1
linux/drivers/net/spider_net.c

2329 lines
62 KiB
C
Raw Normal View History

/*
* Network device driver for Cell Processor-Based Blade
*
* (C) Copyright IBM Corp. 2005
*
* Authors : Utz Bacher <utz.bacher@de.ibm.com>
* Jens Osterkamp <Jens.Osterkamp@de.ibm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/compiler.h>
#include <linux/crc32.h>
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/firmware.h>
#include <linux/if_vlan.h>
#include <linux/in.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/ip.h>
#include <linux/kernel.h>
#include <linux/mii.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/device.h>
#include <linux/pci.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/tcp.h>
#include <linux/types.h>
#include <linux/vmalloc.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
#include <asm/bitops.h>
#include <asm/pci-bridge.h>
#include <net/checksum.h>
#include "spider_net.h"
MODULE_AUTHOR("Utz Bacher <utz.bacher@de.ibm.com> and Jens Osterkamp " \
"<Jens.Osterkamp@de.ibm.com>");
MODULE_DESCRIPTION("Spider Southbridge Gigabit Ethernet driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(VERSION);
static int rx_descriptors = SPIDER_NET_RX_DESCRIPTORS_DEFAULT;
static int tx_descriptors = SPIDER_NET_TX_DESCRIPTORS_DEFAULT;
module_param(rx_descriptors, int, 0444);
module_param(tx_descriptors, int, 0444);
MODULE_PARM_DESC(rx_descriptors, "number of descriptors used " \
"in rx chains");
MODULE_PARM_DESC(tx_descriptors, "number of descriptors used " \
"in tx chain");
char spider_net_driver_name[] = "spidernet";
static struct pci_device_id spider_net_pci_tbl[] = {
{ PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_SPIDER_NET,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, spider_net_pci_tbl);
/**
* spider_net_read_reg - reads an SMMIO register of a card
* @card: device structure
* @reg: register to read from
*
* returns the content of the specified SMMIO register.
*/
static inline u32
spider_net_read_reg(struct spider_net_card *card, u32 reg)
{
u32 value;
value = readl(card->regs + reg);
value = le32_to_cpu(value);
return value;
}
/**
* spider_net_write_reg - writes to an SMMIO register of a card
* @card: device structure
* @reg: register to write to
* @value: value to write into the specified SMMIO register
*/
static inline void
spider_net_write_reg(struct spider_net_card *card, u32 reg, u32 value)
{
value = cpu_to_le32(value);
writel(value, card->regs + reg);
}
/** spider_net_write_phy - write to phy register
* @netdev: adapter to be written to
* @mii_id: id of MII
* @reg: PHY register
* @val: value to be written to phy register
*
* spider_net_write_phy_register writes to an arbitrary PHY
* register via the spider GPCWOPCMD register. We assume the queue does
* not run full (not more than 15 commands outstanding).
**/
static void
spider_net_write_phy(struct net_device *netdev, int mii_id,
int reg, int val)
{
struct spider_net_card *card = netdev_priv(netdev);
u32 writevalue;
writevalue = ((u32)mii_id << 21) |
((u32)reg << 16) | ((u32)val);
spider_net_write_reg(card, SPIDER_NET_GPCWOPCMD, writevalue);
}
/** spider_net_read_phy - read from phy register
* @netdev: network device to be read from
* @mii_id: id of MII
* @reg: PHY register
*
* Returns value read from PHY register
*
* spider_net_write_phy reads from an arbitrary PHY
* register via the spider GPCROPCMD register
**/
static int
spider_net_read_phy(struct net_device *netdev, int mii_id, int reg)
{
struct spider_net_card *card = netdev_priv(netdev);
u32 readvalue;
readvalue = ((u32)mii_id << 21) | ((u32)reg << 16);
spider_net_write_reg(card, SPIDER_NET_GPCROPCMD, readvalue);
/* we don't use semaphores to wait for an SPIDER_NET_GPROPCMPINT
* interrupt, as we poll for the completion of the read operation
* in spider_net_read_phy. Should take about 50 us */
do {
readvalue = spider_net_read_reg(card, SPIDER_NET_GPCROPCMD);
} while (readvalue & SPIDER_NET_GPREXEC);
readvalue &= SPIDER_NET_GPRDAT_MASK;
return readvalue;
}
/**
* spider_net_rx_irq_off - switch off rx irq on this spider card
* @card: device structure
*
* switches off rx irq by masking them out in the GHIINTnMSK register
*/
static void
spider_net_rx_irq_off(struct spider_net_card *card)
{
u32 regvalue;
regvalue = SPIDER_NET_INT0_MASK_VALUE & (~SPIDER_NET_RXINT);
spider_net_write_reg(card, SPIDER_NET_GHIINT0MSK, regvalue);
}
/**
* spider_net_rx_irq_on - switch on rx irq on this spider card
* @card: device structure
*
* switches on rx irq by enabling them in the GHIINTnMSK register
*/
static void
spider_net_rx_irq_on(struct spider_net_card *card)
{
u32 regvalue;
regvalue = SPIDER_NET_INT0_MASK_VALUE | SPIDER_NET_RXINT;
spider_net_write_reg(card, SPIDER_NET_GHIINT0MSK, regvalue);
}
/**
* spider_net_set_promisc - sets the unicast address or the promiscuous mode
* @card: card structure
*
* spider_net_set_promisc sets the unicast destination address filter and
* thus either allows for non-promisc mode or promisc mode
*/
static void
spider_net_set_promisc(struct spider_net_card *card)
{
u32 macu, macl;
struct net_device *netdev = card->netdev;
if (netdev->flags & IFF_PROMISC) {
/* clear destination entry 0 */
spider_net_write_reg(card, SPIDER_NET_GMRUAFILnR, 0);
spider_net_write_reg(card, SPIDER_NET_GMRUAFILnR + 0x04, 0);
spider_net_write_reg(card, SPIDER_NET_GMRUA0FIL15R,
SPIDER_NET_PROMISC_VALUE);
} else {
macu = netdev->dev_addr[0];
macu <<= 8;
macu |= netdev->dev_addr[1];
memcpy(&macl, &netdev->dev_addr[2], sizeof(macl));
macu |= SPIDER_NET_UA_DESCR_VALUE;
spider_net_write_reg(card, SPIDER_NET_GMRUAFILnR, macu);
spider_net_write_reg(card, SPIDER_NET_GMRUAFILnR + 0x04, macl);
spider_net_write_reg(card, SPIDER_NET_GMRUA0FIL15R,
SPIDER_NET_NONPROMISC_VALUE);
}
}
/**
* spider_net_get_mac_address - read mac address from spider card
* @card: device structure
*
* reads MAC address from GMACUNIMACU and GMACUNIMACL registers
*/
static int
spider_net_get_mac_address(struct net_device *netdev)
{
struct spider_net_card *card = netdev_priv(netdev);
u32 macl, macu;
macl = spider_net_read_reg(card, SPIDER_NET_GMACUNIMACL);
macu = spider_net_read_reg(card, SPIDER_NET_GMACUNIMACU);
netdev->dev_addr[0] = (macu >> 24) & 0xff;
netdev->dev_addr[1] = (macu >> 16) & 0xff;
netdev->dev_addr[2] = (macu >> 8) & 0xff;
netdev->dev_addr[3] = macu & 0xff;
netdev->dev_addr[4] = (macl >> 8) & 0xff;
netdev->dev_addr[5] = macl & 0xff;
if (!is_valid_ether_addr(&netdev->dev_addr[0]))
return -EINVAL;
return 0;
}
/**
* spider_net_get_descr_status -- returns the status of a descriptor
* @descr: descriptor to look at
*
* returns the status as in the dmac_cmd_status field of the descriptor
*/
static inline int
spider_net_get_descr_status(struct spider_net_descr *descr)
{
return descr->dmac_cmd_status & SPIDER_NET_DESCR_IND_PROC_MASK;
}
/**
* spider_net_free_chain - free descriptor chain
* @card: card structure
* @chain: address of chain
*
*/
static void
spider_net_free_chain(struct spider_net_card *card,
struct spider_net_descr_chain *chain)
{
struct spider_net_descr *descr;
for (descr = chain->tail; !descr->bus_addr; descr = descr->next) {
pci_unmap_single(card->pdev, descr->bus_addr,
SPIDER_NET_DESCR_SIZE, PCI_DMA_BIDIRECTIONAL);
descr->bus_addr = 0;
}
}
/**
* spider_net_init_chain - links descriptor chain
* @card: card structure
* @chain: address of chain
* @start_descr: address of descriptor array
* @no: number of descriptors
*
* we manage a circular list that mirrors the hardware structure,
* except that the hardware uses bus addresses.
*
* returns 0 on success, <0 on failure
*/
static int
spider_net_init_chain(struct spider_net_card *card,
struct spider_net_descr_chain *chain,
struct spider_net_descr *start_descr,
int no)
{
int i;
struct spider_net_descr *descr;
dma_addr_t buf;
descr = start_descr;
memset(descr, 0, sizeof(*descr) * no);
/* set up the hardware pointers in each descriptor */
for (i=0; i<no; i++, descr++) {
descr->dmac_cmd_status = SPIDER_NET_DESCR_NOT_IN_USE;
buf = pci_map_single(card->pdev, descr,
SPIDER_NET_DESCR_SIZE,
PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(buf))
goto iommu_error;
descr->bus_addr = buf;
descr->next = descr + 1;
descr->prev = descr - 1;
}
/* do actual circular list */
(descr-1)->next = start_descr;
start_descr->prev = descr-1;
spin_lock_init(&chain->lock);
chain->head = start_descr;
chain->tail = start_descr;
return 0;
iommu_error:
descr = start_descr;
for (i=0; i < no; i++, descr++)
if (descr->bus_addr)
pci_unmap_single(card->pdev, descr->bus_addr,
SPIDER_NET_DESCR_SIZE,
PCI_DMA_BIDIRECTIONAL);
return -ENOMEM;
}
/**
* spider_net_free_rx_chain_contents - frees descr contents in rx chain
* @card: card structure
*
* returns 0 on success, <0 on failure
*/
static void
spider_net_free_rx_chain_contents(struct spider_net_card *card)
{
struct spider_net_descr *descr;
descr = card->rx_chain.head;
do {
if (descr->skb) {
dev_kfree_skb(descr->skb);
pci_unmap_single(card->pdev, descr->buf_addr,
SPIDER_NET_MAX_FRAME,
PCI_DMA_BIDIRECTIONAL);
}
descr = descr->next;
} while (descr != card->rx_chain.head);
}
/**
* spider_net_prepare_rx_descr - reinitializes a rx descriptor
* @card: card structure
* @descr: descriptor to re-init
*
* return 0 on succes, <0 on failure
*
* allocates a new rx skb, iommu-maps it and attaches it to the descriptor.
