1
linux/drivers/net/sh_eth.c

1518 lines
37 KiB
C
Raw Normal View History

/*
* SuperH Ethernet device driver
*
* Copyright (C) 2006-2008 Nobuhiro Iwamatsu
* Copyright (C) 2008-2009 Renesas Solutions Corp.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*/
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/mdio-bitbang.h>
#include <linux/netdevice.h>
#include <linux/phy.h>
#include <linux/cache.h>
#include <linux/io.h>
#include "sh_eth.h"
/* There is CPU dependent code */
#if defined(CONFIG_CPU_SUBTYPE_SH7724)
#define SH_ETH_RESET_DEFAULT 1
static void sh_eth_set_duplex(struct net_device *ndev)
{
struct sh_eth_private *mdp = netdev_priv(ndev);
u32 ioaddr = ndev->base_addr;
if (mdp->duplex) /* Full */
ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_DM, ioaddr + ECMR);
else /* Half */
ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_DM, ioaddr + ECMR);
}
static void sh_eth_set_rate(struct net_device *ndev)
{
struct sh_eth_private *mdp = netdev_priv(ndev);
u32 ioaddr = ndev->base_addr;
switch (mdp->speed) {
case 10: /* 10BASE */
ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_RTM, ioaddr + ECMR);
break;
case 100:/* 100BASE */
ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_RTM, ioaddr + ECMR);
break;
default:
break;
}
}
/* SH7724 */
static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
.set_duplex = sh_eth_set_duplex,
.set_rate = sh_eth_set_rate,
.ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
.ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
.eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
.tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
.eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
.tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
.apr = 1,
.mpr = 1,
.tpauser = 1,
.hw_swap = 1,
};
#elif defined(CONFIG_CPU_SUBTYPE_SH7763)
#define SH_ETH_HAS_TSU 1
static void sh_eth_chip_reset(struct net_device *ndev)
{
/* reset device */
ctrl_outl(ARSTR_ARSTR, ARSTR);
mdelay(1);
}
static void sh_eth_reset(struct net_device *ndev)
{
u32 ioaddr = ndev->base_addr;
int cnt = 100;
ctrl_outl(EDSR_ENALL, ioaddr + EDSR);
ctrl_outl(ctrl_inl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR);
while (cnt > 0) {
if (!(ctrl_inl(ioaddr + EDMR) & 0x3))
break;
mdelay(1);
cnt--;
}
if (cnt < 0)
printk(KERN_ERR "Device reset fail\n");
/* Table Init */
ctrl_outl(0x0, ioaddr + TDLAR);
ctrl_outl(0x0, ioaddr + TDFAR);
ctrl_outl(0x0, ioaddr + TDFXR);
ctrl_outl(0x0, ioaddr + TDFFR);
ctrl_outl(0x0, ioaddr + RDLAR);
ctrl_outl(0x0, ioaddr + RDFAR);
ctrl_outl(0x0, ioaddr + RDFXR);
ctrl_outl(0x0, ioaddr + RDFFR);
}
static void sh_eth_set_duplex(struct net_device *ndev)
{
struct sh_eth_private *mdp = netdev_priv(ndev);
u32 ioaddr = ndev->base_addr;
if (mdp->duplex) /* Full */
ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_DM, ioaddr + ECMR);
else /* Half */
ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_DM, ioaddr + ECMR);
}
static void sh_eth_set_rate(struct net_device *ndev)
{
struct sh_eth_private *mdp = netdev_priv(ndev);
u32 ioaddr = ndev->base_addr;
switch (mdp->speed) {
case 10: /* 10BASE */
ctrl_outl(GECMR_10, ioaddr + GECMR);
break;
case 100:/* 100BASE */
ctrl_outl(GECMR_100, ioaddr + GECMR);
break;
case 1000: /* 1000BASE */
ctrl_outl(GECMR_1000, ioaddr + GECMR);
break;
default:
break;
}
}
/* sh7763 */
static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
.chip_reset = sh_eth_chip_reset,
.set_duplex = sh_eth_set_duplex,
.set_rate = sh_eth_set_rate,
.ecsr_value = ECSR_ICD | ECSR_MPD,
.ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
.eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
.tx_check = EESR_TC1 | EESR_FTC,
.eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
EESR_ECI,
.tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
EESR_TFE,
.apr = 1,
.mpr = 1,
.tpauser = 1,
.bculr = 1,
.hw_swap = 1,
.rpadir = 1,
.no_trimd = 1,
.no_ade = 1,
};
#elif defined(CONFIG_CPU_SUBTYPE_SH7619)
#define SH_ETH_RESET_DEFAULT 1
static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
.eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
.apr = 1,
.mpr = 1,
.tpauser = 1,
.hw_swap = 1,
};
#elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
#define SH_ETH_RESET_DEFAULT 1
#define SH_ETH_HAS_TSU 1
static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
.eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
};
#endif
static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
{
if (!cd->ecsr_value)
cd->ecsr_value = DEFAULT_ECSR_INIT;
if (!cd->ecsipr_value)
cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
if (!cd->fcftr_value)
cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
DEFAULT_FIFO_F_D_RFD;
if (!cd->fdr_value)
cd->fdr_value = DEFAULT_FDR_INIT;
if (!cd->rmcr_value)
cd->rmcr_value = DEFAULT_RMCR_VALUE;
if (!cd->tx_check)
cd->tx_check = DEFAULT_TX_CHECK;
if (!cd->eesr_err_check)
cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
if (!cd->tx_error_check)
cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
}
#if defined(SH_ETH_RESET_DEFAULT)
/* Chip Reset */
static void sh_eth_reset(struct net_device *ndev)
{
u32 ioaddr = ndev->base_addr;
ctrl_outl(ctrl_inl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR);
mdelay(3);
ctrl_outl(ctrl_inl(ioaddr + EDMR) & ~EDMR_SRST, ioaddr + EDMR);
}
#endif
#if defined(CONFIG_CPU_SH4)
static void sh_eth_set_receive_align(struct sk_buff *skb)
{
int reserve;
reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
if (reserve)
skb_reserve(skb, reserve);
}
#else
static void sh_eth_set_receive_align(struct sk_buff *skb)
{
skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
}
#endif
/* CPU <-> EDMAC endian convert */
static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
{
switch (mdp->edmac_endian) {
case EDMAC_LITTLE_ENDIAN:
return cpu_to_le32(x);
case EDMAC_BIG_ENDIAN:
return cpu_to_be32(x);
}
return x;
}
static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
{
switch (mdp->edmac_endian) {
case EDMAC_LITTLE_ENDIAN:
return le32_to_cpu(x);
case EDMAC_BIG_ENDIAN:
return be32_to_cpu(x);
}
return x;
}
/*
* Program the hardware MAC address from dev->dev_addr.
