4L2_PIX_FMT_SN9C10X) {
eof = sof-sizeof(sn9c102_sof_header_t);
goto end_of_frame;
} else {
DBG(3, "SOF before expected EOF after "
"%lu bytes of image data",
(unsigned long)((*f)->buf.bytesused))
goto start_of_frame;
}
}
}
}
resubmit_urb:
urb->dev = cam->usbdev;
err = usb_submit_urb(urb, GFP_ATOMIC);
if (err < 0 && err != -EPERM) {
cam->state |= DEV_MISCONFIGURED;
DBG(1, "usb_submit_urb() failed")
}
wake_up_interruptible(&cam->wait_frame);
}
static int sn9c102_start_transfer(struct sn9c102_device* cam)
{
struct usb_device *udev = cam->usbdev;
struct urb* urb;
const unsigned int wMaxPacketSize[] = {0, 128, 256, 384, 512,
680, 800, 900, 1023};
const unsigned int psz = wMaxPacketSize[SN9C102_ALTERNATE_SETTING];
s8 i, j;
int err = 0;
for (i = 0; i < SN9C102_URBS; i++) {
cam->transfer_buffer[i] = kmalloc(SN9C102_ISO_PACKETS * psz,
GFP_KERNEL);
if (!cam->transfer_buffer[i]) {
err = -ENOMEM;
DBG(1, "Not enough memory")
goto free_buffers;
}
}
for (i = 0; i < SN9C102_URBS; i++) {
urb = usb_alloc_urb(SN9C102_ISO_PACKETS, GFP_KERNEL);
cam->urb[i] = urb;
if (!urb) {
err = -ENOMEM;
DBG(1, "usb_alloc_urb() failed")
goto free_urbs;
}
urb->dev = udev;
urb->context = cam;
urb->pipe = usb_rcvisocpipe(udev, 1);
urb->transfer_flags = URB_ISO_ASAP;
urb->number_of_packets = SN9C102_ISO_PACKETS;
urb->complete = sn9c102_urb_complete;
urb->transfer_buffer = cam->transfer_buffer[i];
urb->transfer_buffer_length = psz * SN9C102_ISO_PACKETS;
urb->interval = 1;
for (j = 0; j < SN9C102_ISO_PACKETS; j++) {
urb->iso_frame_desc[j].offset = psz * j;
urb->iso_frame_desc[j].length = psz;
}
}
/* Enable video */
if (!(cam->reg[0x01] & 0x04)) {
err = sn9c102_write_reg(cam, cam->reg[0x01] | 0x04, 0x01);
if (err) {
err = -EIO;
DBG(1, "I/O hardware error")
goto free_urbs;
}
}
err = usb_set_interface(udev, 0, SN9C102_ALTERNATE_SETTING);
if (err) {
DBG(1, "usb_set_interface() failed")
goto free_urbs;
}
cam->frame_current = NULL;
for (i = 0; i < SN9C102_URBS; i++) {
err = usb_submit_urb(cam->urb[i], GFP_KERNEL);
if (err) {
for (j = i-1; j >= 0; j--)
usb_kill_urb(cam->urb[j]);
DBG(1, "usb_submit_urb() failed, error %d", err)
goto free_urbs;
}
}
return 0;
free_urbs:
for (i = 0; (i < SN9C102_URBS) && cam->urb[i]; i++)
usb_free_urb(cam->urb[i]);
free_buffers:
for (i = 0; (i < SN9C102_URBS) && cam->transfer_buffer[i]; i++)
kfree(cam->transfer_buffer[i]);
return err;
}
static int sn9c102_stop_transfer(struct sn9c102_device* cam)
{
struct usb_device *udev = cam->usbdev;
s8 i;
int err = 0;
if (cam->state & DEV_DISCONNECTED)
return 0;
for (i = SN9C102_URBS-1; i >= 0; i--) {
usb_kill_urb(cam->urb[i]);
usb_free_urb(cam->urb[i]);
kfree(cam->transfer_buffer[i]);
}
err = usb_set_interface(udev, 0, 0); /* 0 Mb/s */
if (err)
DBG(3, "usb_set_interface() failed")
return err;
}
static int sn9c102_stream_interrupt(struct sn9c102_device* cam)
{
int err = 0;
cam->stream = STREAM_INTERRUPT;
err = wait_event_timeout(cam->wait_stream,
(cam->stream == STREAM_OFF) ||
(cam->state & DEV_DISCONNECTED),
SN9C102_URB_TIMEOUT);
if (cam->state & DEV_DISCONNECTED)
return -ENODEV;
else if (err) {
cam->state |= DEV_MISCONFIGURED;
DBG(1, "The camera is misconfigured. To use it, close and "
"open /dev/video%d again.", cam->v4ldev->minor)
return err;
}
return 0;
}
/*****************************************************************************/
static u8 sn9c102_strtou8(const char* buff, size_t len, ssize_t* count)
{
char str[5];
char* endp;
unsigned long val;
if (len < 4) {
strncpy(str, buff, len);
str[len+1] = '\0';
} else {
strncpy(str, buff, 4);
str[4] = '\0';
}
val = simple_strtoul(str, &endp, 0);
*count = 0;
if (val <= 0xff)
*count = (ssize_t)(endp - str);
if ((*count) && (len == *count+1) && (buff[*count] == '\n'))
*count += 1;
return (u8)val;
}
/*
NOTE 1: being inside one of the following methods implies that the v4l
device exists for sure (see kobjects and reference counters)
NOTE 2: buffers are PAGE_SIZE long
*/
static ssize_t sn9c102_show_reg(struct class_device* cd, char* buf)
{
struct sn9c102_device* cam;
ssize_t count;
if (down_interruptible(&sn9c102_sysfs_lock))
return -ERESTARTSYS;
cam = video_get_drvdata(to_video_device(cd));
if (!cam) {
up(&sn9c102_sysfs_lock);
return -ENODEV;
}
count = sprintf(buf, "%u\n", cam->sysfs.reg);
up(&sn9c102_sysfs_lock);
return count;
}
static ssize_t
sn9c102_store_reg(struct class_device* cd, const char* buf, size_t len)
{
struct sn9c102_device* cam;
u8 index;
ssize_t count;
if (down_interruptible(&sn9c102_sysfs_lock))
return -ERESTARTSYS;
cam = video_get_drvdata(to_video_device(cd));
if (!cam) {
up(&sn9c102_sysfs_lock);
return -ENODEV;
}
index = sn9c102_strtou8(buf, len, &count);
if (index > 0x1f || !count) {
up(&sn9c102_sysfs_lock);
return -EINVAL;
}
cam->sysfs.reg = index;
DBG(2, "Moved SN9C10X register index to 0x%02X", cam->sysfs.reg)
DBG(3, "Written bytes: %zd", count)
up(&sn9c102_sysfs_lock);
return count;
}
static ssize_t sn9c102_show_val(struct class_device* cd, char* buf)
{
struct sn9c102_device* cam;
ssize_t count;
int val;
if (down_interruptible(&sn9c102_sysfs_lock))
return -ERESTARTSYS;
cam = video_get_drvdata(to_video_device(cd));
if (!cam) {
up(&sn9c102_sysfs_lock);
return -ENODEV;
}
if ((val = sn9c102_read_reg(cam, cam->sysfs.reg)) < 0) {
up(&sn9c102_sysfs_lock);
return -EIO;
}
count = sprintf(buf, "%d\n", val);
DBG(3, "Read bytes: %zd", count)
up(&sn9c102_sysfs_lock);
return count;
}
static ssize_t
sn9c102_store_val(struct class_device* cd, const char* buf, size_t len)
{
struct sn9c102_device* cam;
u8 value;
ssize_t count;
int err;
if (down_interruptible(&sn9c102_sysfs_lock))