* Activate the descriptor state-wise
*/
static int
spider_net_prepare_rx_descr(struct spider_net_card *card,
struct spider_net_descr *descr)
{
dma_addr_t buf;
int error = 0;
int offset;
int bufsize;
/* we need to round up the buffer size to a multiple of 128 */
bufsize = (SPIDER_NET_MAX_FRAME + SPIDER_NET_RXBUF_ALIGN - 1) &
(~(SPIDER_NET_RXBUF_ALIGN - 1));
/* and we need to have it 128 byte aligned, therefore we allocate a
* bit more */
/* allocate an skb */
descr->skb = dev_alloc_skb(bufsize + SPIDER_NET_RXBUF_ALIGN - 1);
if (!descr->skb) {
if (netif_msg_rx_err(card) && net_ratelimit())
pr_err("Not enough memory to allocate rx buffer\n");
card->spider_stats.alloc_rx_skb_error++;
return -ENOMEM;
}
descr->buf_size = bufsize;
descr->result_size = 0;
descr->valid_size = 0;
descr->data_status = 0;
descr->data_error = 0;
offset = ((unsigned long)descr->skb->data) &
(SPIDER_NET_RXBUF_ALIGN - 1);
if (offset)
skb_reserve(descr->skb, SPIDER_NET_RXBUF_ALIGN - offset);
/* io-mmu-map the skb */
buf = pci_map_single(card->pdev, descr->skb->data,
SPIDER_NET_MAX_FRAME, PCI_DMA_FROMDEVICE);
descr->buf_addr = buf;
if (pci_dma_mapping_error(buf)) {
dev_kfree_skb_any(descr->skb);
if (netif_msg_rx_err(card) && net_ratelimit())
pr_err("Could not iommu-map rx buffer\n");
card->spider_stats.rx_iommu_map_error++;
descr->dmac_cmd_status = SPIDER_NET_DESCR_NOT_IN_USE;
} else {
descr->dmac_cmd_status = SPIDER_NET_DESCR_CARDOWNED |
SPIDER_NET_DMAC_NOINTR_COMPLETE;
}
return error;
}
/**
* spider_net_enable_rxchtails - sets RX dmac chain tail addresses
* @card: card structure
*
* spider_net_enable_rxchtails sets the RX DMAC chain tail adresses in the
* chip by writing to the appropriate register. DMA is enabled in
* spider_net_enable_rxdmac.
*/
static inline void
spider_net_enable_rxchtails(struct spider_net_card *card)
{
/* assume chain is aligned correctly */
spider_net_write_reg(card, SPIDER_NET_GDADCHA ,
card->rx_chain.tail->bus_addr);
}
/**
* spider_net_enable_rxdmac - enables a receive DMA controller
* @card: card structure
*
* spider_net_enable_rxdmac enables the DMA controller by setting RX_DMA_EN
* in the GDADMACCNTR register
*/
static inline void
spider_net_enable_rxdmac(struct spider_net_card *card)
{
wmb();
spider_net_write_reg(card, SPIDER_NET_GDADMACCNTR,
SPIDER_NET_DMA_RX_VALUE);
}
/**
* spider_net_refill_rx_chain - refills descriptors/skbs in the rx chains
* @card: card structure
*
* refills descriptors in the rx chain: allocates skbs and iommu-maps them.
*/
static void
spider_net_refill_rx_chain(struct spider_net_card *card)
{
struct spider_net_descr_chain *chain = &card->rx_chain;
unsigned long flags;
/* one context doing the refill (and a second context seeing that
* and omitting it) is ok. If called by NAPI, we'll be called again
* as spider_net_decode_one_descr is called several times. If some
* interrupt calls us, the NAPI is about to clean up anyway. */
if (!spin_trylock_irqsave(&chain->lock, flags))
return;
while (spider_net_get_descr_status(chain->head) ==
SPIDER_NET_DESCR_NOT_IN_USE) {
if (spider_net_prepare_rx_descr(card, chain->head))
break;
chain->head = chain->head->next;
}
spin_unlock_irqrestore(&chain->lock, flags);
}
/**
* spider_net_alloc_rx_skbs - allocates rx skbs in rx descriptor chains
* @card: card structure
*
* returns 0 on success, <0 on failure
*/
static int
spider_net_alloc_rx_skbs(struct spider_net_card *card)
{
int result;
struct spider_net_descr_chain *chain;
result = -ENOMEM;
chain = &card->rx_chain;
/* put at least one buffer into the chain. if this fails,
* we've got a problem. if not, spider_net_refill_rx_chain
* will do the rest at the end of this function */
if (spider_net_prepare_rx_descr(card, chain->head))
goto error;
else
chain->head = chain->head->next;
/* this will allocate the rest of the rx buffers; if not, it's
* business as usual later on */
spider_net_refill_rx_chain(card);
spider_net_enable_rxdmac(card);
return 0;
error:
spider_net_free_rx_chain_contents(card);
return result;
}
/**
* spider_net_get_multicast_hash - generates hash for multicast filter table
* @addr: multicast address
*
* returns the hash value.
*
* spider_net_get_multicast_hash calculates a hash value for a given multicast
* address, that is used to set the multicast filter tables
*/
static u8
spider_net_get_multicast_hash(struct net_device *netdev, __u8 *addr)
{
u32 crc;
u8 hash;
char addr_for_crc[ETH_ALEN] = { 0, };
int i, bit;
for (i = 0; i < ETH_ALEN * 8; i++) {
bit = (addr[i / 8] >> (i % 8)) & 1;
addr_for_crc[ETH_ALEN - 1 - i / 8] += bit << (7 - (i % 8));
}
crc = crc32_be(~0, addr_for_crc, netdev->addr_len);
hash = (crc >> 27);
hash <<= 3;
hash |= crc & 7;
hash &= 0xff;
return hash;
}
/**
* spider_net_set_multi - sets multicast addresses and promisc flags
* @netdev: interface device structure
*
* spider_net_set_multi configures multicast addresses as needed for the
* netdev interface. It also sets up multicast, allmulti and promisc
* flags appropriately
*/
static void
spider_net_set_multi(struct net_device *netdev)
{
struct dev_mc_list *mc;
u8 hash;
int i;
u32 reg;
struct spider_net_card *card = netdev_priv(netdev);
unsigned long bitmask[SPIDER_NET_MULTICAST_HASHES / BITS_PER_LONG] =
{0, };
spider_net_set_promisc(card);
if (netdev->flags & IFF_ALLMULTI) {
for (i = 0; i < SPIDER_NET_MULTICAST_HASHES; i++) {
set_bit(i, bitmask);
}
goto write_hash;
}
/* well, we know, what the broadcast hash value is: it's xfd
hash = spider_net_get_multicast_hash(netdev, netdev->broadcast); */
set_bit(0xfd, bitmask);
for (mc = netdev->mc_list; mc; mc = mc->next) {
hash = spider_net_get_multicast_hash(netdev, mc->dmi_addr);
set_bit(hash, bitmask);
}
write_hash:
for (i = 0; i < SPIDER_NET_MULTICAST_HASHES / 4; i++) {
reg = 0;
if (test_bit(i * 4, bitmask))
reg += 0x08;
reg <<= 8;
if (test_bit(i * 4 + 1, bitmask))
reg += 0x08;
reg <<= 8;
if (test_bit(i * 4 + 2, bitmask))
reg += 0x08;
reg <<= 8;
if (test_bit(i * 4 + 3, bitmask))
reg += 0x08;
spider_net_write_reg(card, SPIDER_NET_GMRMHFILnR + i * 4, reg);
}
}
/**
* spider_net_disable_rxdmac - disables the receive DMA controller
* @card: card structure
*
* spider_net_disable_rxdmac terminates processing on the DMA controller by
* turing off DMA and issueing a force end
*/
static void
spider_net_disable_rxdmac(struct spider_net_card *card)
{
spider_net_write_reg(card, SPIDER_NET_GDADMACCNTR,
SPIDER_NET_DMA_RX_FEND_VALUE);
}
/**
* spider_net_prepare_tx_descr - fill tx descriptor with skb data
* @card: card structure
* @descr: descriptor structure to fill out
* @skb: packet to use
*
* returns 0 on success, <0 on failure.
*
* fills out the descriptor structure with skb data and len. Copies data,
* if needed (32bit DMA!)