*/
static void update_mac_address(struct net_device *ndev)
{
u32 ioaddr = ndev->base_addr;
ctrl_outl((ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
(ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]),
ioaddr + MAHR);
ctrl_outl((ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]),
ioaddr + MALR);
}
/*
* Get MAC address from SuperH MAC address register
*
* SuperH's Ethernet device doesn't have 'ROM' to MAC address.
* This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
* When you want use this device, you must set MAC address in bootloader.
*
*/
static void read_mac_address(struct net_device *ndev)
{
u32 ioaddr = ndev->base_addr;
ndev->dev_addr[0] = (ctrl_inl(ioaddr + MAHR) >> 24);
ndev->dev_addr[1] = (ctrl_inl(ioaddr + MAHR) >> 16) & 0xFF;
ndev->dev_addr[2] = (ctrl_inl(ioaddr + MAHR) >> 8) & 0xFF;
ndev->dev_addr[3] = (ctrl_inl(ioaddr + MAHR) & 0xFF);
ndev->dev_addr[4] = (ctrl_inl(ioaddr + MALR) >> 8) & 0xFF;
ndev->dev_addr[5] = (ctrl_inl(ioaddr + MALR) & 0xFF);
}
struct bb_info {
struct mdiobb_ctrl ctrl;
u32 addr;
u32 mmd_msk;/* MMD */
u32 mdo_msk;
u32 mdi_msk;
u32 mdc_msk;
};
/* PHY bit set */
static void bb_set(u32 addr, u32 msk)
{
ctrl_outl(ctrl_inl(addr) | msk, addr);
}
/* PHY bit clear */
static void bb_clr(u32 addr, u32 msk)
{
ctrl_outl((ctrl_inl(addr) & ~msk), addr);
}
/* PHY bit read */
static int bb_read(u32 addr, u32 msk)
{
return (ctrl_inl(addr) & msk) != 0;
}
/* Data I/O pin control */
static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
{
struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
if (bit)
bb_set(bitbang->addr, bitbang->mmd_msk);
else
bb_clr(bitbang->addr, bitbang->mmd_msk);
}
/* Set bit data*/
static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
{
struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
if (bit)
bb_set(bitbang->addr, bitbang->mdo_msk);
else
bb_clr(bitbang->addr, bitbang->mdo_msk);
}
/* Get bit data*/
static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
{
struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
return bb_read(bitbang->addr, bitbang->mdi_msk);
}
/* MDC pin control */
static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
{
struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
if (bit)
bb_set(bitbang->addr, bitbang->mdc_msk);
else
bb_clr(bitbang->addr, bitbang->mdc_msk);
}
/* mdio bus control struct */
static struct mdiobb_ops bb_ops = {
.owner = THIS_MODULE,
.set_mdc = sh_mdc_ctrl,
.set_mdio_dir = sh_mmd_ctrl,
.set_mdio_data = sh_set_mdio,
.get_mdio_data = sh_get_mdio,
};
/* free skb and descriptor buffer */
static void sh_eth_ring_free(struct net_device *ndev)
{
struct sh_eth_private *mdp = netdev_priv(ndev);
int i;
/* Free Rx skb ringbuffer */
if (mdp->rx_skbuff) {
for (i = 0; i < RX_RING_SIZE; i++) {
if (mdp->rx_skbuff[i])
dev_kfree_skb(mdp->rx_skbuff[i]);
}
}
kfree(mdp->rx_skbuff);
/* Free Tx skb ringbuffer */
if (mdp->tx_skbuff) {
for (i = 0; i < TX_RING_SIZE; i++) {
if (mdp->tx_skbuff[i])
dev_kfree_skb(mdp->tx_skbuff[i]);
}
}
kfree(mdp->tx_skbuff);
}
/* format skb and descriptor buffer */
static void sh_eth_ring_format(struct net_device *ndev)
{
u32 ioaddr = ndev->base_addr;
struct sh_eth_private *mdp = netdev_priv(ndev);
int i;
struct sk_buff *skb;
struct sh_eth_rxdesc *rxdesc = NULL;
struct sh_eth_txdesc *txdesc = NULL;
int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
mdp->cur_rx = mdp->cur_tx = 0;
mdp->dirty_rx = mdp->dirty_tx = 0;
memset(mdp->rx_ring, 0, rx_ringsize);
/* build Rx ring buffer */
for (i = 0; i < RX_RING_SIZE; i++) {
/* skb */
mdp->rx_skbuff[i] = NULL;
skb = dev_alloc_skb(mdp->rx_buf_sz);
mdp->rx_skbuff[i] = skb;
if (skb == NULL)
break;
dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
DMA_FROM_DEVICE);
skb->dev = ndev; /* Mark as being used by this device. */
sh_eth_set_receive_align(skb);
/* RX descriptor */
rxdesc = &mdp->rx_ring[i];
rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
/* The size of the buffer is 16 byte boundary. */
rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
/* Rx descriptor address set */
if (i == 0) {
ctrl_outl(mdp->rx_desc_dma, ioaddr + RDLAR);