return -ERESTARTSYS;
cam = video_get_drvdata(to_video_device(cd));
if (!cam) {
up(&sn9c102_sysfs_lock);
return -ENODEV;
}
value = sn9c102_strtou8(buf, len, &count);
if (!count) {
up(&sn9c102_sysfs_lock);
return -EINVAL;
}
err = sn9c102_write_reg(cam, value, cam->sysfs.reg);
if (err) {
up(&sn9c102_sysfs_lock);
return -EIO;
}
DBG(2, "Written SN9C10X reg. 0x%02X, val. 0x%02X",
cam->sysfs.reg, value)
DBG(3, "Written bytes: %zd", count)
up(&sn9c102_sysfs_lock);
return count;
}
static ssize_t sn9c102_show_i2c_reg(struct class_device* cd, char* buf)
{
struct sn9c102_device* cam;
ssize_t count;
if (down_interruptible(&sn9c102_sysfs_lock))
return -ERESTARTSYS;
cam = video_get_drvdata(to_video_device(cd));
if (!cam) {
up(&sn9c102_sysfs_lock);
return -ENODEV;
}
count = sprintf(buf, "%u\n", cam->sysfs.i2c_reg);
DBG(3, "Read bytes: %zd", count)
up(&sn9c102_sysfs_lock);
return count;
}
static ssize_t
sn9c102_store_i2c_reg(struct class_device* cd, const char* buf, size_t len)
{
struct sn9c102_device* cam;
u8 index;
ssize_t count;
if (down_interruptible(&sn9c102_sysfs_lock))
return -ERESTARTSYS;
cam = video_get_drvdata(to_video_device(cd));
if (!cam) {
up(&sn9c102_sysfs_lock);
return -ENODEV;
}
index = sn9c102_strtou8(buf, len, &count);
if (!count) {
up(&sn9c102_sysfs_lock);
return -EINVAL;
}
cam->sysfs.i2c_reg = index;
DBG(2, "Moved sensor register index to 0x%02X", cam->sysfs.i2c_reg)
DBG(3, "Written bytes: %zd", count)
up(&sn9c102_sysfs_lock);
return count;
}
static ssize_t sn9c102_show_i2c_val(struct class_device* cd, char* buf)
{
struct sn9c102_device* cam;
ssize_t count;
int val;
if (down_interruptible(&sn9c102_sysfs_lock))
return -ERESTARTSYS;
cam = video_get_drvdata(to_video_device(cd));
if (!cam) {
up(&sn9c102_sysfs_lock);
return -ENODEV;
}
if (!(cam->sensor->sysfs_ops & SN9C102_I2C_READ)) {
up(&sn9c102_sysfs_lock);
return -ENOSYS;
}
if ((val = sn9c102_i2c_read(cam, cam->sysfs.i2c_reg)) < 0) {
up(&sn9c102_sysfs_lock);
return -EIO;
}
count = sprintf(buf, "%d\n", val);
DBG(3, "Read bytes: %zd", count)
up(&sn9c102_sysfs_lock);
return count;
}
static ssize_t
sn9c102_store_i2c_val(struct class_device* cd, const char* buf, size_t len)
{
struct sn9c102_device* cam;
u8 value;
ssize_t count;
int err;
if (down_interruptible(&sn9c102_sysfs_lock))
return -ERESTARTSYS;
cam = video_get_drvdata(to_video_device(cd));
if (!cam) {
up(&sn9c102_sysfs_lock);
return -ENODEV;
}
if (!(cam->sensor->sysfs_ops & SN9C102_I2C_WRITE)) {
up(&sn9c102_sysfs_lock);
return -ENOSYS;
}
value = sn9c102_strtou8(buf, len, &count);
if (!count) {
up(&sn9c102_sysfs_lock);
return -EINVAL;
}
err = sn9c102_i2c_write(cam, cam->sysfs.i2c_reg, value);
if (err) {
up(&sn9c102_sysfs_lock);
return -EIO;
}
DBG(2, "Written sensor reg. 0x%02X, val. 0x%02X",
cam->sysfs.i2c_reg, value)
DBG(3, "Written bytes: %zd", count)
up(&sn9c102_sysfs_lock);
return count;
}
static ssize_t
sn9c102_store_green(struct class_device* cd, const char* buf, size_t len)
{
struct sn9c102_device* cam;
enum sn9c102_bridge bridge;
ssize_t res = 0;
u8 value;
ssize_t count;
if (down_interruptible(&sn9c102_sysfs_lock))
return -ERESTARTSYS;
cam = video_get_drvdata(to_video_device(cd));
if (!cam) {
up(&sn9c102_sysfs_lock);
return -ENODEV;
}
bridge = cam->bridge;
up(&sn9c102_sysfs_lock);
value = sn9c102_strtou8(buf, len, &count);
if (!count)
return -EINVAL;
switch (bridge) {
case BRIDGE_SN9C101:
case BRIDGE_SN9C102:
if (value > 0x0f)
return -EINVAL;
if ((res = sn9c102_store_reg(cd, "0x11", 4)) >= 0)
res = sn9c102_store_val(cd, buf, len);
break;
case BRIDGE_SN9C103:
if (value > 0x7f)
return -EINVAL;
if ((res = sn9c102_store_reg(cd, "0x04", 4)) >= 0)
res = sn9c102_store_val(cd, buf, len);
break;
}
return res;
}
static ssize_t
sn9c102_store_blue(struct class_device* cd, const char* buf, size_t len)
{
ssize_t res = 0;
u8 value;
ssize_t count;
value = sn9c102_strtou8(buf, len, &count);
if (!count || value > 0x7f)
return -EINVAL;
if ((res = sn9c102_store_reg(cd, "0x06", 4)) >= 0)
res = sn9c102_store_val(cd, buf, len);
return res;
}
static ssize_t
sn9c102_store_red(struct class_device* cd, const char* buf, size_t len)
{
ssize_t res = 0;
u8 value;
ssize_t count;
value = sn9c102_strtou8(buf, len, &count);
if (!count || value > 0x7f)
return -EINVAL;
if ((res = sn9c102_store_reg(cd, "0x05", 4)) >= 0)
res = sn9c102_store_val(cd, buf, len);
return res;
}
static ssize_t sn9c102_show_frame_header(struct class_device* cd, char* buf)
{
struct sn9c102_device* cam;
ssize_t count;
cam = video_get_drvdata(to_video_device(cd));
if (!cam)
return -ENODEV;
count = sizeof(cam->sysfs.frame_header);
memcpy(buf, cam->sysfs.frame_header, count);
DBG(3, "Frame header, read bytes: %zd", count)
return count;
}
static CLASS_DEVICE_ATTR(reg, S_IRUGO | S_IWUSR,
sn9c102_show_reg, sn9c102_store_reg);
static CLASS_DEVICE_ATTR(val, S_IRUGO | S_IWUSR,
sn9c102_show_val, sn9c102_store_val);
static CLASS_DEVICE_ATTR(i2c_reg, S_IRUGO | S_IWUSR,
sn9c102_show_i2c_reg, sn9c102_store_i2c_reg);
static CLASS_DEVICE_ATTR(i2c_val, S_IRUGO | S_IWUSR,
sn9c102_show_i2c_val, sn9c102_store_i2c_val);
static CLASS_DEVICE_ATTR(green, S_IWUGO, NULL, sn9c102_store_green);
static CLASS_DEVICE_ATTR(blue, S_IWUGO, NULL, sn9c102_store_blue);
static CLASS_DEVICE_ATTR(red, S_IWUGO, NULL, sn9c102_store_red);
static CLASS_DEVICE_ATTR(frame_header, S_IRUGO,
sn9c102_show_frame_header, NULL);
static void sn9c102_create_sysfs(struct sn9c102_device* cam)
{
struct video_device *v4ldev = cam->v4ldev;
video_device_create_file(v4ldev, &class_device_attr_reg);
video_device_create_file(v4ldev, &class_device_attr_val);