*/
static int
spider_net_prepare_tx_descr(struct spider_net_card *card,
struct sk_buff *skb)
{
struct spider_net_descr *descr;
dma_addr_t buf;
unsigned long flags;
buf = pci_map_single(card->pdev, skb->data, skb->len, PCI_DMA_TODEVICE);
if (pci_dma_mapping_error(buf)) {
if (netif_msg_tx_err(card) && net_ratelimit())
pr_err("could not iommu-map packet (%p, %i). "
"Dropping packet\n", skb->data, skb->len);
card->spider_stats.tx_iommu_map_error++;
return -ENOMEM;
}
spin_lock_irqsave(&card->tx_chain.lock, flags);
descr = card->tx_chain.head;
card->tx_chain.head = descr->next;
descr->buf_addr = buf;
descr->buf_size = skb->len;
descr->next_descr_addr = 0;
descr->skb = skb;
descr->data_status = 0;
descr->dmac_cmd_status =
SPIDER_NET_DESCR_CARDOWNED | SPIDER_NET_DMAC_NOCS;
spin_unlock_irqrestore(&card->tx_chain.lock, flags);
if (skb->protocol == htons(ETH_P_IP))
switch (skb->nh.iph->protocol) {
case IPPROTO_TCP:
descr->dmac_cmd_status |= SPIDER_NET_DMAC_TCP;
break;
case IPPROTO_UDP:
descr->dmac_cmd_status |= SPIDER_NET_DMAC_UDP;
break;
}
[PATCH] powerpc/cell spidernet low watermark patch. Implement basic low-watermark support for the transmit queue. Hardware low-watermarks allow a properly configured kernel to continously stream data to a device and not have to handle any interrupts at all in doing so. Correct zero-interrupt operation can be actually observed for this driver, when the socket buffer is made large enough. The basic idea of a low-watermark interrupt is as follows. The device driver queues up a bunch of packets for the hardware to transmit, and then kicks the hardware to get it started. As the hardware drains the queue of pending, untransmitted packets, the device driver will want to know when the queue is almost empty, so that it can queue some more packets. If the queue drains down to the low waterark, then an interrupt will be generated. However, if the kernel/driver continues to add enough packets to keep the queue partially filled, no interrupt will actually be generated, and the hardware can continue streaming packets indefinitely in this mode. The impelmentation is done by setting the DESCR_TXDESFLG flag in one of the packets. When the hardware sees this flag, it will interrupt the device driver. Because this flag is on a fixed packet, rather than at fixed location in the queue, the code below needs to move the flag as more packets are queued up. This implementation attempts to keep the flag at about 1/4 from "empty". Signed-off-by: Linas Vepstas <linas@austin.ibm.com> Signed-off-by: James K Lewis <jklewis@us.ibm.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2006-10-10 14:11:33 -07:00
/* Chain the bus address, so that the DMA engine finds this descr. */
descr->prev->next_descr_addr = descr->bus_addr;
card->netdev->trans_start = jiffies; /* set netdev watchdog timer */
return 0;
}
static int
[PATCH] powerpc/cell spidernet low watermark patch. Implement basic low-watermark support for the transmit queue. Hardware low-watermarks allow a properly configured kernel to continously stream data to a device and not have to handle any interrupts at all in doing so. Correct zero-interrupt operation can be actually observed for this driver, when the socket buffer is made large enough. The basic idea of a low-watermark interrupt is as follows. The device driver queues up a bunch of packets for the hardware to transmit, and then kicks the hardware to get it started. As the hardware drains the queue of pending, untransmitted packets, the device driver will want to know when the queue is almost empty, so that it can queue some more packets. If the queue drains down to the low waterark, then an interrupt will be generated. However, if the kernel/driver continues to add enough packets to keep the queue partially filled, no interrupt will actually be generated, and the hardware can continue streaming packets indefinitely in this mode. The impelmentation is done by setting the DESCR_TXDESFLG flag in one of the packets. When the hardware sees this flag, it will interrupt the device driver. Because this flag is on a fixed packet, rather than at fixed location in the queue, the code below needs to move the flag as more packets are queued up. This implementation attempts to keep the flag at about 1/4 from "empty". Signed-off-by: Linas Vepstas <linas@austin.ibm.com> Signed-off-by: James K Lewis <jklewis@us.ibm.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2006-10-10 14:11:33 -07:00
spider_net_set_low_watermark(struct spider_net_card *card)
{
unsigned long flags;
[PATCH] powerpc/cell spidernet low watermark patch. Implement basic low-watermark support for the transmit queue. Hardware low-watermarks allow a properly configured kernel to continously stream data to a device and not have to handle any interrupts at all in doing so. Correct zero-interrupt operation can be actually observed for this driver, when the socket buffer is made large enough. The basic idea of a low-watermark interrupt is as follows. The device driver queues up a bunch of packets for the hardware to transmit, and then kicks the hardware to get it started. As the hardware drains the queue of pending, untransmitted packets, the device driver will want to know when the queue is almost empty, so that it can queue some more packets. If the queue drains down to the low waterark, then an interrupt will be generated. However, if the kernel/driver continues to add enough packets to keep the queue partially filled, no interrupt will actually be generated, and the hardware can continue streaming packets indefinitely in this mode. The impelmentation is done by setting the DESCR_TXDESFLG flag in one of the packets. When the hardware sees this flag, it will interrupt the device driver. Because this flag is on a fixed packet, rather than at fixed location in the queue, the code below needs to move the flag as more packets are queued up. This implementation attempts to keep the flag at about 1/4 from "empty". Signed-off-by: Linas Vepstas <linas@austin.ibm.com> Signed-off-by: James K Lewis <jklewis@us.ibm.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2006-10-10 14:11:33 -07:00
int status;
int cnt=0;
int i;
struct spider_net_descr *descr = card->tx_chain.tail;
/* Measure the length of the queue. Measurement does not
* need to be precise -- does not need a lock. */
[PATCH] powerpc/cell spidernet low watermark patch. Implement basic low-watermark support for the transmit queue. Hardware low-watermarks allow a properly configured kernel to continously stream data to a device and not have to handle any interrupts at all in doing so. Correct zero-interrupt operation can be actually observed for this driver, when the socket buffer is made large enough. The basic idea of a low-watermark interrupt is as follows. The device driver queues up a bunch of packets for the hardware to transmit, and then kicks the hardware to get it started. As the hardware drains the queue of pending, untransmitted packets, the device driver will want to know when the queue is almost empty, so that it can queue some more packets. If the queue drains down to the low waterark, then an interrupt will be generated. However, if the kernel/driver continues to add enough packets to keep the queue partially filled, no interrupt will actually be generated, and the hardware can continue streaming packets indefinitely in this mode. The impelmentation is done by setting the DESCR_TXDESFLG flag in one of the packets. When the hardware sees this flag, it will interrupt the device driver. Because this flag is on a fixed packet, rather than at fixed location in the queue, the code below needs to move the flag as more packets are queued up. This implementation attempts to keep the flag at about 1/4 from "empty". Signed-off-by: Linas Vepstas <linas@austin.ibm.com> Signed-off-by: James K Lewis <jklewis@us.ibm.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2006-10-10 14:11:33 -07:00
while (descr != card->tx_chain.head) {
status = descr->dmac_cmd_status & SPIDER_NET_DESCR_NOT_IN_USE;
if (status == SPIDER_NET_DESCR_NOT_IN_USE)
break;
descr = descr->next;
cnt++;
}
/* If TX queue is short, don't even bother with interrupts */
if (cnt < card->num_tx_desc/4)
return cnt;
[PATCH] powerpc/cell spidernet low watermark patch. Implement basic low-watermark support for the transmit queue. Hardware low-watermarks allow a properly configured kernel to continously stream data to a device and not have to handle any interrupts at all in doing so. Correct zero-interrupt operation can be actually observed for this driver, when the socket buffer is made large enough. The basic idea of a low-watermark interrupt is as follows. The device driver queues up a bunch of packets for the hardware to transmit, and then kicks the hardware to get it started. As the hardware drains the queue of pending, untransmitted packets, the device driver will want to know when the queue is almost empty, so that it can queue some more packets. If the queue drains down to the low waterark, then an interrupt will be generated. However, if the kernel/driver continues to add enough packets to keep the queue partially filled, no interrupt will actually be generated, and the hardware can continue streaming packets indefinitely in this mode. The impelmentation is done by setting the DESCR_TXDESFLG flag in one of the packets. When the hardware sees this flag, it will interrupt the device driver. Because this flag is on a fixed packet, rather than at fixed location in the queue, the code below needs to move the flag as more packets are queued up. This implementation attempts to keep the flag at about 1/4 from "empty". Signed-off-by: Linas Vepstas <linas@austin.ibm.com> Signed-off-by: James K Lewis <jklewis@us.ibm.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2006-10-10 14:11:33 -07:00
/* Set low-watermark 3/4th's of the way into the queue. */
descr = card->tx_chain.tail;
cnt = (cnt*3)/4;
for (i=0;i<cnt; i++)
descr = descr->next;
/* Set the new watermark, clear the old watermark */
spin_lock_irqsave(&card->tx_chain.lock, flags);
[PATCH] powerpc/cell spidernet low watermark patch. Implement basic low-watermark support for the transmit queue. Hardware low-watermarks allow a properly configured kernel to continously stream data to a device and not have to handle any interrupts at all in doing so. Correct zero-interrupt operation can be actually observed for this driver, when the socket buffer is made large enough. The basic idea of a low-watermark interrupt is as follows. The device driver queues up a bunch of packets for the hardware to transmit, and then kicks the hardware to get it started. As the hardware drains the queue of pending, untransmitted packets, the device driver will want to know when the queue is almost empty, so that it can queue some more packets. If the queue drains down to the low waterark, then an interrupt will be generated. However, if the kernel/driver continues to add enough packets to keep the queue partially filled, no interrupt will actually be generated, and the hardware can continue streaming packets indefinitely in this mode. The impelmentation is done by setting the DESCR_TXDESFLG flag in one of the packets. When the hardware sees this flag, it will interrupt the device driver. Because this flag is on a fixed packet, rather than at fixed location in the queue, the code below needs to move the flag as more packets are queued up. This implementation attempts to keep the flag at about 1/4 from "empty". Signed-off-by: Linas Vepstas <linas@austin.ibm.com> Signed-off-by: James K Lewis <jklewis@us.ibm.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2006-10-10 14:11:33 -07:00
descr->dmac_cmd_status |= SPIDER_NET_DESCR_TXDESFLG;
if (card->low_watermark && card->low_watermark != descr)
card->low_watermark->dmac_cmd_status =
card->low_watermark->dmac_cmd_status & ~SPIDER_NET_DESCR_TXDESFLG;
card->low_watermark = descr;
spin_unlock_irqrestore(&card->tx_chain.lock, flags);
return cnt;
[PATCH] powerpc/cell spidernet low watermark patch. Implement basic low-watermark support for the transmit queue. Hardware low-watermarks allow a properly configured kernel to continously stream data to a device and not have to handle any interrupts at all in doing so. Correct zero-interrupt operation can be actually observed for this driver, when the socket buffer is made large enough. The basic idea of a low-watermark interrupt is as follows. The device driver queues up a bunch of packets for the hardware to transmit, and then kicks the hardware to get it started. As the hardware drains the queue of pending, untransmitted packets, the device driver will want to know when the queue is almost empty, so that it can queue some more packets. If the queue drains down to the low waterark, then an interrupt will be generated. However, if the kernel/driver continues to add enough packets to keep the queue partially filled, no interrupt will actually be generated, and the hardware can continue streaming packets indefinitely in this mode. The impelmentation is done by setting the DESCR_TXDESFLG flag in one of the packets. When the hardware sees this flag, it will interrupt the device driver. Because this flag is on a fixed packet, rather than at fixed location in the queue, the code below needs to move the flag as more packets are queued up. This implementation attempts to keep the flag at about 1/4 from "empty". Signed-off-by: Linas Vepstas <linas@austin.ibm.com> Signed-off-by: James K Lewis <jklewis@us.ibm.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2006-10-10 14:11:33 -07:00
}
/**
* spider_net_release_tx_chain - processes sent tx descriptors
* @card: adapter structure
* @brutal: if set, don't care about whether descriptor seems to be in use
*
* returns 0 if the tx ring is empty, otherwise 1.