#if defined(CONFIG_CPU_SUBTYPE_SH7763)
ctrl_outl(mdp->rx_desc_dma, ioaddr + RDFAR);
#endif
}
}
mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
/* Mark the last entry as wrapping the ring. */
rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
memset(mdp->tx_ring, 0, tx_ringsize);
/* build Tx ring buffer */
for (i = 0; i < TX_RING_SIZE; i++) {
mdp->tx_skbuff[i] = NULL;
txdesc = &mdp->tx_ring[i];
txdesc->status = cpu_to_edmac(mdp, TD_TFP);
txdesc->buffer_length = 0;
if (i == 0) {
/* Tx descriptor address set */
ctrl_outl(mdp->tx_desc_dma, ioaddr + TDLAR);
#if defined(CONFIG_CPU_SUBTYPE_SH7763)
ctrl_outl(mdp->tx_desc_dma, ioaddr + TDFAR);
#endif
}
}
txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
}
/* Get skb and descriptor buffer */
static int sh_eth_ring_init(struct net_device *ndev)
{
struct sh_eth_private *mdp = netdev_priv(ndev);
int rx_ringsize, tx_ringsize, ret = 0;
/*
* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
* card needs room to do 8 byte alignment, +2 so we can reserve
* the first 2 bytes, and +16 gets room for the status word from the
* card.
*/
mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
(((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
/* Allocate RX and TX skb rings */
mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
GFP_KERNEL);
if (!mdp->rx_skbuff) {
dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
ret = -ENOMEM;
return ret;
}
mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
GFP_KERNEL);
if (!mdp->tx_skbuff) {
dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
ret = -ENOMEM;
goto skb_ring_free;
}
/* Allocate all Rx descriptors. */
rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
GFP_KERNEL);
if (!mdp->rx_ring) {
dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
rx_ringsize);
ret = -ENOMEM;
goto desc_ring_free;
}
mdp->dirty_rx = 0;
/* Allocate all Tx descriptors. */
tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
GFP_KERNEL);
if (!mdp->tx_ring) {
dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
tx_ringsize);
ret = -ENOMEM;
goto desc_ring_free;
}
return ret;
desc_ring_free:
/* free DMA buffer */
dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
skb_ring_free:
/* Free Rx and Tx skb ring buffer */
sh_eth_ring_free(ndev);
return ret;
}
static int sh_eth_dev_init(struct net_device *ndev)
{
int ret = 0;
struct sh_eth_private *mdp = netdev_priv(ndev);
u32 ioaddr = ndev->base_addr;
u_int32_t rx_int_var, tx_int_var;
u32 val;
/* Soft Reset */
sh_eth_reset(ndev);
/* Descriptor format */
sh_eth_ring_format(ndev);
if (mdp->cd->rpadir)
ctrl_outl(mdp->cd->rpadir_value, ioaddr + RPADIR);
/* all sh_eth int mask */
ctrl_outl(0, ioaddr + EESIPR);
#if defined(__LITTLE_ENDIAN__)
if (mdp->cd->hw_swap)
ctrl_outl(EDMR_EL, ioaddr + EDMR);
else
#endif
ctrl_outl(0, ioaddr + EDMR);
/* FIFO size set */
ctrl_outl(mdp->cd->fdr_value, ioaddr + FDR);
ctrl_outl(0, ioaddr + TFTR);
/* Frame recv control */
ctrl_outl(mdp->cd->rmcr_value, ioaddr + RMCR);
rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
ctrl_outl(rx_int_var | tx_int_var, ioaddr + TRSCER);
if (mdp->cd->bculr)
ctrl_outl(0x800, ioaddr + BCULR); /* Burst sycle set */
ctrl_outl(mdp->cd->fcftr_value, ioaddr + FCFTR);
if (!mdp->cd->no_trimd)
ctrl_outl(0, ioaddr + TRIMD);
/* Recv frame limit set register */
ctrl_outl(RFLR_VALUE, ioaddr + RFLR);
ctrl_outl(ctrl_inl(ioaddr + EESR), ioaddr + EESR);
ctrl_outl(mdp->cd->eesipr_value, ioaddr + EESIPR);
/* PAUSE Prohibition */
val = (ctrl_inl(ioaddr + ECMR) & ECMR_DM) |
ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
ctrl_outl(val, ioaddr + ECMR);
if (mdp->cd->set_rate)
mdp->cd->set_rate(ndev);
/* E-MAC Status Register clear */
ctrl_outl(mdp->cd->ecsr_value, ioaddr + ECSR);
/* E-MAC Interrupt Enable register */
ctrl_outl(mdp->cd->ecsipr_value, ioaddr + ECSIPR);
/* Set MAC address */
update_mac_address(ndev);
/* mask reset */
if (mdp->cd->apr)
ctrl_outl(APR_AP, ioaddr + APR);
if (mdp->cd->mpr)
ctrl_outl(MPR_MP, ioaddr + MPR);
if (mdp->cd->tpauser)
ctrl_outl(TPAUSER_UNLIMITED, ioaddr + TPAUSER);
/* Setting the Rx mode will start the Rx process. */