video_device_create_file(v4ldev, &class_device_attr_frame_header);
if (cam->bridge == BRIDGE_SN9C101 || cam->bridge == BRIDGE_SN9C102)
video_device_create_file(v4ldev, &class_device_attr_green);
else if (cam->bridge == BRIDGE_SN9C103) {
video_device_create_file(v4ldev, &class_device_attr_blue);
video_device_create_file(v4ldev, &class_device_attr_red);
}
if (cam->sensor->sysfs_ops) {
video_device_create_file(v4ldev, &class_device_attr_i2c_reg);
video_device_create_file(v4ldev, &class_device_attr_i2c_val);
}
}
/*****************************************************************************/
static int
sn9c102_set_pix_format(struct sn9c102_device* cam, struct v4l2_pix_format* pix)
{
int err = 0;
if (pix->pixelformat == V4L2_PIX_FMT_SN9C10X)
err += sn9c102_write_reg(cam, cam->reg[0x18] | 0x80, 0x18);
else
err += sn9c102_write_reg(cam, cam->reg[0x18] & 0x7f, 0x18);
return err ? -EIO : 0;
}
static int
sn9c102_set_compression(struct sn9c102_device* cam,
struct v4l2_jpegcompression* compression)
{
int err = 0;
if (compression->quality == 0)
err += sn9c102_write_reg(cam, cam->reg[0x17] | 0x01, 0x17);
else if (compression->quality == 1)
err += sn9c102_write_reg(cam, cam->reg[0x17] & 0xfe, 0x17);
return err ? -EIO : 0;
}
static int sn9c102_set_scale(struct sn9c102_device* cam, u8 scale)
{
u8 r = 0;
int err = 0;
if (scale == 1)
r = cam->reg[0x18] & 0xcf;
else if (scale == 2) {
r = cam->reg[0x18] & 0xcf;
r |= 0x10;
} else if (scale == 4)
r = cam->reg[0x18] | 0x20;
err += sn9c102_write_reg(cam, r, 0x18);
if (err)
return -EIO;
PDBGG("Scaling factor: %u", scale)
return 0;
}
static int sn9c102_set_crop(struct sn9c102_device* cam, struct v4l2_rect* rect)
{
struct sn9c102_sensor* s = cam->sensor;
u8 h_start = (u8)(rect->left - s->cropcap.bounds.left),
v_start = (u8)(rect->top - s->cropcap.bounds.top),
h_size = (u8)(rect->width / 16),
v_size = (u8)(rect->height / 16);
int err = 0;
err += sn9c102_write_reg(cam, h_start, 0x12);
err += sn9c102_write_reg(cam, v_start, 0x13);
err += sn9c102_write_reg(cam, h_size, 0x15);
err += sn9c102_write_reg(cam, v_size, 0x16);
if (err)
return -EIO;
PDBGG("h_start, v_start, h_size, v_size, ho_size, vo_size "
"%u %u %u %u", h_start, v_start, h_size, v_size)
return 0;
}
static int sn9c102_init(struct sn9c102_device* cam)
{
struct sn9c102_sensor* s = cam->sensor;
struct v4l2_control ctrl;
struct v4l2_queryctrl *qctrl;
struct v4l2_rect* rect;
u8 i = 0, n = 0;
int err = 0;
if (!(cam->state & DEV_INITIALIZED)) {
init_waitqueue_head(&cam->open);
qctrl = s->qctrl;
rect = &(s->cropcap.defrect);
} else { /* use current values */
qctrl = s->_qctrl;
rect = &(s->_rect);
}
err += sn9c102_set_scale(cam, rect->width / s->pix_format.width);
err += sn9c102_set_crop(cam, rect);
if (err)
return err;
if (s->init) {
err = s->init(cam);
if (err) {
DBG(3, "Sensor initialization failed")
return err;
}
}
if (!(cam->state & DEV_INITIALIZED))
cam->compression.quality = cam->reg[0x17] & 0x01 ? 0 : 1;
else
err += sn9c102_set_compression(cam, &cam->compression);
err += sn9c102_set_pix_format(cam, &s->pix_format);
if (s->set_pix_format)
err += s->set_pix_format(cam, &s->pix_format);
if (err)
return err;
if (s->pix_format.pixelformat == V4L2_PIX_FMT_SN9C10X)
DBG(3, "Compressed video format is active, quality %d",
cam->compression.quality)
else
DBG(3, "Uncompressed video format is active")
if (s->set_crop)
if ((err = s->set_crop(cam, rect))) {
DBG(3, "set_crop() failed")
return err;
}
if (s->set_ctrl) {
n = sizeof(s->qctrl) / sizeof(s->qctrl[0]);
for (i = 0; i < n; i++)
if (s->qctrl[i].id != 0 &&
!(s->qctrl[i].flags & V4L2_CTRL_FLAG_DISABLED)) {
ctrl.id = s->qctrl[i].id;
ctrl.value = qctrl[i].default_value;
err = s->set_ctrl(cam, &ctrl);
if (err) {
DBG(3, "Set %s control failed",
s->qctrl[i].name)
return err;
}
DBG(3, "Image sensor supports '%s' control",
s->qctrl[i].name)
}
}
if (!(cam->state & DEV_INITIALIZED)) {
init_MUTEX(&cam->fileop_sem);
spin_lock_init(&cam->queue_lock);
init_waitqueue_head(&cam->wait_frame);
init_waitqueue_head(&cam->wait_stream);
cam->nreadbuffers = 2;
memcpy(s->_qctrl, s->qctrl, sizeof(s->qctrl));
memcpy(&(s->_rect), &(s->cropcap.defrect),
sizeof(struct v4l2_rect));
cam->state |= DEV_INITIALIZED;
}
DBG(2, "Initialization succeeded")
return 0;
}
static void sn9c102_release_resources(struct sn9c102_device* cam)
{
down(&sn9c102_sysfs_lock);
DBG(2, "V4L2 device /dev/video%d deregistered", cam->v4ldev->minor)
video_set_drvdata(cam->v4ldev, NULL);
video_unregister_device(cam->v4ldev);
up(&sn9c102_sysfs_lock);
kfree(cam->control_buffer);
}
/*****************************************************************************/
static int sn9c102_open(struct inode* inode, struct file* filp)
{
struct sn9c102_device* cam;
int err = 0;
/*
This is the only safe way to prevent race conditions with
disconnect
*/
if (!down_read_trylock(&sn9c102_disconnect))
return -ERESTARTSYS;
cam = video_get_drvdata(video_devdata(filp));
if (down_interruptible(&cam->dev_sem)) {
up_read(&sn9c102_disconnect);
return -ERESTARTSYS;
}
if (cam->users) {
DBG(2, "Device /dev/video%d is busy...", cam->v4ldev->minor)
if ((filp->f_flags & O_NONBLOCK) ||
(filp->f_flags & O_NDELAY)) {
err = -EWOULDBLOCK;
goto out;
}
up(&cam->dev_sem);
err = wait_event_interruptible_exclusive(cam->open,
cam->state & DEV_DISCONNECTED
|| !cam->users);
if (err) {
up_read(&sn9c102_disconnect);
return err;
}
if (cam->state & DEV_DISCONNECTED) {
up_read(&sn9c102_disconnect);
return -ENODEV;
}
down(&cam->dev_sem);
}
if (cam->state & DEV_MISCONFIGURED) {
err = sn9c102_init(cam);
if (err) {
DBG(1, "Initialization failed again. "
"I will retry on next open().")