*
* spider_net_release_tx_chain releases the tx descriptors that spider has
* finished with (if non-brutal) or simply release tx descriptors (if brutal).
* If some other context is calling this function, we return 1 so that we're
* scheduled again (if we were scheduled) and will not loose initiative.
*/
static int
spider_net_release_tx_chain(struct spider_net_card *card, int brutal)
{
struct spider_net_descr_chain *chain = &card->tx_chain;
struct spider_net_descr *descr;
struct sk_buff *skb;
u32 buf_addr;
unsigned long flags;
int status;
while (chain->tail != chain->head) {
spin_lock_irqsave(&chain->lock, flags);
descr = chain->tail;
status = spider_net_get_descr_status(descr);
switch (status) {
case SPIDER_NET_DESCR_COMPLETE:
card->netdev_stats.tx_packets++;
card->netdev_stats.tx_bytes += descr->skb->len;
break;
case SPIDER_NET_DESCR_CARDOWNED:
if (!brutal) {
spin_unlock_irqrestore(&chain->lock, flags);
return 1;
}
/* fallthrough, if we release the descriptors
* brutally (then we don't care about
* SPIDER_NET_DESCR_CARDOWNED) */
case SPIDER_NET_DESCR_RESPONSE_ERROR:
case SPIDER_NET_DESCR_PROTECTION_ERROR:
case SPIDER_NET_DESCR_FORCE_END:
if (netif_msg_tx_err(card))
pr_err("%s: forcing end of tx descriptor "
"with status x%02x\n",
card->netdev->name, status);
card->netdev_stats.tx_errors++;
break;
default:
card->netdev_stats.tx_dropped++;
if (!brutal) {
spin_unlock_irqrestore(&chain->lock, flags);
return 1;
}
}
chain->tail = descr->next;
descr->dmac_cmd_status |= SPIDER_NET_DESCR_NOT_IN_USE;
skb = descr->skb;
buf_addr = descr->buf_addr;
spin_unlock_irqrestore(&chain->lock, flags);
/* unmap the skb */
if (skb) {
pci_unmap_single(card->pdev, buf_addr, skb->len,
PCI_DMA_TODEVICE);
dev_kfree_skb(skb);
}
}
return 0;
}
/**
* spider_net_kick_tx_dma - enables TX DMA processing
* @card: card structure
* @descr: descriptor address to enable TX processing at
*
* This routine will start the transmit DMA running if
* it is not already running. This routine ned only be
* called when queueing a new packet to an empty tx queue.
* Writes the current tx chain head as start address
* of the tx descriptor chain and enables the transmission
* DMA engine.
*/
static inline void
spider_net_kick_tx_dma(struct spider_net_card *card)
{
struct spider_net_descr *descr;
if (spider_net_read_reg(card, SPIDER_NET_GDTDMACCNTR) &
SPIDER_NET_TX_DMA_EN)
goto out;
descr = card->tx_chain.tail;
for (;;) {
if (spider_net_get_descr_status(descr) ==
SPIDER_NET_DESCR_CARDOWNED) {
spider_net_write_reg(card, SPIDER_NET_GDTDCHA,
descr->bus_addr);
spider_net_write_reg(card, SPIDER_NET_GDTDMACCNTR,
SPIDER_NET_DMA_TX_VALUE);
break;
}
if (descr == card->tx_chain.head)
break;
descr = descr->next;
}
out:
mod_timer(&card->tx_timer, jiffies + SPIDER_NET_TX_TIMER);
}
/**
* spider_net_xmit - transmits a frame over the device
* @skb: packet to send out
* @netdev: interface device structure
*
* returns 0 on success, !0 on failure
*/
static int
spider_net_xmit(struct sk_buff *skb, struct net_device *netdev)
{
int cnt;
struct spider_net_card *card = netdev_priv(netdev);
struct spider_net_descr_chain *chain = &card->tx_chain;
spider_net_release_tx_chain(card, 0);
if ((chain->head->next == chain->tail->prev) ||
(spider_net_prepare_tx_descr(card, skb) != 0)) {
card->netdev_stats.tx_dropped++;
netif_stop_queue(netdev);
return NETDEV_TX_BUSY;
}
cnt = spider_net_set_low_watermark(card);
if (cnt < 5)
spider_net_kick_tx_dma(card);
return NETDEV_TX_OK;
}
/**
* spider_net_cleanup_tx_ring - cleans up the TX ring
* @card: card structure
*
* spider_net_cleanup_tx_ring is called by either the tx_timer
* or from the NAPI polling routine.
* This routine releases resources associted with transmitted
* packets, including updating the queue tail pointer.
*/
static void
spider_net_cleanup_tx_ring(struct spider_net_card *card)
{
if ((spider_net_release_tx_chain(card, 0) != 0) &&
(card->netdev->flags & IFF_UP)) {
spider_net_kick_tx_dma(card);
netif_wake_queue(card->netdev);
}
}
/**
* spider_net_do_ioctl - called for device ioctls
* @netdev: interface device structure
* @ifr: request parameter structure for ioctl
* @cmd: command code for ioctl
*
* returns 0 on success, <0 on failure. Currently, we have no special ioctls.
* -EOPNOTSUPP is returned, if an unknown ioctl was requested
*/
static int
spider_net_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
default:
return -EOPNOTSUPP;
}
}
/**
* spider_net_pass_skb_up - takes an skb from a descriptor and passes it on
* @descr: descriptor to process
* @card: card structure
* @napi: whether caller is in NAPI context
*
* returns 1 on success, 0 if no packet was passed to the stack
*
* iommu-unmaps the skb, fills out skb structure and passes the data to the
* stack. The descriptor state is not changed.
*/
static int
spider_net_pass_skb_up(struct spider_net_descr *descr,
struct spider_net_card *card, int napi)
{
struct sk_buff *skb;
struct net_device *netdev;
u32 data_status, data_error;
data_status = descr->data_status;
data_error = descr->data_error;
netdev = card->netdev;
/* unmap descriptor */
pci_unmap_single(card->pdev, descr->buf_addr, SPIDER_NET_MAX_FRAME,
PCI_DMA_FROMDEVICE);
/* the cases we'll throw away the packet immediately */
if (data_error & SPIDER_NET_DESTROY_RX_FLAGS) {
if (netif_msg_rx_err(card))
pr_err("error in received descriptor found, "
"data_status=x%08x, data_error=x%08x\n",
data_status, data_error);
card->spider_stats.rx_desc_error++;
return 0;
}
skb = descr->skb;
skb->dev = netdev;
skb_put(skb, descr->valid_size);
/* the card seems to add 2 bytes of junk in front
* of the ethernet frame */
#define SPIDER_MISALIGN 2
skb_pull(skb, SPIDER_MISALIGN);
skb->protocol = eth_type_trans(skb, netdev);
/* checksum offload */
if (card->options.rx_csum) {
if ( ( (data_status & SPIDER_NET_DATA_STATUS_CKSUM_MASK) ==
SPIDER_NET_DATA_STATUS_CKSUM_MASK) &&
!(data_error & SPIDER_NET_DATA_ERR_CKSUM_MASK))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
} else
skb->ip_summed = CHECKSUM_NONE;
if (data_status & SPIDER_NET_VLAN_PACKET) {
/* further enhancements: HW-accel VLAN
* vlan_hwaccel_receive_skb
*/
}
/* pass skb up to stack */
if (napi)
netif_receive_skb(skb);
else
netif_rx_ni(skb);
/* update netdevice statistics */
card->netdev_stats.rx_packets++;
card->netdev_stats.rx_bytes += skb->len;
return 1;
}
/**
* spider_net_decode_one_descr - processes an rx descriptor
* @card: card structure
* @napi: whether caller is in NAPI context
*
* returns 1 if a packet has been sent to the stack, otherwise 0
*
* processes an rx descriptor by iommu-unmapping the data buffer and passing
* the packet up to the stack. This function is called in softirq
* context, e.g. either bottom half from interrupt or NAPI polling context
*/
static int
spider_net_decode_one_descr(struct spider_net_card *card, int napi)
{
struct spider_net_descr_chain *chain = &card->rx_chain;
struct spider_net_descr *descr = chain->tail;
int status;
int result;
status = spider_net_get_descr_status(descr);
if (status == SPIDER_NET_DESCR_CARDOWNED) {
/* nothing in the descriptor yet */
result=0;
goto out;
}
if (status == SPIDER_NET_DESCR_NOT_IN_USE) {
/* not initialized yet, the ring must be empty */
spider_net_refill_rx_chain(card);
spider_net_enable_rxdmac(card);
result=0;
goto out;
}
/* descriptor definitively used -- move on tail */
chain->tail = descr->next;
result = 0;
if ( (status == SPIDER_NET_DESCR_RESPONSE_ERROR) ||
(status == SPIDER_NET_DESCR_PROTECTION_ERROR) ||
(status == SPIDER_NET_DESCR_FORCE_END) ) {
if (netif_msg_rx_err(card))
pr_err("%s: dropping RX descriptor with state %d\n",
card->netdev->name, status);
card->netdev_stats.rx_dropped++;
pci_unmap_single(card->pdev, descr->buf_addr,
SPIDER_NET_MAX_FRAME, PCI_DMA_FROMDEVICE);
dev_kfree_skb_irq(descr->skb);
goto refill;
}
if ( (status != SPIDER_NET_DESCR_COMPLETE) &&
(status != SPIDER_NET_DESCR_FRAME_END) ) {
if (netif_msg_rx_err(card)) {
pr_err("%s: RX descriptor with state %d\n",
card->netdev->name, status);
card->spider_stats.rx_desc_unk_state++;
}
goto refill;
}
/* ok, we've got a packet in descr */
result = spider_net_pass_skb_up(descr, card, napi);
refill:
descr->dmac_cmd_status = SPIDER_NET_DESCR_NOT_IN_USE;
/* change the descriptor state: */
if (!napi)
spider_net_refill_rx_chain(card);
out:
return result;
}
/**
* spider_net_poll - NAPI poll function called by the stack to return packets
* @netdev: interface device structure
* @budget: number of packets we can pass to the stack at most
*
* returns 0 if no more packets available to the driver/stack. Returns 1,
* if the quota is exceeded, but the driver has still packets.