ctrl_outl(EDRRR_R, ioaddr + EDRRR);
netif_start_queue(ndev);
return ret;
}
/* free Tx skb function */
static int sh_eth_txfree(struct net_device *ndev)
{
struct sh_eth_private *mdp = netdev_priv(ndev);
struct sh_eth_txdesc *txdesc;
int freeNum = 0;
int entry = 0;
for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
entry = mdp->dirty_tx % TX_RING_SIZE;
txdesc = &mdp->tx_ring[entry];
if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
break;
/* Free the original skb. */
if (mdp->tx_skbuff[entry]) {
dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
mdp->tx_skbuff[entry] = NULL;
freeNum++;
}
txdesc->status = cpu_to_edmac(mdp, TD_TFP);
if (entry >= TX_RING_SIZE - 1)
txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
mdp->stats.tx_packets++;
mdp->stats.tx_bytes += txdesc->buffer_length;
}
return freeNum;
}
/* Packet receive function */
static int sh_eth_rx(struct net_device *ndev)
{
struct sh_eth_private *mdp = netdev_priv(ndev);
struct sh_eth_rxdesc *rxdesc;
int entry = mdp->cur_rx % RX_RING_SIZE;
int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
struct sk_buff *skb;
u16 pkt_len = 0;
u32 desc_status;
rxdesc = &mdp->rx_ring[entry];
while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
desc_status = edmac_to_cpu(mdp, rxdesc->status);
pkt_len = rxdesc->frame_length;
if (--boguscnt < 0)
break;
if (!(desc_status & RDFEND))
mdp->stats.rx_length_errors++;
if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
RD_RFS5 | RD_RFS6 | RD_RFS10)) {
mdp->stats.rx_errors++;
if (desc_status & RD_RFS1)
mdp->stats.rx_crc_errors++;
if (desc_status & RD_RFS2)
mdp->stats.rx_frame_errors++;
if (desc_status & RD_RFS3)
mdp->stats.rx_length_errors++;
if (desc_status & RD_RFS4)
mdp->stats.rx_length_errors++;
if (desc_status & RD_RFS6)
mdp->stats.rx_missed_errors++;
if (desc_status & RD_RFS10)
mdp->stats.rx_over_errors++;
} else {
if (!mdp->cd->hw_swap)
sh_eth_soft_swap(
phys_to_virt(ALIGN(rxdesc->addr, 4)),
pkt_len + 2);
skb = mdp->rx_skbuff[entry];
mdp->rx_skbuff[entry] = NULL;
skb_put(skb, pkt_len);
skb->protocol = eth_type_trans(skb, ndev);
netif_rx(skb);
mdp->stats.rx_packets++;
mdp->stats.rx_bytes += pkt_len;
}
rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
entry = (++mdp->cur_rx) % RX_RING_SIZE;
rxdesc = &mdp->rx_ring[entry];
}
/* Refill the Rx ring buffers. */
for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
entry = mdp->dirty_rx % RX_RING_SIZE;
rxdesc = &mdp->rx_ring[entry];
/* The size of the buffer is 16 byte boundary. */
rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
if (mdp->rx_skbuff[entry] == NULL) {
skb = dev_alloc_skb(mdp->rx_buf_sz);
mdp->rx_skbuff[entry] = skb;
if (skb == NULL)
break; /* Better luck next round. */
dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
DMA_FROM_DEVICE);
skb->dev = ndev;
sh_eth_set_receive_align(skb);
skb->ip_summed = CHECKSUM_NONE;
rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
}
if (entry >= RX_RING_SIZE - 1)
rxdesc->status |=
cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
else
rxdesc->status |=
cpu_to_edmac(mdp, RD_RACT | RD_RFP);
}
/* Restart Rx engine if stopped. */
/* If we don't need to check status, don't. -KDU */
if (!(ctrl_inl(ndev->base_addr + EDRRR) & EDRRR_R))
ctrl_outl(EDRRR_R, ndev->base_addr + EDRRR);
return 0;
}
/* error control function */
static void sh_eth_error(struct net_device *ndev, int intr_status)
{
struct sh_eth_private *mdp = netdev_priv(ndev);
u32 ioaddr = ndev->base_addr;
u32 felic_stat;
u32 link_stat;
u32 mask;
if (intr_status & EESR_ECI) {
felic_stat = ctrl_inl(ioaddr + ECSR);
ctrl_outl(felic_stat, ioaddr + ECSR); /* clear int */
if (felic_stat & ECSR_ICD)
mdp->stats.tx_carrier_errors++;
if (felic_stat & ECSR_LCHNG) {
/* Link Changed */
if (mdp->cd->no_psr) {
if (mdp->link == PHY_DOWN)
link_stat = 0;
else
link_stat = PHY_ST_LINK;
} else {
link_stat = (ctrl_inl(ioaddr + PSR));
}
if (!(link_stat & PHY_ST_LINK)) {
/* Link Down : disable tx and rx */
ctrl_outl(ctrl_inl(ioaddr + ECMR) &
~(ECMR_RE | ECMR_TE), ioaddr + ECMR);
} else {
/* Link Up */
ctrl_outl(ctrl_inl(ioaddr + EESIPR) &
~DMAC_M_ECI, ioaddr + EESIPR);
/*clear int */