goto out;
}
cam->state &= ~DEV_MISCONFIGURED;
}
if ((err = sn9c102_start_transfer(cam)))
goto out;
filp->private_data = cam;
cam->users++;
cam->io = IO_NONE;
cam->stream = STREAM_OFF;
cam->nbuffers = 0;
cam->frame_count = 0;
sn9c102_empty_framequeues(cam);
DBG(3, "Video device /dev/video%d is open", cam->v4ldev->minor)
out:
up(&cam->dev_sem);
up_read(&sn9c102_disconnect);
return err;
}
static int sn9c102_release(struct inode* inode, struct file* filp)
{
struct sn9c102_device* cam = video_get_drvdata(video_devdata(filp));
down(&cam->dev_sem); /* prevent disconnect() to be called */
sn9c102_stop_transfer(cam);
sn9c102_release_buffers(cam);
if (cam->state & DEV_DISCONNECTED) {
sn9c102_release_resources(cam);
up(&cam->dev_sem);
kfree(cam);
return 0;
}
cam->users--;
wake_up_interruptible_nr(&cam->open, 1);
DBG(3, "Video device /dev/video%d closed", cam->v4ldev->minor)
up(&cam->dev_sem);
return 0;
}
static ssize_t
sn9c102_read(struct file* filp, char __user * buf, size_t count, loff_t* f_pos)
{
struct sn9c102_device* cam = video_get_drvdata(video_devdata(filp));
struct sn9c102_frame_t* f, * i;
unsigned long lock_flags;
int err = 0;
if (down_interruptible(&cam->fileop_sem))
return -ERESTARTSYS;
if (cam->state & DEV_DISCONNECTED) {
DBG(1, "Device not present")
up(&cam->fileop_sem);
return -ENODEV;
}
if (cam->state & DEV_MISCONFIGURED) {
DBG(1, "The camera is misconfigured. Close and open it again.")
up(&cam->fileop_sem);
return -EIO;
}
if (cam->io == IO_MMAP) {
DBG(3, "Close and open the device again to choose "
"the read method")
up(&cam->fileop_sem);
return -EINVAL;
}
if (cam->io == IO_NONE) {
if (!sn9c102_request_buffers(cam,cam->nreadbuffers, IO_READ)) {
DBG(1, "read() failed, not enough memory")
up(&cam->fileop_sem);
return -ENOMEM;
}
cam->io = IO_READ;
cam->stream = STREAM_ON;
sn9c102_queue_unusedframes(cam);
}
if (!count) {
up(&cam->fileop_sem);
return 0;
}
if (list_empty(&cam->outqueue)) {
if (filp->f_flags & O_NONBLOCK) {
up(&cam->fileop_sem);
return -EAGAIN;
}
err = wait_event_interruptible
( cam->wait_frame,
(!list_empty(&cam->outqueue)) ||
(cam->state & DEV_DISCONNECTED) ||
(cam->state & DEV_MISCONFIGURED) );
if (err) {
up(&cam->fileop_sem);
return err;
}
if (cam->state & DEV_DISCONNECTED) {
up(&cam->fileop_sem);
return -ENODEV;
}
if (cam->state & DEV_MISCONFIGURED) {
up(&cam->fileop_sem);
return -EIO;
}
}
f = list_entry(cam->outqueue.prev, struct sn9c102_frame_t, frame);
spin_lock_irqsave(&cam->queue_lock, lock_flags);
list_for_each_entry(i, &cam->outqueue, frame)
i->state = F_UNUSED;
INIT_LIST_HEAD(&cam->outqueue);
spin_unlock_irqrestore(&cam->queue_lock, lock_flags);
sn9c102_queue_unusedframes(cam);
if (count > f->buf.bytesused)
count = f->buf.bytesused;
if (copy_to_user(buf, f->bufmem, count)) {
up(&cam->fileop_sem);
return -EFAULT;
}
*f_pos += count;
PDBGG("Frame #%lu, bytes read: %zu", (unsigned long)f->buf.index,count)
up(&cam->fileop_sem);
return count;
}
static unsigned int sn9c102_poll(struct file *filp, poll_table *wait)
{
struct sn9c102_device* cam = video_get_drvdata(video_devdata(filp));
unsigned int mask = 0;
if (down_interruptible(&cam->fileop_sem))
return POLLERR;
if (cam->state & DEV_DISCONNECTED) {
DBG(1, "Device not present")
goto error;
}
if (cam->state & DEV_MISCONFIGURED) {
DBG(1, "The camera is misconfigured. Close and open it again.")
goto error;
}
if (cam->io == IO_NONE) {
if (!sn9c102_request_buffers(cam, cam->nreadbuffers,
IO_READ)) {
DBG(1, "poll() failed, not enough memory")
goto error;
}
cam->io = IO_READ;
cam->stream = STREAM_ON;
}
if (cam->io == IO_READ)
sn9c102_queue_unusedframes(cam);
poll_wait(filp, &cam->wait_frame, wait);
if (!list_empty(&cam->outqueue))
mask |= POLLIN | POLLRDNORM;
up(&cam->fileop_sem);
return mask;
error:
up(&cam->fileop_sem);
return POLLERR;
}
static void sn9c102_vm_open(struct vm_area_struct* vma)
{
struct sn9c102_frame_t* f = vma->vm_private_data;
f->vma_use_count++;
}
static void sn9c102_vm_close(struct vm_area_struct* vma)
{
/* NOTE: buffers are not freed here */
struct sn9c102_frame_t* f = vma->vm_private_data;
f->vma_use_count--;
}
static struct vm_operations_struct sn9c102_vm_ops = {
.open = sn9c102_vm_open,
.close = sn9c102_vm_close,
};
static int sn9c102_mmap(struct file* filp, struct vm_area_struct *vma)
{
struct sn9c102_device* cam = video_get_drvdata(video_devdata(filp));
unsigned long size = vma->vm_end - vma->vm_start,
start = vma->vm_start,
pos,
page;
u32 i;
if (down_interruptible(&cam->fileop_sem))
return -ERESTARTSYS;
if (cam->state & DEV_DISCONNECTED) {
DBG(1, "Device not present")
up(&cam->fileop_sem);
return -ENODEV;
}
if (cam->state & DEV_MISCONFIGURED) {
DBG(1, "The camera is misconfigured. Close and open it again.")