*
* spider_net_poll returns all packets from the rx descriptors to the stack
* (using netif_receive_skb). If all/enough packets are up, the driver
* reenables interrupts and returns 0. If not, 1 is returned.
*/
static int
spider_net_poll(struct net_device *netdev, int *budget)
{
struct spider_net_card *card = netdev_priv(netdev);
int packets_to_do, packets_done = 0;
int no_more_packets = 0;
spider_net_cleanup_tx_ring(card);
packets_to_do = min(*budget, netdev->quota);
while (packets_to_do) {
if (spider_net_decode_one_descr(card, 1)) {
packets_done++;
packets_to_do--;
} else {
/* no more packets for the stack */
no_more_packets = 1;
break;
}
}
netdev->quota -= packets_done;
*budget -= packets_done;
spider_net_refill_rx_chain(card);
/* if all packets are in the stack, enable interrupts and return 0 */
/* if not, return 1 */
if (no_more_packets) {
netif_rx_complete(netdev);
spider_net_rx_irq_on(card);
return 0;
}
return 1;
}
/**
* spider_net_vlan_rx_reg - initializes VLAN structures in the driver and card
* @netdev: interface device structure
* @grp: vlan_group structure that is registered (NULL on destroying interface)
*/
static void
spider_net_vlan_rx_reg(struct net_device *netdev, struct vlan_group *grp)
{
/* further enhancement... yet to do */
return;
}
/**
* spider_net_vlan_rx_add - adds VLAN id to the card filter
* @netdev: interface device structure
* @vid: VLAN id to add
*/
static void
spider_net_vlan_rx_add(struct net_device *netdev, uint16_t vid)
{
/* further enhancement... yet to do */
/* add vid to card's VLAN filter table */
return;
}
/**
* spider_net_vlan_rx_kill - removes VLAN id to the card filter
* @netdev: interface device structure
* @vid: VLAN id to remove
*/
static void
spider_net_vlan_rx_kill(struct net_device *netdev, uint16_t vid)
{
/* further enhancement... yet to do */
/* remove vid from card's VLAN filter table */
}
/**
* spider_net_get_stats - get interface statistics
* @netdev: interface device structure
*
* returns the interface statistics residing in the spider_net_card struct
*/
static struct net_device_stats *
spider_net_get_stats(struct net_device *netdev)
{
struct spider_net_card *card = netdev_priv(netdev);
struct net_device_stats *stats = &card->netdev_stats;
return stats;
}
/**
* spider_net_change_mtu - changes the MTU of an interface
* @netdev: interface device structure
* @new_mtu: new MTU value
*
* returns 0 on success, <0 on failure
*/
static int
spider_net_change_mtu(struct net_device *netdev, int new_mtu)
{
/* no need to re-alloc skbs or so -- the max mtu is about 2.3k
* and mtu is outbound only anyway */
if ( (new_mtu < SPIDER_NET_MIN_MTU ) ||
(new_mtu > SPIDER_NET_MAX_MTU) )
return -EINVAL;
netdev->mtu = new_mtu;
return 0;
}
/**
* spider_net_set_mac - sets the MAC of an interface
* @netdev: interface device structure
* @ptr: pointer to new MAC address
*
* Returns 0 on success, <0 on failure. Currently, we don't support this
* and will always return EOPNOTSUPP.
*/
static int
spider_net_set_mac(struct net_device *netdev, void *p)
{
struct spider_net_card *card = netdev_priv(netdev);
u32 macl, macu, regvalue;
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
/* switch off GMACTPE and GMACRPE */
regvalue = spider_net_read_reg(card, SPIDER_NET_GMACOPEMD);
regvalue &= ~((1 << 5) | (1 << 6));
spider_net_write_reg(card, SPIDER_NET_GMACOPEMD, regvalue);
/* write mac */
macu = (addr->sa_data[0]<<24) + (addr->sa_data[1]<<16) +
(addr->sa_data[2]<<8) + (addr->sa_data[3]);
macl = (addr->sa_data[4]<<8) + (addr->sa_data[5]);
spider_net_write_reg(card, SPIDER_NET_GMACUNIMACU, macu);
spider_net_write_reg(card, SPIDER_NET_GMACUNIMACL, macl);
/* switch GMACTPE and GMACRPE back on */
regvalue = spider_net_read_reg(card, SPIDER_NET_GMACOPEMD);
regvalue |= ((1 << 5) | (1 << 6));
spider_net_write_reg(card, SPIDER_NET_GMACOPEMD, regvalue);
spider_net_set_promisc(card);
/* look up, whether we have been successful */
if (spider_net_get_mac_address(netdev))
return -EADDRNOTAVAIL;
if (memcmp(netdev->dev_addr,addr->sa_data,netdev->addr_len))
return -EADDRNOTAVAIL;
return 0;
}
/**
* spider_net_handle_rxram_full - cleans up RX ring upon RX RAM full interrupt
* @card: card structure
*
* spider_net_handle_rxram_full empties the RX ring so that spider can put
* more packets in it and empty its RX RAM. This is called in bottom half
* context
*/
static void
spider_net_handle_rxram_full(struct spider_net_card *card)
{
while (spider_net_decode_one_descr(card, 0))
;
spider_net_enable_rxchtails(card);
spider_net_enable_rxdmac(card);
netif_rx_schedule(card->netdev);
}
/**
* spider_net_handle_error_irq - handles errors raised by an interrupt
* @card: card structure
* @status_reg: interrupt status register 0 (GHIINT0STS)
*
* spider_net_handle_error_irq treats or ignores all error conditions
* found when an interrupt is presented
*/
static void
spider_net_handle_error_irq(struct spider_net_card *card, u32 status_reg)
{
u32 error_reg1, error_reg2;
u32 i;
int show_error = 1;
error_reg1 = spider_net_read_reg(card, SPIDER_NET_GHIINT1STS);
error_reg2 = spider_net_read_reg(card, SPIDER_NET_GHIINT2STS);
/* check GHIINT0STS ************************************/
if (status_reg)
for (i = 0; i < 32; i++)
if (status_reg & (1<<i))
switch (i)
{
/* let error_reg1 and error_reg2 evaluation decide, what to do
case SPIDER_NET_PHYINT:
case SPIDER_NET_GMAC2INT:
case SPIDER_NET_GMAC1INT:
case SPIDER_NET_GFIFOINT:
case SPIDER_NET_DMACINT:
case SPIDER_NET_GSYSINT:
break; */
case SPIDER_NET_GIPSINT:
show_error = 0;
break;
case SPIDER_NET_GPWOPCMPINT:
/* PHY write operation completed */
show_error = 0;
break;
case SPIDER_NET_GPROPCMPINT:
/* PHY read operation completed */
/* we don't use semaphores, as we poll for the completion
* of the read operation in spider_net_read_phy. Should take
* about 50 us */
show_error = 0;
break;
case SPIDER_NET_GPWFFINT:
/* PHY command queue full */
if (netif_msg_intr(card))
pr_err("PHY write queue full\n");
show_error = 0;
break;
/* case SPIDER_NET_GRMDADRINT: not used. print a message */