ctrl_outl(ctrl_inl(ioaddr + ECSR),
ioaddr + ECSR);
ctrl_outl(ctrl_inl(ioaddr + EESIPR) |
DMAC_M_ECI, ioaddr + EESIPR);
/* enable tx and rx */
ctrl_outl(ctrl_inl(ioaddr + ECMR) |
(ECMR_RE | ECMR_TE), ioaddr + ECMR);
}
}
}
if (intr_status & EESR_TWB) {
/* Write buck end. unused write back interrupt */
if (intr_status & EESR_TABT) /* Transmit Abort int */
mdp->stats.tx_aborted_errors++;
}
if (intr_status & EESR_RABT) {
/* Receive Abort int */
if (intr_status & EESR_RFRMER) {
/* Receive Frame Overflow int */
mdp->stats.rx_frame_errors++;
dev_err(&ndev->dev, "Receive Frame Overflow\n");
}
}
if (!mdp->cd->no_ade) {
if (intr_status & EESR_ADE && intr_status & EESR_TDE &&
intr_status & EESR_TFE)
mdp->stats.tx_fifo_errors++;
}
if (intr_status & EESR_RDE) {
/* Receive Descriptor Empty int */
mdp->stats.rx_over_errors++;
if (ctrl_inl(ioaddr + EDRRR) ^ EDRRR_R)
ctrl_outl(EDRRR_R, ioaddr + EDRRR);
dev_err(&ndev->dev, "Receive Descriptor Empty\n");
}
if (intr_status & EESR_RFE) {
/* Receive FIFO Overflow int */
mdp->stats.rx_fifo_errors++;
dev_err(&ndev->dev, "Receive FIFO Overflow\n");
}
mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
if (mdp->cd->no_ade)
mask &= ~EESR_ADE;
if (intr_status & mask) {
/* Tx error */
u32 edtrr = ctrl_inl(ndev->base_addr + EDTRR);
/* dmesg */
dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
intr_status, mdp->cur_tx);
dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
mdp->dirty_tx, (u32) ndev->state, edtrr);
/* dirty buffer free */
sh_eth_txfree(ndev);
/* SH7712 BUG */
if (edtrr ^ EDTRR_TRNS) {
/* tx dma start */
ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR);
}
/* wakeup */
netif_wake_queue(ndev);
}
}
static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
{
struct net_device *ndev = netdev;
struct sh_eth_private *mdp = netdev_priv(ndev);
struct sh_eth_cpu_data *cd = mdp->cd;
irqreturn_t ret = IRQ_NONE;
u32 ioaddr, boguscnt = RX_RING_SIZE;
u32 intr_status = 0;
ioaddr = ndev->base_addr;
spin_lock(&mdp->lock);
/* Get interrpt stat */
intr_status = ctrl_inl(ioaddr + EESR);
/* Clear interrupt */
if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
cd->tx_check | cd->eesr_err_check)) {
ctrl_outl(intr_status, ioaddr + EESR);
ret = IRQ_HANDLED;
} else
goto other_irq;
if (intr_status & (EESR_FRC | /* Frame recv*/
EESR_RMAF | /* Multi cast address recv*/
EESR_RRF | /* Bit frame recv */
EESR_RTLF | /* Long frame recv*/
EESR_RTSF | /* short frame recv */
EESR_PRE | /* PHY-LSI recv error */
EESR_CERF)){ /* recv frame CRC error */
sh_eth_rx(ndev);
}
/* Tx Check */
if (intr_status & cd->tx_check) {
sh_eth_txfree(ndev);
netif_wake_queue(ndev);
}
if (intr_status & cd->eesr_err_check)
sh_eth_error(ndev, intr_status);
if (--boguscnt < 0) {
printk(KERN_WARNING
"%s: Too much work at interrupt, status=0x%4.4x.\n",
ndev->name, intr_status);
}
other_irq:
spin_unlock(&mdp->lock);
return ret;
}
static void sh_eth_timer(unsigned long data)
{
struct net_device *ndev = (struct net_device *)data;
struct sh_eth_private *mdp = netdev_priv(ndev);
mod_timer(&mdp->timer, jiffies + (10 * HZ));
}
/* PHY state control function */
static void sh_eth_adjust_link(struct net_device *ndev)
{
struct sh_eth_private *mdp = netdev_priv(ndev);
struct phy_device *phydev = mdp->phydev;
u32 ioaddr = ndev->base_addr;
int new_state = 0;
if (phydev->link != PHY_DOWN) {
if (phydev->duplex != mdp->duplex) {
new_state = 1;
mdp->duplex = phydev->duplex;
if (mdp->cd->set_duplex)
mdp->cd->set_duplex(ndev);
}
if (phydev->speed != mdp->speed) {
new_state = 1;
mdp->speed = phydev->speed;
if (mdp->cd->set_rate)
mdp->cd->set_rate(ndev);
}
if (mdp->link == PHY_DOWN) {
ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_TXF)
| ECMR_DM, ioaddr + ECMR);
new_state = 1;
mdp->link = phydev->link;
}
} else if (mdp->link) {
new_state = 1;
mdp->link = PHY_DOWN;
mdp->speed = 0;
mdp->duplex = -1;
}
if (new_state)
phy_print_status(phydev);
}
/* PHY init function */
static int sh_eth_phy_init(struct net_device *ndev)
{
struct sh_eth_private *mdp = netdev_priv(ndev);
char phy_id[MII_BUS_ID_SIZE + 3];
struct phy_device *phydev = NULL;
snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