up(&cam->fileop_sem);
return -EIO;
}
if (cam->io != IO_MMAP || !(vma->vm_flags & VM_WRITE) ||
size != PAGE_ALIGN(cam->frame[0].buf.length)) {
up(&cam->fileop_sem);
return -EINVAL;
}
for (i = 0; i < cam->nbuffers; i++) {
if ((cam->frame[i].buf.m.offset>>PAGE_SHIFT) == vma->vm_pgoff)
break;
}
if (i == cam->nbuffers) {
up(&cam->fileop_sem);
return -EINVAL;
}
/* VM_IO is eventually going to replace PageReserved altogether */
vma->vm_flags |= VM_IO;
vma->vm_flags |= VM_RESERVED; /* avoid to swap out this VMA */
pos = (unsigned long)cam->frame[i].bufmem;
while (size > 0) { /* size is page-aligned */
page = vmalloc_to_pfn((void *)pos);
if (remap_pfn_range(vma, start, page, PAGE_SIZE,
vma->vm_page_prot)) {
up(&cam->fileop_sem);
return -EAGAIN;
}
start += PAGE_SIZE;
pos += PAGE_SIZE;
size -= PAGE_SIZE;
}
vma->vm_ops = &sn9c102_vm_ops;
vma->vm_private_data = &cam->frame[i];
sn9c102_vm_open(vma);
up(&cam->fileop_sem);
return 0;
}
static int sn9c102_ioctl_v4l2(struct inode* inode, struct file* filp,
unsigned int cmd, void __user * arg)
{
struct sn9c102_device* cam = video_get_drvdata(video_devdata(filp));
switch (cmd) {
case VIDIOC_QUERYCAP:
{
struct v4l2_capability cap = {
.driver = "sn9c102",
.version = SN9C102_MODULE_VERSION_CODE,
.capabilities = V4L2_CAP_VIDEO_CAPTURE |
V4L2_CAP_READWRITE |
V4L2_CAP_STREAMING,
};
strlcpy(cap.card, cam->v4ldev->name, sizeof(cap.card));
if (usb_make_path(cam->usbdev, cap.bus_info,
sizeof(cap.bus_info)) < 0)
strlcpy(cap.bus_info, cam->dev.bus_id,
sizeof(cap.bus_info));
if (copy_to_user(arg, &cap, sizeof(cap)))
return -EFAULT;
return 0;
}
case VIDIOC_ENUMINPUT:
{
struct v4l2_input i;
if (copy_from_user(&i, arg, sizeof(i)))
return -EFAULT;
if (i.index)
return -EINVAL;
memset(&i, 0, sizeof(i));
strcpy(i.name, "USB");
if (copy_to_user(arg, &i, sizeof(i)))
return -EFAULT;
return 0;
}
case VIDIOC_G_INPUT:
case VIDIOC_S_INPUT:
{
int index;
if (copy_from_user(&index, arg, sizeof(index)))
return -EFAULT;
if (index != 0)
return -EINVAL;
return 0;
}
case VIDIOC_QUERYCTRL:
{
struct sn9c102_sensor* s = cam->sensor;
struct v4l2_queryctrl qc;
u8 i, n;
if (copy_from_user(&qc, arg, sizeof(qc)))
return -EFAULT;
n = sizeof(s->qctrl) / sizeof(s->qctrl[0]);
for (i = 0; i < n; i++)
if (qc.id && qc.id == s->qctrl[i].id) {
memcpy(&qc, &(s->qctrl[i]), sizeof(qc));
if (copy_to_user(arg, &qc, sizeof(qc)))
return -EFAULT;
return 0;
}
return -EINVAL;
}
case VIDIOC_G_CTRL:
{
struct sn9c102_sensor* s = cam->sensor;
struct v4l2_control ctrl;
int err = 0;
if (!s->get_ctrl)
return -EINVAL;
if (copy_from_user(&ctrl, arg, sizeof(ctrl)))
return -EFAULT;
err = s->get_ctrl(cam, &ctrl);
if (copy_to_user(arg, &ctrl, sizeof(ctrl)))
return -EFAULT;
return err;
}
case VIDIOC_S_CTRL_OLD:
case VIDIOC_S_CTRL:
{
struct sn9c102_sensor* s = cam->sensor;
struct v4l2_control ctrl;
u8 i, n;
int err = 0;
if (!s->set_ctrl)
return -EINVAL;
if (copy_from_user(&ctrl, arg, sizeof(ctrl)))
return -EFAULT;
n = sizeof(s->qctrl) / sizeof(s->qctrl[0]);
for (i = 0; i < n; i++)
if (ctrl.id == s->qctrl[i].id) {
if (ctrl.value < s->qctrl[i].minimum ||
ctrl.value > s->qctrl[i].maximum)
return -ERANGE;
ctrl.value -= ctrl.value % s->qctrl[i].step;
break;
}
if ((err = s->set_ctrl(cam, &ctrl)))
return err;
s->_qctrl[i].default_value = ctrl.value;
PDBGG("VIDIOC_S_CTRL: id %lu, value %lu",
(unsigned long)ctrl.id, (unsigned long)ctrl.value)
return 0;
}
case VIDIOC_CROPCAP:
{
struct v4l2_cropcap* cc = &(cam->sensor->cropcap);
cc->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
cc->pixelaspect.numerator = 1;
cc->pixelaspect.denominator = 1;
if (copy_to_user(arg, cc, sizeof(*cc)))
return -EFAULT;
return 0;
}
case VIDIOC_G_CROP:
{
struct sn9c102_sensor* s = cam->sensor;
struct v4l2_crop crop = {
.type = V4L2_BUF_TYPE_VIDEO_CAPTURE,
};
memcpy(&(crop.c), &(s->_rect), sizeof(struct v4l2_rect));
if (copy_to_user(arg, &crop, sizeof(crop)))
return -EFAULT;
return 0;
}
case VIDIOC_S_CROP:
{
struct sn9c102_sensor* s = cam->sensor;
struct v4l2_crop crop;
struct v4l2_rect* rect;
struct v4l2_rect* bounds = &(s->cropcap.bounds);
struct v4l2_pix_format* pix_format = &(s->pix_format);
u8 scale;
const enum sn9c102_stream_state stream = cam->stream;
const u32 nbuffers = cam->nbuffers;
u32 i;
int err = 0;
if (copy_from_user(&crop, arg, sizeof(crop)))
return -EFAULT;
rect = &(crop.c);
if (crop.type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
if (cam->module_param.force_munmap)
for (i = 0; i < cam->nbuffers; i++)
if (cam->frame[i].vma_use_count) {
DBG(3, "VIDIOC_S_CROP failed. "
"Unmap the buffers first.")
return -EINVAL;
}
/* Preserve R,G or B origin */
rect->left = (s->_rect.left & 1L) ?
rect->left | 1L : rect->left & ~1L;
rect->top = (s->_rect.top & 1L) ?