/* case SPIDER_NET_GRMARPINT: not used. print a message */
/* case SPIDER_NET_GRMMPINT: not used. print a message */
case SPIDER_NET_GDTDEN0INT:
/* someone has set TX_DMA_EN to 0 */
show_error = 0;
break;
case SPIDER_NET_GDDDEN0INT: /* fallthrough */
case SPIDER_NET_GDCDEN0INT: /* fallthrough */
case SPIDER_NET_GDBDEN0INT: /* fallthrough */
case SPIDER_NET_GDADEN0INT:
/* someone has set RX_DMA_EN to 0 */
show_error = 0;
break;
/* RX interrupts */
case SPIDER_NET_GDDFDCINT:
case SPIDER_NET_GDCFDCINT:
case SPIDER_NET_GDBFDCINT:
case SPIDER_NET_GDAFDCINT:
/* case SPIDER_NET_GDNMINT: not used. print a message */
/* case SPIDER_NET_GCNMINT: not used. print a message */
/* case SPIDER_NET_GBNMINT: not used. print a message */
/* case SPIDER_NET_GANMINT: not used. print a message */
/* case SPIDER_NET_GRFNMINT: not used. print a message */
show_error = 0;
break;
/* TX interrupts */
case SPIDER_NET_GDTFDCINT:
show_error = 0;
break;
case SPIDER_NET_GTTEDINT:
show_error = 0;
break;
case SPIDER_NET_GDTDCEINT:
/* chain end. If a descriptor should be sent, kick off
* tx dma
if (card->tx_chain.tail != card->tx_chain.head)
spider_net_kick_tx_dma(card);
*/
show_error = 0;
break;
/* case SPIDER_NET_G1TMCNTINT: not used. print a message */
/* case SPIDER_NET_GFREECNTINT: not used. print a message */
}
/* check GHIINT1STS ************************************/
if (error_reg1)
for (i = 0; i < 32; i++)
if (error_reg1 & (1<<i))
switch (i)
{
case SPIDER_NET_GTMFLLINT:
if (netif_msg_intr(card) && net_ratelimit())
pr_err("Spider TX RAM full\n");
show_error = 0;
break;
case SPIDER_NET_GRFDFLLINT: /* fallthrough */
case SPIDER_NET_GRFCFLLINT: /* fallthrough */
case SPIDER_NET_GRFBFLLINT: /* fallthrough */
case SPIDER_NET_GRFAFLLINT: /* fallthrough */
case SPIDER_NET_GRMFLLINT:
if (netif_msg_intr(card) && net_ratelimit())
pr_debug("Spider RX RAM full, incoming packets "
"might be discarded!\n");
spider_net_rx_irq_off(card);
tasklet_schedule(&card->rxram_full_tl);
show_error = 0;
break;
/* case SPIDER_NET_GTMSHTINT: problem, print a message */
case SPIDER_NET_GDTINVDINT:
/* allrighty. tx from previous descr ok */
show_error = 0;
break;
/* chain end */
case SPIDER_NET_GDDDCEINT: /* fallthrough */
case SPIDER_NET_GDCDCEINT: /* fallthrough */
case SPIDER_NET_GDBDCEINT: /* fallthrough */
case SPIDER_NET_GDADCEINT:
if (netif_msg_intr(card))
pr_err("got descriptor chain end interrupt, "
"restarting DMAC %c.\n",
'D'-(i-SPIDER_NET_GDDDCEINT)/3);
spider_net_refill_rx_chain(card);
spider_net_enable_rxdmac(card);
show_error = 0;
break;
/* invalid descriptor */
case SPIDER_NET_GDDINVDINT: /* fallthrough */
case SPIDER_NET_GDCINVDINT: /* fallthrough */
case SPIDER_NET_GDBINVDINT: /* fallthrough */
case SPIDER_NET_GDAINVDINT:
/* could happen when rx chain is full */
spider_net_refill_rx_chain(card);
spider_net_enable_rxdmac(card);
show_error = 0;
break;
/* case SPIDER_NET_GDTRSERINT: problem, print a message */
/* case SPIDER_NET_GDDRSERINT: problem, print a message */
/* case SPIDER_NET_GDCRSERINT: problem, print a message */
/* case SPIDER_NET_GDBRSERINT: problem, print a message */
/* case SPIDER_NET_GDARSERINT: problem, print a message */
/* case SPIDER_NET_GDSERINT: problem, print a message */
/* case SPIDER_NET_GDTPTERINT: problem, print a message */
/* case SPIDER_NET_GDDPTERINT: problem, print a message */
/* case SPIDER_NET_GDCPTERINT: problem, print a message */
/* case SPIDER_NET_GDBPTERINT: problem, print a message */
/* case SPIDER_NET_GDAPTERINT: problem, print a message */
default:
show_error = 1;
break;
}
/* check GHIINT2STS ************************************/
if (error_reg2)
for (i = 0; i < 32; i++)
if (error_reg2 & (1<<i))
switch (i)
{
/* there is nothing we can (want to) do at this time. Log a
* message, we can switch on and off the specific values later on
case SPIDER_NET_GPROPERINT:
case SPIDER_NET_GMCTCRSNGINT:
case SPIDER_NET_GMCTLCOLINT:
case SPIDER_NET_GMCTTMOTINT:
case SPIDER_NET_GMCRCAERINT:
case SPIDER_NET_GMCRCALERINT:
case SPIDER_NET_GMCRALNERINT:
case SPIDER_NET_GMCROVRINT:
case SPIDER_NET_GMCRRNTINT:
case SPIDER_NET_GMCRRXERINT:
case SPIDER_NET_GTITCSERINT:
case SPIDER_NET_GTIFMTERINT:
case SPIDER_NET_GTIPKTRVKINT:
case SPIDER_NET_GTISPINGINT:
case SPIDER_NET_GTISADNGINT:
case SPIDER_NET_GTISPDNGINT:
case SPIDER_NET_GRIFMTERINT:
case SPIDER_NET_GRIPKTRVKINT:
case SPIDER_NET_GRISPINGINT:
case SPIDER_NET_GRISADNGINT:
case SPIDER_NET_GRISPDNGINT:
break;
*/
default:
break;
}
if ((show_error) && (netif_msg_intr(card)))
pr_err("Got error interrupt on %s, GHIINT0STS = 0x%08x, "
"GHIINT1STS = 0x%08x, GHIINT2STS = 0x%08x\n",
card->netdev->name,
status_reg, error_reg1, error_reg2);
/* clear interrupt sources */
spider_net_write_reg(card, SPIDER_NET_GHIINT1STS, error_reg1);
spider_net_write_reg(card, SPIDER_NET_GHIINT2STS, error_reg2);
}
/**
* spider_net_interrupt - interrupt handler for spider_net
* @irq: interupt number
* @ptr: pointer to net_device
* @regs: PU registers
*
* returns IRQ_HANDLED, if interrupt was for driver, or IRQ_NONE, if no
* interrupt found raised by card.
*
* This is the interrupt handler, that turns off
* interrupts for this device and makes the stack poll the driver
*/
static irqreturn_t
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 06:55:46 -07:00
spider_net_interrupt(int irq, void *ptr)
{
struct net_device *netdev = ptr;
struct spider_net_card *card = netdev_priv(netdev);
u32 status_reg;
status_reg = spider_net_read_reg(card, SPIDER_NET_GHIINT0STS);
if (!status_reg)
return IRQ_NONE;
if (status_reg & SPIDER_NET_RXINT ) {
spider_net_rx_irq_off(card);
netif_rx_schedule(netdev);
}
if (status_reg & SPIDER_NET_TXINT)
netif_rx_schedule(netdev);
if (status_reg & SPIDER_NET_ERRINT )
spider_net_handle_error_irq(card, status_reg);
/* clear interrupt sources */
spider_net_write_reg(card, SPIDER_NET_GHIINT0STS, status_reg);
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/**
* spider_net_poll_controller - artificial interrupt for netconsole etc.