mdp->mii_bus->id , mdp->phy_id);
mdp->link = PHY_DOWN;
mdp->speed = 0;
mdp->duplex = -1;
/* Try connect to PHY */
phydev = phy_connect(ndev, phy_id, &sh_eth_adjust_link,
0, PHY_INTERFACE_MODE_MII);
if (IS_ERR(phydev)) {
dev_err(&ndev->dev, "phy_connect failed\n");
return PTR_ERR(phydev);
}
dev_info(&ndev->dev, "attached phy %i to driver %s\n",
phydev->addr, phydev->drv->name);
mdp->phydev = phydev;
return 0;
}
/* PHY control start function */
static int sh_eth_phy_start(struct net_device *ndev)
{
struct sh_eth_private *mdp = netdev_priv(ndev);
int ret;
ret = sh_eth_phy_init(ndev);
if (ret)
return ret;
/* reset phy - this also wakes it from PDOWN */
phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
phy_start(mdp->phydev);
return 0;
}
/* network device open function */
static int sh_eth_open(struct net_device *ndev)
{
int ret = 0;
struct sh_eth_private *mdp = netdev_priv(ndev);
ret = request_irq(ndev->irq, &sh_eth_interrupt,
#if defined(CONFIG_CPU_SUBTYPE_SH7763) || defined(CONFIG_CPU_SUBTYPE_SH7764)
IRQF_SHARED,
#else
0,
#endif
ndev->name, ndev);
if (ret) {
dev_err(&ndev->dev, "Can not assign IRQ number\n");
return ret;
}
/* Descriptor set */
ret = sh_eth_ring_init(ndev);
if (ret)
goto out_free_irq;
/* device init */
ret = sh_eth_dev_init(ndev);
if (ret)
goto out_free_irq;
/* PHY control start*/
ret = sh_eth_phy_start(ndev);
if (ret)
goto out_free_irq;
/* Set the timer to check for link beat. */
init_timer(&mdp->timer);
mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
return ret;
out_free_irq:
free_irq(ndev->irq, ndev);
return ret;
}
/* Timeout function */
static void sh_eth_tx_timeout(struct net_device *ndev)
{
struct sh_eth_private *mdp = netdev_priv(ndev);
u32 ioaddr = ndev->base_addr;
struct sh_eth_rxdesc *rxdesc;
int i;
netif_stop_queue(ndev);
/* worning message out. */
printk(KERN_WARNING "%s: transmit timed out, status %8.8x,"
" resetting...\n", ndev->name, (int)ctrl_inl(ioaddr + EESR));
/* tx_errors count up */
mdp->stats.tx_errors++;
/* timer off */
del_timer_sync(&mdp->timer);
/* Free all the skbuffs in the Rx queue. */
for (i = 0; i < RX_RING_SIZE; i++) {
rxdesc = &mdp->rx_ring[i];
rxdesc->status = 0;
rxdesc->addr = 0xBADF00D0;
if (mdp->rx_skbuff[i])
dev_kfree_skb(mdp->rx_skbuff[i]);
mdp->rx_skbuff[i] = NULL;
}
for (i = 0; i < TX_RING_SIZE; i++) {
if (mdp->tx_skbuff[i])
dev_kfree_skb(mdp->tx_skbuff[i]);
mdp->tx_skbuff[i] = NULL;
}
/* device init */
sh_eth_dev_init(ndev);
/* timer on */
mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
add_timer(&mdp->timer);
}
/* Packet transmit function */
static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct sh_eth_private *mdp = netdev_priv(ndev);
struct sh_eth_txdesc *txdesc;
u32 entry;
unsigned long flags;
spin_lock_irqsave(&mdp->lock, flags);
if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
if (!sh_eth_txfree(ndev)) {
netif_stop_queue(ndev);
spin_unlock_irqrestore(&mdp->lock, flags);
return 1;
}
}
spin_unlock_irqrestore(&mdp->lock, flags);
entry = mdp->cur_tx % TX_RING_SIZE;
mdp->tx_skbuff[entry] = skb;
txdesc = &mdp->tx_ring[entry];
txdesc->addr = virt_to_phys(skb->data);
/* soft swap. */
if (!mdp->cd->hw_swap)
sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
skb->len + 2);
/* write back */
__flush_purge_region(skb->data, skb->len);
if (skb->len < ETHERSMALL)
txdesc->buffer_length = ETHERSMALL;
else
txdesc->buffer_length = skb->len;
if (entry >= TX_RING_SIZE - 1)
txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
else
txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
mdp->cur_tx++;
if (!(ctrl_inl(ndev->base_addr + EDTRR) & EDTRR_TRNS))
ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR);
ndev->trans_start = jiffies;
return 0;
}
/* device close function */
static int sh_eth_close(struct net_device *ndev)
{
struct sh_eth_private *mdp = netdev_priv(ndev);
u32 ioaddr = ndev->base_addr;
int ringsize;
netif_stop_queue(ndev);
/* Disable interrupts by clearing the interrupt mask. */
ctrl_outl(0x0000, ioaddr + EESIPR);
/* Stop the chip's Tx and Rx processes. */
ctrl_outl(0, ioaddr + EDTRR);
ctrl_outl(0, ioaddr + EDRRR);