rect->top | 1L : rect->top & ~1L;
if (rect->width < 16)
rect->width = 16;
if (rect->height < 16)
rect->height = 16;
if (rect->width > bounds->width)
rect->width = bounds->width;
if (rect->height > bounds->height)
rect->height = bounds->height;
if (rect->left < bounds->left)
rect->left = bounds->left;
if (rect->top < bounds->top)
rect->top = bounds->top;
if (rect->left + rect->width > bounds->left + bounds->width)
rect->left = bounds->left+bounds->width - rect->width;
if (rect->top + rect->height > bounds->top + bounds->height)
rect->top = bounds->top+bounds->height - rect->height;
rect->width &= ~15L;
rect->height &= ~15L;
if (SN9C102_PRESERVE_IMGSCALE) {
/* Calculate the actual scaling factor */
u32 a, b;
a = rect->width * rect->height;
b = pix_format->width * pix_format->height;
scale = b ? (u8)((a / b) < 4 ? 1 :
((a / b) < 16 ? 2 : 4)) : 1;
} else
scale = 1;
if (cam->stream == STREAM_ON)
if ((err = sn9c102_stream_interrupt(cam)))
return err;
if (copy_to_user(arg, &crop, sizeof(crop))) {
cam->stream = stream;
return -EFAULT;
}
if (cam->module_param.force_munmap || cam->io == IO_READ)
sn9c102_release_buffers(cam);
err = sn9c102_set_crop(cam, rect);
if (s->set_crop)
err += s->set_crop(cam, rect);
err += sn9c102_set_scale(cam, scale);
if (err) { /* atomic, no rollback in ioctl() */
cam->state |= DEV_MISCONFIGURED;
DBG(1, "VIDIOC_S_CROP failed because of hardware "
"problems. To use the camera, close and open "
"/dev/video%d again.", cam->v4ldev->minor)
return -EIO;
}
s->pix_format.width = rect->width/scale;
s->pix_format.height = rect->height/scale;
memcpy(&(s->_rect), rect, sizeof(*rect));
if ((cam->module_param.force_munmap || cam->io == IO_READ) &&
nbuffers != sn9c102_request_buffers(cam, nbuffers,
cam->io)) {
cam->state |= DEV_MISCONFIGURED;
DBG(1, "VIDIOC_S_CROP failed because of not enough "
"memory. To use the camera, close and open "
"/dev/video%d again.", cam->v4ldev->minor)
return -ENOMEM;
}
cam->stream = stream;
return 0;
}
case VIDIOC_ENUM_FMT:
{
struct v4l2_fmtdesc fmtd;
if (copy_from_user(&fmtd, arg, sizeof(fmtd)))
return -EFAULT;
if (fmtd.index == 0) {
strcpy(fmtd.description, "bayer rgb");
fmtd.pixelformat = V4L2_PIX_FMT_SBGGR8;
} else if (fmtd.index == 1) {
strcpy(fmtd.description, "compressed");
fmtd.pixelformat = V4L2_PIX_FMT_SN9C10X;
fmtd.flags = V4L2_FMT_FLAG_COMPRESSED;
} else
return -EINVAL;
fmtd.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
memset(&fmtd.reserved, 0, sizeof(fmtd.reserved));
if (copy_to_user(arg, &fmtd, sizeof(fmtd)))
return -EFAULT;
return 0;
}
case VIDIOC_G_FMT:
{
struct v4l2_format format;
struct v4l2_pix_format* pfmt = &(cam->sensor->pix_format);
if (copy_from_user(&format, arg, sizeof(format)))
return -EFAULT;
if (format.type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
pfmt->bytesperline = (pfmt->pixelformat==V4L2_PIX_FMT_SN9C10X)
? 0 : (pfmt->width * pfmt->priv) / 8;
pfmt->sizeimage = pfmt->height * ((pfmt->width*pfmt->priv)/8);
pfmt->field = V4L2_FIELD_NONE;
memcpy(&(format.fmt.pix), pfmt, sizeof(*pfmt));
if (copy_to_user(arg, &format, sizeof(format)))
return -EFAULT;
return 0;
}
case VIDIOC_TRY_FMT:
case VIDIOC_S_FMT:
{
struct sn9c102_sensor* s = cam->sensor;
struct v4l2_format format;
struct v4l2_pix_format* pix;
struct v4l2_pix_format* pfmt = &(s->pix_format);
struct v4l2_rect* bounds = &(s->cropcap.bounds);
struct v4l2_rect rect;
u8 scale;
const enum sn9c102_stream_state stream = cam->stream;
const u32 nbuffers = cam->nbuffers;
u32 i;
int err = 0;
if (copy_from_user(&format, arg, sizeof(format)))
return -EFAULT;
pix = &(format.fmt.pix);
if (format.type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
memcpy(&rect, &(s->_rect), sizeof(rect));
{ /* calculate the actual scaling factor */
u32 a, b;
a = rect.width * rect.height;
b = pix->width * pix->height;
scale = b ? (u8)((a / b) < 4 ? 1 :
((a / b) < 16 ? 2 : 4)) : 1;
}
rect.width = scale * pix->width;
rect.height = scale * pix->height;
if (rect.width < 16)
rect.width = 16;
if (rect.height < 16)
rect.height = 16;
if (rect.width > bounds->left + bounds->width - rect.left)
rect.width = bounds->left + bounds->width - rect.left;
if (rect.height > bounds->top + bounds->height - rect.top)
rect.height = bounds->top + bounds->height - rect.top;
rect.width &= ~15L;
rect.height &= ~15L;
{ /* adjust the scaling factor */
u32 a, b;
a = rect.width * rect.height;
b = pix->width * pix->height;
scale = b ? (u8)((a / b) < 4 ? 1 :
((a / b) < 16 ? 2 : 4)) : 1;
}
pix->width = rect.width / scale;
pix->height = rect.height / scale;
if (pix->pixelformat != V4L2_PIX_FMT_SN9C10X &&
pix->pixelformat != V4L2_PIX_FMT_SBGGR8)
pix->pixelformat = pfmt->pixelformat;
pix->priv = pfmt->priv; /* bpp */
pix->colorspace = pfmt->colorspace;
pix->bytesperline = (pix->pixelformat == V4L2_PIX_FMT_SN9C10X)
? 0 : (pix->width * pix->priv) / 8;
pix->sizeimage = pix->height * ((pix->width * pix->priv) / 8);
pix->field = V4L2_FIELD_NONE;
if (cmd == VIDIOC_TRY_FMT) {
if (copy_to_user(arg, &format, sizeof(format)))
return -EFAULT;
return 0;
}
if (cam->module_param.force_munmap)
for (i = 0; i < cam->nbuffers; i++)
if (cam->frame[i].vma_use_count) {
DBG(3, "VIDIOC_S_FMT failed. "
"Unmap the buffers first.")
return -EINVAL;
}
if (cam->stream == STREAM_ON)
if ((err = sn9c102_stream_interrupt(cam)))
return err;
if (copy_to_user(arg, &format, sizeof(format))) {
cam->stream = stream;
return -EFAULT;
}
if (cam->module_param.force_munmap || cam->io == IO_READ)
sn9c102_release_buffers(cam);
err += sn9c102_set_pix_format(cam, pix);
err += sn9c102_set_crop(cam, &rect);
if (s->set_pix_format)
err += s->set_pix_format(cam, pix);
if (s->set_crop)
err += s->set_crop(cam, &rect);
err += sn9c102_set_scale(cam, scale);
if (err) { /* atomic, no rollback in ioctl() */
cam->state |= DEV_MISCONFIGURED;
DBG(1, "VIDIOC_S_FMT failed because of hardware "
"problems. To use the camera, close and open "
"/dev/video%d again.", cam->v4ldev->minor)
return -EIO;
}
memcpy(pfmt, pix, sizeof(*pix));
memcpy(&(s->_rect), &rect, sizeof(rect));
if ((cam->module_param.force_munmap || cam->io == IO_READ) &&
nbuffers != sn9c102_request_buffers(cam, nbuffers,
cam->io)) {
cam->state |= DEV_MISCONFIGURED;
DBG(1, "VIDIOC_S_FMT failed because of not enough "
"memory. To use the camera, close and open "
"/dev/video%d again.", cam->v4ldev->minor)
return -ENOMEM;
}
cam->stream = stream;
return 0;
}
case VIDIOC_G_JPEGCOMP:
{
if (copy_to_user(arg, &cam->compression,
sizeof(cam->compression)))
return -EFAULT;
return 0;
}
case VIDIOC_S_JPEGCOMP:
{
struct v4l2_jpegcompression jc;
const enum sn9c102_stream_state stream = cam->stream;
int err = 0;
if (copy_from_user(&jc, arg, sizeof(jc)))
return -EFAULT;
if (jc.quality != 0 && jc.quality != 1)
return -EINVAL;
if (cam->stream == STREAM_ON)
if ((err = sn9c102_stream_interrupt(cam)))
return err;
err += sn9c102_set_compression(cam, &jc);
if (err) { /* atomic, no rollback in ioctl() */
cam->state |= DEV_MISCONFIGURED;
DBG(1, "VIDIOC_S_JPEGCOMP failed because of hardware "
"problems. To use the camera, close and open "
"/dev/video%d again.", cam->v4ldev->minor)
return -EIO;
}
cam->compression.quality = jc.quality;
cam->stream = stream;
return 0;
}
case VIDIOC_REQBUFS:
{
struct v4l2_requestbuffers rb;
u32 i;
int err;
if (copy_from_user(&rb, arg, sizeof(rb)))
return -EFAULT;
if (rb.type != V4L2_BUF_TYPE_VIDEO_CAPTURE ||
rb.memory != V4L2_MEMORY_MMAP)
return -EINVAL;
if (cam->io == IO_READ) {
DBG(3, "Close and open the device again to choose "
"the mmap I/O method")
return -EINVAL;
}
for (i = 0; i < cam->nbuffers; i++)
if (cam->frame[i].vma_use_count) {
DBG(3, "VIDIOC_REQBUFS failed. "
"Previous buffers are still mapped.")