* @netdev: interface device structure
*
* see Documentation/networking/netconsole.txt
*/
static void
spider_net_poll_controller(struct net_device *netdev)
{
disable_irq(netdev->irq);
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 06:55:46 -07:00
spider_net_interrupt(netdev->irq, netdev);
enable_irq(netdev->irq);
}
#endif /* CONFIG_NET_POLL_CONTROLLER */
/**
* spider_net_init_card - initializes the card
* @card: card structure
*
* spider_net_init_card initializes the card so that other registers can
* be used
*/
static void
spider_net_init_card(struct spider_net_card *card)
{
spider_net_write_reg(card, SPIDER_NET_CKRCTRL,
SPIDER_NET_CKRCTRL_STOP_VALUE);
spider_net_write_reg(card, SPIDER_NET_CKRCTRL,
SPIDER_NET_CKRCTRL_RUN_VALUE);
}
/**
* spider_net_enable_card - enables the card by setting all kinds of regs
* @card: card structure
*
* spider_net_enable_card sets a lot of SMMIO registers to enable the device
*/
static void
spider_net_enable_card(struct spider_net_card *card)
{
int i;
/* the following array consists of (register),(value) pairs
* that are set in this function. A register of 0 ends the list */
u32 regs[][2] = {
{ SPIDER_NET_GRESUMINTNUM, 0 },
{ SPIDER_NET_GREINTNUM, 0 },
/* set interrupt frame number registers */
/* clear the single DMA engine registers first */
{ SPIDER_NET_GFAFRMNUM, SPIDER_NET_GFXFRAMES_VALUE },
{ SPIDER_NET_GFBFRMNUM, SPIDER_NET_GFXFRAMES_VALUE },
{ SPIDER_NET_GFCFRMNUM, SPIDER_NET_GFXFRAMES_VALUE },
{ SPIDER_NET_GFDFRMNUM, SPIDER_NET_GFXFRAMES_VALUE },
/* then set, what we really need */
{ SPIDER_NET_GFFRMNUM, SPIDER_NET_FRAMENUM_VALUE },
/* timer counter registers and stuff */
{ SPIDER_NET_GFREECNNUM, 0 },
{ SPIDER_NET_GONETIMENUM, 0 },
{ SPIDER_NET_GTOUTFRMNUM, 0 },
/* RX mode setting */
{ SPIDER_NET_GRXMDSET, SPIDER_NET_RXMODE_VALUE },
/* TX mode setting */
{ SPIDER_NET_GTXMDSET, SPIDER_NET_TXMODE_VALUE },
/* IPSEC mode setting */
{ SPIDER_NET_GIPSECINIT, SPIDER_NET_IPSECINIT_VALUE },
{ SPIDER_NET_GFTRESTRT, SPIDER_NET_RESTART_VALUE },
{ SPIDER_NET_GMRWOLCTRL, 0 },
{ SPIDER_NET_GTESTMD, 0x10000000 },
{ SPIDER_NET_GTTQMSK, 0x00400040 },
{ SPIDER_NET_GMACINTEN, 0 },
/* flow control stuff */
{ SPIDER_NET_GMACAPAUSE, SPIDER_NET_MACAPAUSE_VALUE },
{ SPIDER_NET_GMACTXPAUSE, SPIDER_NET_TXPAUSE_VALUE },
{ SPIDER_NET_GMACBSTLMT, SPIDER_NET_BURSTLMT_VALUE },
{ 0, 0}
};
i = 0;
while (regs[i][0]) {
spider_net_write_reg(card, regs[i][0], regs[i][1]);
i++;
}
/* clear unicast filter table entries 1 to 14 */
for (i = 1; i <= 14; i++) {
spider_net_write_reg(card,
SPIDER_NET_GMRUAFILnR + i * 8,
0x00080000);
spider_net_write_reg(card,
SPIDER_NET_GMRUAFILnR + i * 8 + 4,
0x00000000);
}
spider_net_write_reg(card, SPIDER_NET_GMRUA0FIL15R, 0x08080000);
spider_net_write_reg(card, SPIDER_NET_ECMODE, SPIDER_NET_ECMODE_VALUE);
/* set chain tail adress for RX chains and
* enable DMA */
spider_net_enable_rxchtails(card);
spider_net_enable_rxdmac(card);
spider_net_write_reg(card, SPIDER_NET_GRXDMAEN, SPIDER_NET_WOL_VALUE);
spider_net_write_reg(card, SPIDER_NET_GMACLENLMT,
SPIDER_NET_LENLMT_VALUE);
spider_net_write_reg(card, SPIDER_NET_GMACMODE,
SPIDER_NET_MACMODE_VALUE);
spider_net_write_reg(card, SPIDER_NET_GMACOPEMD,
SPIDER_NET_OPMODE_VALUE);
/* set interrupt mask registers */
spider_net_write_reg(card, SPIDER_NET_GHIINT0MSK,
SPIDER_NET_INT0_MASK_VALUE);
spider_net_write_reg(card, SPIDER_NET_GHIINT1MSK,
SPIDER_NET_INT1_MASK_VALUE);
spider_net_write_reg(card, SPIDER_NET_GHIINT2MSK,
SPIDER_NET_INT2_MASK_VALUE);
spider_net_write_reg(card, SPIDER_NET_GDTDMACCNTR,
SPIDER_NET_GDTBSTA);
}
/**
* spider_net_open - called upon ifonfig up
* @netdev: interface device structure
*
* returns 0 on success, <0 on failure
*
* spider_net_open allocates all the descriptors and memory needed for
* operation, sets up multicast list and enables interrupts
*/
int
spider_net_open(struct net_device *netdev)
{
struct spider_net_card *card = netdev_priv(netdev);
struct spider_net_descr *descr;
int i, result;
result = -ENOMEM;
if (spider_net_init_chain(card, &card->tx_chain, card->descr,
card->num_tx_desc))
goto alloc_tx_failed;
[PATCH] powerpc/cell spidernet low watermark patch. Implement basic low-watermark support for the transmit queue. Hardware low-watermarks allow a properly configured kernel to continously stream data to a device and not have to handle any interrupts at all in doing so. Correct zero-interrupt operation can be actually observed for this driver, when the socket buffer is made large enough. The basic idea of a low-watermark interrupt is as follows. The device driver queues up a bunch of packets for the hardware to transmit, and then kicks the hardware to get it started. As the hardware drains the queue of pending, untransmitted packets, the device driver will want to know when the queue is almost empty, so that it can queue some more packets. If the queue drains down to the low waterark, then an interrupt will be generated. However, if the kernel/driver continues to add enough packets to keep the queue partially filled, no interrupt will actually be generated, and the hardware can continue streaming packets indefinitely in this mode. The impelmentation is done by setting the DESCR_TXDESFLG flag in one of the packets. When the hardware sees this flag, it will interrupt the device driver. Because this flag is on a fixed packet, rather than at fixed location in the queue, the code below needs to move the flag as more packets are queued up. This implementation attempts to keep the flag at about 1/4 from "empty". Signed-off-by: Linas Vepstas <linas@austin.ibm.com> Signed-off-by: James K Lewis <jklewis@us.ibm.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2006-10-10 14:11:33 -07:00
card->low_watermark = NULL;
/* rx_chain is after tx_chain, so offset is descr + tx_count */
if (spider_net_init_chain(card, &card->rx_chain,
card->descr + card->num_tx_desc,
card->num_rx_desc))
goto alloc_rx_failed;
descr = card->rx_chain.head;
for (i=0; i < card->num_rx_desc; i++, descr++)
descr->next_descr_addr = descr->next->bus_addr;
/* allocate rx skbs */
if (spider_net_alloc_rx_skbs(card))
goto alloc_skbs_failed;
spider_net_set_multi(netdev);
/* further enhancement: setup hw vlan, if needed */
result = -EBUSY;
if (request_irq(netdev->irq, spider_net_interrupt,
IRQF_SHARED, netdev->name, netdev))
goto register_int_failed;
spider_net_enable_card(card);
netif_start_queue(netdev);
netif_carrier_on(netdev);
netif_poll_enable(netdev);
return 0;
register_int_failed:
spider_net_free_rx_chain_contents(card);
alloc_skbs_failed:
spider_net_free_chain(card, &card->rx_chain);
alloc_rx_failed:
spider_net_free_chain(card, &card->tx_chain);
alloc_tx_failed:
return result;
}
/**
* spider_net_setup_phy - setup PHY
* @card: card structure
*
* returns 0 on success, <0 on failure
*
* spider_net_setup_phy is used as part of spider_net_probe. Sets
* the PHY to 1000 Mbps
**/
static int
spider_net_setup_phy(struct spider_net_card *card)
{
struct mii_phy *phy = &card->phy;
spider_net_write_reg(card, SPIDER_NET_GDTDMASEL,
SPIDER_NET_DMASEL_VALUE);
spider_net_write_reg(card, SPIDER_NET_GPCCTRL,
SPIDER_NET_PHY_CTRL_VALUE);
phy->mii_id = 1;
phy->dev = card->netdev;
phy->mdio_read = spider_net_read_phy;
phy->mdio_write = spider_net_write_phy;
mii_phy_probe(phy, phy->mii_id);
if (phy->def->ops->setup_forced)
phy->def->ops->setup_forced(phy, SPEED_1000, DUPLEX_FULL);
phy->def->ops->enable_fiber(phy);
phy->def->ops->read_link(phy);
pr_info("Found %s with %i Mbps, %s-duplex.\n", phy->def->name,
phy->speed, phy->duplex==1 ? "Full" : "Half");
return 0;
}
/**
* spider_net_download_firmware - loads firmware into the adapter
* @card: card structure
* @firmware_ptr: pointer to firmware data
*
* spider_net_download_firmware loads the firmware data into the
* adapter. It assumes the length etc. to be allright.
*/
static int
spider_net_download_firmware(struct spider_net_card *card,
const void *firmware_ptr)
{
int sequencer, i;
const u32 *fw_ptr = firmware_ptr;
/* stop sequencers */
spider_net_write_reg(card, SPIDER_NET_GSINIT,
SPIDER_NET_STOP_SEQ_VALUE);
for (sequencer = 0; sequencer < SPIDER_NET_FIRMWARE_SEQS;
sequencer++) {
spider_net_write_reg(card,
SPIDER_NET_GSnPRGADR + sequencer * 8, 0);
for (i = 0; i < SPIDER_NET_FIRMWARE_SEQWORDS; i++) {
spider_net_write_reg(card, SPIDER_NET_GSnPRGDAT +
sequencer * 8, *fw_ptr);
fw_ptr++;
}
}
if (spider_net_read_reg(card, SPIDER_NET_GSINIT))
return -EIO;
spider_net_write_reg(card, SPIDER_NET_GSINIT,
SPIDER_NET_RUN_SEQ_VALUE);
return 0;
}
/**
* spider_net_init_firmware - reads in firmware parts
* @card: card structure
*
* Returns 0 on success, <0 on failure
*
* spider_net_init_firmware opens the sequencer firmware and does some basic
* checks. This function opens and releases the firmware structure. A call
* to download the firmware is performed before the release.
*
* Firmware format
* ===============
* spider_fw.bin is expected to be a file containing 6*1024*4 bytes, 4k being
* the program for each sequencer. Use the command
* tail -q -n +2 Seq_code1_0x088.txt Seq_code2_0x090.txt \
* Seq_code3_0x098.txt Seq_code4_0x0A0.txt Seq_code5_0x0A8.txt \
* Seq_code6_0x0B0.txt | xxd -r -p -c4 > spider_fw.bin
*
* to generate spider_fw.bin, if you have sequencer programs with something
* like the following contents for each sequencer:
* <ONE LINE COMMENT>
* <FIRST 4-BYTES-WORD FOR SEQUENCER>
* <SECOND 4-BYTES-WORD FOR SEQUENCER>
* ...