/* PHY Disconnect */
if (mdp->phydev) {
phy_stop(mdp->phydev);
phy_disconnect(mdp->phydev);
}
free_irq(ndev->irq, ndev);
del_timer_sync(&mdp->timer);
/* Free all the skbuffs in the Rx queue. */
sh_eth_ring_free(ndev);
/* free DMA buffer */
ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
/* free DMA buffer */
ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
return 0;
}
static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
{
struct sh_eth_private *mdp = netdev_priv(ndev);
u32 ioaddr = ndev->base_addr;
mdp->stats.tx_dropped += ctrl_inl(ioaddr + TROCR);
ctrl_outl(0, ioaddr + TROCR); /* (write clear) */
mdp->stats.collisions += ctrl_inl(ioaddr + CDCR);
ctrl_outl(0, ioaddr + CDCR); /* (write clear) */
mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + LCCR);
ctrl_outl(0, ioaddr + LCCR); /* (write clear) */
#if defined(CONFIG_CPU_SUBTYPE_SH7763)
mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CERCR);/* CERCR */
ctrl_outl(0, ioaddr + CERCR); /* (write clear) */
mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CEECR);/* CEECR */
ctrl_outl(0, ioaddr + CEECR); /* (write clear) */
#else
mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CNDCR);
ctrl_outl(0, ioaddr + CNDCR); /* (write clear) */
#endif
return &mdp->stats;
}
/* ioctl to device funciotn*/
static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
int cmd)
{
struct sh_eth_private *mdp = netdev_priv(ndev);
struct phy_device *phydev = mdp->phydev;
if (!netif_running(ndev))
return -EINVAL;
if (!phydev)
return -ENODEV;
return phy_mii_ioctl(phydev, if_mii(rq), cmd);
}
#if defined(SH_ETH_HAS_TSU)
/* Multicast reception directions set */
static void sh_eth_set_multicast_list(struct net_device *ndev)
{
u32 ioaddr = ndev->base_addr;
if (ndev->flags & IFF_PROMISC) {
/* Set promiscuous. */
ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_MCT) | ECMR_PRM,
ioaddr + ECMR);
} else {
/* Normal, unicast/broadcast-only mode. */
ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_PRM) | ECMR_MCT,
ioaddr + ECMR);
}
}
/* SuperH's TSU register init function */
static void sh_eth_tsu_init(u32 ioaddr)
{
ctrl_outl(0, ioaddr + TSU_FWEN0); /* Disable forward(0->1) */
ctrl_outl(0, ioaddr + TSU_FWEN1); /* Disable forward(1->0) */
ctrl_outl(0, ioaddr + TSU_FCM); /* forward fifo 3k-3k */
ctrl_outl(0xc, ioaddr + TSU_BSYSL0);
ctrl_outl(0xc, ioaddr + TSU_BSYSL1);
ctrl_outl(0, ioaddr + TSU_PRISL0);
ctrl_outl(0, ioaddr + TSU_PRISL1);
ctrl_outl(0, ioaddr + TSU_FWSL0);
ctrl_outl(0, ioaddr + TSU_FWSL1);
ctrl_outl(TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, ioaddr + TSU_FWSLC);
#if defined(CONFIG_CPU_SUBTYPE_SH7763)
ctrl_outl(0, ioaddr + TSU_QTAG0); /* Disable QTAG(0->1) */
ctrl_outl(0, ioaddr + TSU_QTAG1); /* Disable QTAG(1->0) */
#else
ctrl_outl(0, ioaddr + TSU_QTAGM0); /* Disable QTAG(0->1) */
ctrl_outl(0, ioaddr + TSU_QTAGM1); /* Disable QTAG(1->0) */
#endif
ctrl_outl(0, ioaddr + TSU_FWSR); /* all interrupt status clear */
ctrl_outl(0, ioaddr + TSU_FWINMK); /* Disable all interrupt */
ctrl_outl(0, ioaddr + TSU_TEN); /* Disable all CAM entry */
ctrl_outl(0, ioaddr + TSU_POST1); /* Disable CAM entry [ 0- 7] */
ctrl_outl(0, ioaddr + TSU_POST2); /* Disable CAM entry [ 8-15] */
ctrl_outl(0, ioaddr + TSU_POST3); /* Disable CAM entry [16-23] */
ctrl_outl(0, ioaddr + TSU_POST4); /* Disable CAM entry [24-31] */
}
#endif /* SH_ETH_HAS_TSU */
/* MDIO bus release function */
static int sh_mdio_release(struct net_device *ndev)
{
struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
/* unregister mdio bus */
mdiobus_unregister(bus);
/* remove mdio bus info from net_device */
dev_set_drvdata(&ndev->dev, NULL);
/* free bitbang info */
free_mdio_bitbang(bus);
return 0;
}
/* MDIO bus init function */
static int sh_mdio_init(struct net_device *ndev, int id)
{
int ret, i;
struct bb_info *bitbang;
struct sh_eth_private *mdp = netdev_priv(ndev);
/* create bit control struct for PHY */
bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
if (!bitbang) {
ret = -ENOMEM;
goto out;
}
/* bitbang init */
bitbang->addr = ndev->base_addr + PIR;
bitbang->mdi_msk = 0x08;
bitbang->mdo_msk = 0x04;