return -EINVAL;
}
if (cam->stream == STREAM_ON)
if ((err = sn9c102_stream_interrupt(cam)))
return err;
sn9c102_empty_framequeues(cam);
sn9c102_release_buffers(cam);
if (rb.count)
rb.count = sn9c102_request_buffers(cam, rb.count,
IO_MMAP);
if (copy_to_user(arg, &rb, sizeof(rb))) {
sn9c102_release_buffers(cam);
cam->io = IO_NONE;
return -EFAULT;
}
cam->io = rb.count ? IO_MMAP : IO_NONE;
return 0;
}
case VIDIOC_QUERYBUF:
{
struct v4l2_buffer b;
if (copy_from_user(&b, arg, sizeof(b)))
return -EFAULT;
if (b.type != V4L2_BUF_TYPE_VIDEO_CAPTURE ||
b.index >= cam->nbuffers || cam->io != IO_MMAP)
return -EINVAL;
memcpy(&b, &cam->frame[b.index].buf, sizeof(b));
if (cam->frame[b.index].vma_use_count)
b.flags |= V4L2_BUF_FLAG_MAPPED;
if (cam->frame[b.index].state == F_DONE)
b.flags |= V4L2_BUF_FLAG_DONE;
else if (cam->frame[b.index].state != F_UNUSED)
b.flags |= V4L2_BUF_FLAG_QUEUED;
if (copy_to_user(arg, &b, sizeof(b)))
return -EFAULT;
return 0;
}
case VIDIOC_QBUF:
{
struct v4l2_buffer b;
unsigned long lock_flags;
if (copy_from_user(&b, arg, sizeof(b)))
return -EFAULT;
if (b.type != V4L2_BUF_TYPE_VIDEO_CAPTURE ||
b.index >= cam->nbuffers || cam->io != IO_MMAP)
return -EINVAL;
if (cam->frame[b.index].state != F_UNUSED)
return -EINVAL;
cam->frame[b.index].state = F_QUEUED;
spin_lock_irqsave(&cam->queue_lock, lock_flags);
list_add_tail(&cam->frame[b.index].frame, &cam->inqueue);
spin_unlock_irqrestore(&cam->queue_lock, lock_flags);
PDBGG("Frame #%lu queued", (unsigned long)b.index)
return 0;
}
case VIDIOC_DQBUF:
{
struct v4l2_buffer b;
struct sn9c102_frame_t *f;
unsigned long lock_flags;
int err = 0;
if (copy_from_user(&b, arg, sizeof(b)))
return -EFAULT;
if (b.type != V4L2_BUF_TYPE_VIDEO_CAPTURE || cam->io!= IO_MMAP)
return -EINVAL;
if (list_empty(&cam->outqueue)) {
if (cam->stream == STREAM_OFF)
return -EINVAL;
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;
err = wait_event_interruptible
( cam->wait_frame,
(!list_empty(&cam->outqueue)) ||
(cam->state & DEV_DISCONNECTED) ||
(cam->state & DEV_MISCONFIGURED) );
if (err)
return err;
if (cam->state & DEV_DISCONNECTED)
return -ENODEV;
if (cam->state & DEV_MISCONFIGURED)
return -EIO;
}
spin_lock_irqsave(&cam->queue_lock, lock_flags);
f = list_entry(cam->outqueue.next, struct sn9c102_frame_t,
frame);
list_del(cam->outqueue.next);
spin_unlock_irqrestore(&cam->queue_lock, lock_flags);
f->state = F_UNUSED;
memcpy(&b, &f->buf, sizeof(b));
if (f->vma_use_count)
b.flags |= V4L2_BUF_FLAG_MAPPED;
if (copy_to_user(arg, &b, sizeof(b)))
return -EFAULT;
PDBGG("Frame #%lu dequeued", (unsigned long)f->buf.index)
return 0;
}
case VIDIOC_STREAMON:
{
int type;
if (copy_from_user(&type, arg, sizeof(type)))
return -EFAULT;
if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE || cam->io != IO_MMAP)
return -EINVAL;
if (list_empty(&cam->inqueue))
return -EINVAL;
cam->stream = STREAM_ON;
DBG(3, "Stream on")
return 0;
}
case VIDIOC_STREAMOFF:
{
int type, err;
if (copy_from_user(&type, arg, sizeof(type)))
return -EFAULT;
if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE || cam->io != IO_MMAP)
return -EINVAL;
if (cam->stream == STREAM_ON)
if ((err = sn9c102_stream_interrupt(cam)))
return err;
sn9c102_empty_framequeues(cam);
DBG(3, "Stream off")
return 0;
}
case VIDIOC_G_PARM:
{
struct v4l2_streamparm sp;
if (copy_from_user(&sp, arg, sizeof(sp)))
return -EFAULT;
if (sp.type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
sp.parm.capture.extendedmode = 0;
sp.parm.capture.readbuffers = cam->nreadbuffers;
if (copy_to_user(arg, &sp, sizeof(sp)))
return -EFAULT;
return 0;
}
case VIDIOC_S_PARM_OLD:
case VIDIOC_S_PARM:
{
struct v4l2_streamparm sp;
if (copy_from_user(&sp, arg, sizeof(sp)))
return -EFAULT;
if (sp.type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
sp.parm.capture.extendedmode = 0;
if (sp.parm.capture.readbuffers == 0)
sp.parm.capture.readbuffers = cam->nreadbuffers;
if (sp.parm.capture.readbuffers > SN9C102_MAX_FRAMES)
sp.parm.capture.readbuffers = SN9C102_MAX_FRAMES;
if (copy_to_user(arg, &sp, sizeof(sp)))
return -EFAULT;
cam->nreadbuffers = sp.parm.capture.readbuffers;
return 0;
}
case VIDIOC_G_STD:
case VIDIOC_S_STD:
case VIDIOC_QUERYSTD:
case VIDIOC_ENUMSTD:
case VIDIOC_QUERYMENU:
return -EINVAL;
default:
return -EINVAL;
}
}
static int sn9c102_ioctl(struct inode* inode, struct file* filp,
unsigned int cmd, unsigned long arg)
{
struct sn9c102_device* cam = video_get_drvdata(video_devdata(filp));
int err = 0;
if (down_interruptible(&cam->fileop_sem))
return -ERESTARTSYS;
if (cam->state & DEV_DISCONNECTED) {
DBG(1, "Device not present")
up(&cam->fileop_sem);
return -ENODEV;
}
if (cam->state & DEV_MISCONFIGURED) {
DBG(1, "The camera is misconfigured. Close and open it again.")
up(&cam->fileop_sem);
return -EIO;
}
err = sn9c102_ioctl_v4l2(inode, filp, cmd, (void __user *)arg);
up(&cam->fileop_sem);
return err;
}
static struct file_operations sn9c102_fops = {
.owner = THIS_MODULE,
.open = sn9c102_open,
.release = sn9c102_release,
.ioctl = sn9c102_ioctl,
.read = sn9c102_read,
.poll = sn9c102_poll,
.mmap = sn9c102_mmap,
.llseek = no_llseek,
};
/*****************************************************************************/
/* It exists a single interface only. We do not need to validate anything. */
static int
sn9c102_usb_probe(struct usb_interface* intf, const struct usb_device_id* id)
{
struct usb_device *udev = interface_to_usbdev(intf);
struct sn9c102_device* cam;
static unsigned int dev_nr = 0;
unsigned int i, n;
int err = 0, r;
n = sizeof(sn9c102_id_table)/sizeof(sn9c102_id_table[0]);
for (i = 0; i < n-1; i++)
if (le16_to_cpu(udev->descriptor.idVendor) ==
sn9c102_id_table[i].idVendor &&
le16_to_cpu(udev->descriptor.idProduct) ==
sn9c102_id_table[i].idProduct)
break;
if (i == n-1)
return -ENODEV;
if (!(cam = kmalloc(sizeof(struct sn9c102_device), GFP_KERNEL)))
return -ENOMEM;
memset(cam, 0, sizeof(*cam));
cam->usbdev = udev;
memcpy(&cam->dev, &udev->dev, sizeof(struct device));
if (!(cam->control_buffer = kmalloc(8, GFP_KERNEL))) {
DBG(1, "kmalloc() failed")
err = -ENOMEM;
goto fail;
}
memset(cam->control_buffer, 0, 8);
if (!(cam->v4ldev = video_device_alloc())) {
DBG(1, "video_device_alloc() failed")
err = -ENOMEM;
goto fail;
}
init_MUTEX(&cam->dev_sem);
r = sn9c102_read_reg(cam, 0x00);
if (r < 0 || r != 0x10) {
DBG(1, "Sorry, this is not a SN9C10x based camera "
"(vid/pid 0x%04X/0x%04X)",
sn9c102_id_table[i].idVendor,sn9c102_id_table[i].idProduct)
err = -ENODEV;
goto fail;
}
cam->bridge = (sn9c102_id_table[i].idProduct & 0xffc0) == 0x6080 ?
BRIDGE_SN9C103 : BRIDGE_SN9C102;
switch (cam->bridge) {
case BRIDGE_SN9C101:
case BRIDGE_SN9C102:
DBG(2, "SN9C10[12] PC Camera Controller detected "
"(vid/pid 0x%04X/0x%04X)", sn9c102_id_table[i].idVendor,
sn9c102_id_table[i].idProduct)
break;
case BRIDGE_SN9C103:
DBG(2, "SN9C103 PC Camera Controller detected "
"(vid/pid 0x%04X/0x%04X)", sn9c102_id_table[i].idVendor,
sn9c102_id_table[i].idProduct)
break;
}
for (i = 0; sn9c102_sensor_table[i]; i++) {
err = sn9c102_sensor_table[i](cam);
if (!err)
break;
}
if (!err && cam->sensor) {
DBG(2, "%s image sensor detected", cam->sensor->name)
DBG(3, "Support for %s maintained by %s",
cam->sensor->name, cam->sensor->maintainer)
} else {
DBG(1, "No supported image sensor detected")
err = -ENODEV;
goto fail;
}
if (sn9c102_init(cam)) {
DBG(1, "Initialization failed. I will retry on open().")
cam->state |= DEV_MISCONFIGURED;
}
strcpy(cam->v4ldev->name, "SN9C10x PC Camera");
cam->v4ldev->owner = THIS_MODULE;
cam->v4ldev->type = VID_TYPE_CAPTURE | VID_TYPE_SCALES;
cam->v4ldev->hardware = VID_HARDWARE_SN9C102;
cam->v4ldev->fops = &sn9c102_fops;
cam->v4ldev->minor = video_nr[dev_nr];
cam->v4ldev->release = video_device_release;
video_set_drvdata(cam->v4ldev, cam);
down(&cam->dev_sem);
err = video_register_device(cam->v4ldev, VFL_TYPE_GRABBER,
video_nr[dev_nr]);
if (err) {
DBG(1, "V4L2 device registration failed")
if (err == -ENFILE && video_nr[dev_nr] == -1)
DBG(1, "Free /dev/videoX node not found")
video_nr[dev_nr] = -1;
dev_nr = (dev_nr < SN9C102_MAX_DEVICES-1) ? dev_nr+1 : 0;
up(&cam->dev_sem);
goto fail;
}
DBG(2, "V4L2 device registered as /dev/video%d", cam->v4ldev->minor)
cam->module_param.force_munmap = force_munmap[dev_nr];
dev_nr = (dev_nr < SN9C102_MAX_DEVICES-1) ? dev_nr+1 : 0;
sn9c102_create_sysfs(cam);
DBG(2, "Optional device control through 'sysfs' interface ready")
usb_set_intfdata(intf, cam);
up(&cam->dev_sem);
return 0;
fail:
if (cam) {
kfree(cam->control_buffer);
if (cam->v4ldev)
video_device_release(cam->v4ldev);
kfree(cam);
}
return err;
}
static void sn9c102_usb_disconnect(struct usb_interface* intf)
{
struct sn9c102_device* cam = usb_get_intfdata(intf);
if (!cam)
return;
down_write(&sn9c102_disconnect);
down(&cam->dev_sem);
DBG(2, "Disconnecting %s...", cam->v4ldev->name)
wake_up_interruptible_all(&cam->open);
if (cam->users) {
DBG(2, "Device /dev/video%d is open! Deregistration and "
"memory deallocation are deferred on close.",
cam->v4ldev->minor)
cam->state |= DEV_MISCONFIGURED;
sn9c102_stop_transfer(cam);
cam->state |= DEV_DISCONNECTED;
wake_up_interruptible(&cam->wait_frame);
wake_up_interruptible(&cam->wait_stream);
} else {
cam->state |= DEV_DISCONNECTED;
sn9c102_release_resources(cam);
}
up(&cam->dev_sem);
if (!cam->users)
kfree(cam);
up_write(&sn9c102_disconnect);
}
static struct usb_driver sn9c102_usb_driver = {
.owner = THIS_MODULE,
.name = "sn9c102",
.id_table = sn9c102_id_table,
.probe = sn9c102_usb_probe,
.disconnect = sn9c102_usb_disconnect,
};
/*****************************************************************************/
static int __init sn9c102_module_init(void)
{
int err = 0;
KDBG(2, SN9C102_MODULE_NAME " v" SN9C102_MODULE_VERSION)
KDBG(3, SN9C102_MODULE_AUTHOR)
if ((err = usb_register(&sn9c102_usb_driver)))
KDBG(1, "usb_register() failed")
return err;
}
static void __exit sn9c102_module_exit(void)
{
usb_deregister(&sn9c102_usb_driver);
}
module_init(sn9c102_module_init);
module_exit(sn9c102_module_exit);