bitbang->mmd_msk = 0x02;/* MMD */
bitbang->mdc_msk = 0x01;
bitbang->ctrl.ops = &bb_ops;
/* MII contorller setting */
mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
if (!mdp->mii_bus) {
ret = -ENOMEM;
goto out_free_bitbang;
}
/* Hook up MII support for ethtool */
mdp->mii_bus->name = "sh_mii";
mdp->mii_bus->parent = &ndev->dev;
snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%x", id);
/* PHY IRQ */
mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
if (!mdp->mii_bus->irq) {
ret = -ENOMEM;
goto out_free_bus;
}
for (i = 0; i < PHY_MAX_ADDR; i++)
mdp->mii_bus->irq[i] = PHY_POLL;
/* regist mdio bus */
ret = mdiobus_register(mdp->mii_bus);
if (ret)
goto out_free_irq;
dev_set_drvdata(&ndev->dev, mdp->mii_bus);
return 0;
out_free_irq:
kfree(mdp->mii_bus->irq);
out_free_bus:
free_mdio_bitbang(mdp->mii_bus);
out_free_bitbang:
kfree(bitbang);
out:
return ret;
}
static const struct net_device_ops sh_eth_netdev_ops = {
.ndo_open = sh_eth_open,
.ndo_stop = sh_eth_close,
.ndo_start_xmit = sh_eth_start_xmit,
.ndo_get_stats = sh_eth_get_stats,
#if defined(SH_ETH_HAS_TSU)
.ndo_set_multicast_list = sh_eth_set_multicast_list,
#endif
.ndo_tx_timeout = sh_eth_tx_timeout,
.ndo_do_ioctl = sh_eth_do_ioctl,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = eth_mac_addr,
.ndo_change_mtu = eth_change_mtu,
};
static int sh_eth_drv_probe(struct platform_device *pdev)
{
int ret, i, devno = 0;
struct resource *res;
struct net_device *ndev = NULL;
struct sh_eth_private *mdp;
struct sh_eth_plat_data *pd;
/* get base addr */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (unlikely(res == NULL)) {
dev_err(&pdev->dev, "invalid resource\n");
ret = -EINVAL;
goto out;
}
ndev = alloc_etherdev(sizeof(struct sh_eth_private));
if (!ndev) {
dev_err(&pdev->dev, "Could not allocate device.\n");
ret = -ENOMEM;
goto out;
}
/* The sh Ether-specific entries in the device structure. */
ndev->base_addr = res->start;
devno = pdev->id;
if (devno < 0)
devno = 0;
ndev->dma = -1;
ret = platform_get_irq(pdev, 0);
if (ret < 0) {
ret = -ENODEV;
goto out_release;
}
ndev->irq = ret;
SET_NETDEV_DEV(ndev, &pdev->dev);
/* Fill in the fields of the device structure with ethernet values. */
ether_setup(ndev);
mdp = netdev_priv(ndev);
spin_lock_init(&mdp->lock);
pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
/* get PHY ID */
mdp->phy_id = pd->phy;
/* EDMAC endian */
mdp->edmac_endian = pd->edmac_endian;
/* set cpu data */
mdp->cd = &sh_eth_my_cpu_data;
sh_eth_set_default_cpu_data(mdp->cd);
/* set function */
ndev->netdev_ops = &sh_eth_netdev_ops;
ndev->watchdog_timeo = TX_TIMEOUT;
mdp->post_rx = POST_RX >> (devno << 1);
mdp->post_fw = POST_FW >> (devno << 1);
/* read and set MAC address */
read_mac_address(ndev);
/* First device only init */
if (!devno) {
if (mdp->cd->chip_reset)
mdp->cd->chip_reset(ndev);
#if defined(SH_ETH_HAS_TSU)
/* TSU init (Init only)*/
sh_eth_tsu_init(SH_TSU_ADDR);
#endif
}
/* network device register */
ret = register_netdev(ndev);
if (ret)
goto out_release;
/* mdio bus init */
ret = sh_mdio_init(ndev, pdev->id);
if (ret)
goto out_unregister;
/* pritnt device infomation */
pr_info("Base address at 0x%x, ",
(u32)ndev->base_addr);
for (i = 0; i < 5; i++)
printk("%02X:", ndev->dev_addr[i]);
printk("%02X, IRQ %d.\n", ndev->dev_addr[i], ndev->irq);
platform_set_drvdata(pdev, ndev);
return ret;
out_unregister:
unregister_netdev(ndev);
out_release:
/* net_dev free */
if (ndev)
free_netdev(ndev);
out:
return ret;
}
static int sh_eth_drv_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
sh_mdio_release(ndev);
unregister_netdev(ndev);
flush_scheduled_work();
free_netdev(ndev);
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver sh_eth_driver = {
.probe = sh_eth_drv_probe,
.remove = sh_eth_drv_remove,
.driver = {
.name = CARDNAME,
},
};
static int __init sh_eth_init(void)
{
return platform_driver_register(&sh_eth_driver);
}
static void __exit sh_eth_cleanup(void)
{
platform_driver_unregister(&sh_eth_driver);
}
module_init(sh_eth_init);
module_exit(sh_eth_cleanup);
MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
MODULE_LICENSE("GPL v2");