* <1024th 4-BYTES-WORD FOR SEQUENCER>
*/
static int
spider_net_init_firmware(struct spider_net_card *card)
{
struct firmware *firmware = NULL;
struct device_node *dn;
const u8 *fw_prop = NULL;
int err = -ENOENT;
int fw_size;
if (request_firmware((const struct firmware **)&firmware,
SPIDER_NET_FIRMWARE_NAME, &card->pdev->dev) == 0) {
if ( (firmware->size != SPIDER_NET_FIRMWARE_LEN) &&
netif_msg_probe(card) ) {
pr_err("Incorrect size of spidernet firmware in " \
"filesystem. Looking in host firmware...\n");
goto try_host_fw;
}
err = spider_net_download_firmware(card, firmware->data);
release_firmware(firmware);
if (err)
goto try_host_fw;
goto done;
}
try_host_fw:
dn = pci_device_to_OF_node(card->pdev);
if (!dn)
goto out_err;
fw_prop = get_property(dn, "firmware", &fw_size);
if (!fw_prop)
goto out_err;
if ( (fw_size != SPIDER_NET_FIRMWARE_LEN) &&
netif_msg_probe(card) ) {
pr_err("Incorrect size of spidernet firmware in " \
"host firmware\n");
goto done;
}
err = spider_net_download_firmware(card, fw_prop);
done:
return err;
out_err:
if (netif_msg_probe(card))
pr_err("Couldn't find spidernet firmware in filesystem " \
"or host firmware\n");
return err;
}
/**
* spider_net_workaround_rxramfull - work around firmware bug
* @card: card structure
*
* no return value
**/
static void
spider_net_workaround_rxramfull(struct spider_net_card *card)
{
int i, sequencer = 0;
/* cancel reset */
spider_net_write_reg(card, SPIDER_NET_CKRCTRL,
SPIDER_NET_CKRCTRL_RUN_VALUE);
/* empty sequencer data */
for (sequencer = 0; sequencer < SPIDER_NET_FIRMWARE_SEQS;
sequencer++) {
spider_net_write_reg(card, SPIDER_NET_GSnPRGADR +
sequencer * 8, 0x0);
for (i = 0; i < SPIDER_NET_FIRMWARE_SEQWORDS; i++) {
spider_net_write_reg(card, SPIDER_NET_GSnPRGDAT +
sequencer * 8, 0x0);
}
}
/* set sequencer operation */
spider_net_write_reg(card, SPIDER_NET_GSINIT, 0x000000fe);
/* reset */
spider_net_write_reg(card, SPIDER_NET_CKRCTRL,
SPIDER_NET_CKRCTRL_STOP_VALUE);
}
/**
* spider_net_stop - called upon ifconfig down
* @netdev: interface device structure
*
* always returns 0
*/
int
spider_net_stop(struct net_device *netdev)
{
struct spider_net_card *card = netdev_priv(netdev);
tasklet_kill(&card->rxram_full_tl);
netif_poll_disable(netdev);
netif_carrier_off(netdev);
netif_stop_queue(netdev);
del_timer_sync(&card->tx_timer);
/* disable/mask all interrupts */
spider_net_write_reg(card, SPIDER_NET_GHIINT0MSK, 0);
spider_net_write_reg(card, SPIDER_NET_GHIINT1MSK, 0);
spider_net_write_reg(card, SPIDER_NET_GHIINT2MSK, 0);
/* free_irq(netdev->irq, netdev);*/
free_irq(to_pci_dev(netdev->class_dev.dev)->irq, netdev);
spider_net_write_reg(card, SPIDER_NET_GDTDMACCNTR,
SPIDER_NET_DMA_TX_FEND_VALUE);
/* turn off DMA, force end */
spider_net_disable_rxdmac(card);
/* release chains */
spider_net_release_tx_chain(card, 1);
spider_net_free_chain(card, &card->tx_chain);
spider_net_free_chain(card, &card->rx_chain);
return 0;
}
/**
* spider_net_tx_timeout_task - task scheduled by the watchdog timeout
* function (to be called not under interrupt status)
* @data: data, is interface device structure
*
* called as task when tx hangs, resets interface (if interface is up)
*/
static void
spider_net_tx_timeout_task(void *data)
{
struct net_device *netdev = data;
struct spider_net_card *card = netdev_priv(netdev);
if (!(netdev->flags & IFF_UP))
goto out;
netif_device_detach(netdev);
spider_net_stop(netdev);
spider_net_workaround_rxramfull(card);
spider_net_init_card(card);
if (spider_net_setup_phy(card))
goto out;
if (spider_net_init_firmware(card))
goto out;
spider_net_open(netdev);
spider_net_kick_tx_dma(card);
netif_device_attach(netdev);
out:
atomic_dec(&card->tx_timeout_task_counter);
}
/**
* spider_net_tx_timeout - called when the tx timeout watchdog kicks in.
* @netdev: interface device structure
*
* called, if tx hangs. Schedules a task that resets the interface
*/
static void
spider_net_tx_timeout(struct net_device *netdev)
{
struct spider_net_card *card;
card = netdev_priv(netdev);
atomic_inc(&card->tx_timeout_task_counter);
if (netdev->flags & IFF_UP)
schedule_work(&card->tx_timeout_task);
else
atomic_dec(&card->tx_timeout_task_counter);
card->spider_stats.tx_timeouts++;
}
/**
* spider_net_setup_netdev_ops - initialization of net_device operations
* @netdev: net_device structure
*
* fills out function pointers in the net_device structure
*/
static void
spider_net_setup_netdev_ops(struct net_device *netdev)
{
netdev->open = &spider_net_open;
netdev->stop = &spider_net_stop;
netdev->hard_start_xmit = &spider_net_xmit;
netdev->get_stats = &spider_net_get_stats;
netdev->set_multicast_list = &spider_net_set_multi;
netdev->set_mac_address = &spider_net_set_mac;
netdev->change_mtu = &spider_net_change_mtu;
netdev->do_ioctl = &spider_net_do_ioctl;
/* tx watchdog */
netdev->tx_timeout = &spider_net_tx_timeout;
netdev->watchdog_timeo = SPIDER_NET_WATCHDOG_TIMEOUT;
/* NAPI */
netdev->poll = &spider_net_poll;
netdev->weight = SPIDER_NET_NAPI_WEIGHT;
/* HW VLAN */
netdev->vlan_rx_register = &spider_net_vlan_rx_reg;
netdev->vlan_rx_add_vid = &spider_net_vlan_rx_add;
netdev->vlan_rx_kill_vid = &spider_net_vlan_rx_kill;
#ifdef CONFIG_NET_POLL_CONTROLLER
/* poll controller */
netdev->poll_controller = &spider_net_poll_controller;
#endif /* CONFIG_NET_POLL_CONTROLLER */
/* ethtool ops */
netdev->ethtool_ops = &spider_net_ethtool_ops;
}
/**
* spider_net_setup_netdev - initialization of net_device
* @card: card structure
*
* Returns 0 on success or <0 on failure
*
* spider_net_setup_netdev initializes the net_device structure
**/
static int
spider_net_setup_netdev(struct spider_net_card *card)
{
int result;
struct net_device *netdev = card->netdev;
struct device_node *dn;
struct sockaddr addr;
const u8 *mac;
SET_MODULE_OWNER(netdev);
SET_NETDEV_DEV(netdev, &card->pdev->dev);
pci_set_drvdata(card->pdev, netdev);
card->rxram_full_tl.data = (unsigned long) card;
card->rxram_full_tl.func =
(void (*)(unsigned long)) spider_net_handle_rxram_full;
init_timer(&card->tx_timer);
card->tx_timer.function =
(void (*)(unsigned long)) spider_net_cleanup_tx_ring;
card->tx_timer.data = (unsigned long) card;
netdev->irq = card->pdev->irq;
card->options.rx_csum = SPIDER_NET_RX_CSUM_DEFAULT;
card->num_tx_desc = tx_descriptors;
card->num_rx_desc = rx_descriptors;
spider_net_setup_netdev_ops(netdev);
netdev->features = NETIF_F_HW_CSUM | NETIF_F_LLTX;
/* some time: NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
* NETIF_F_HW_VLAN_FILTER */
netdev->irq = card->pdev->irq;
dn = pci_device_to_OF_node(card->pdev);
if (!dn)
return -EIO;
mac = get_property(dn, "local-mac-address", NULL);
if (!mac)
return -EIO;
memcpy(addr.sa_data, mac, ETH_ALEN);
result = spider_net_set_mac(netdev, &addr);
if ((result) && (netif_msg_probe(card)))
pr_err("Failed to set MAC address: %i\n", result);
result = register_netdev(netdev);
if (result) {
if (netif_msg_probe(card))
pr_err("Couldn't register net_device: %i\n",
result);
return result;
}
if (netif_msg_probe(card))
pr_info("Initialized device %s.\n", netdev->name);
return 0;
}
/**
* spider_net_alloc_card - allocates net_device and card structure
*
* returns the card structure or NULL in case of errors
*
* the card and net_device structures are linked to each other
*/
static struct spider_net_card *
spider_net_alloc_card(void)
{
struct net_device *netdev;
struct spider_net_card *card;
size_t alloc_size;
alloc_size = sizeof (*card) +
sizeof (struct spider_net_descr) * rx_descriptors +
sizeof (struct spider_net_descr) * tx_descriptors;
netdev = alloc_etherdev(alloc_size);
if (!netdev)
return NULL;
card = netdev_priv(netdev);
card->netdev = netdev;
card->msg_enable = SPIDER_NET_DEFAULT_MSG;
INIT_WORK(&card->tx_timeout_task, spider_net_tx_timeout_task, netdev);
init_waitqueue_head(&card->waitq);
atomic_set(&card->tx_timeout_task_counter, 0);
return card;
}
/**
* spider_net_undo_pci_setup - releases PCI ressources
* @card: card structure
*
* spider_net_undo_pci_setup releases the mapped regions
*/
static void
spider_net_undo_pci_setup(struct spider_net_card *card)
{
iounmap(card->regs);
pci_release_regions(card->pdev);
}
/**
* spider_net_setup_pci_dev - sets up the device in terms of PCI operations
* @card: card structure
* @pdev: PCI device
*
* Returns the card structure or NULL if any errors occur
*
* spider_net_setup_pci_dev initializes pdev and together with the
* functions called in spider_net_open configures the device so that
* data can be transferred over it
* The net_device structure is attached to the card structure, if the
* function returns without error.
**/
static struct spider_net_card *
spider_net_setup_pci_dev(struct pci_dev *pdev)
{
struct spider_net_card *card;
unsigned long mmio_start, mmio_len;
if (pci_enable_device(pdev)) {
pr_err("Couldn't enable PCI device\n");
return NULL;
}
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
pr_err("Couldn't find proper PCI device base address.\n");
goto out_disable_dev;
}
if (pci_request_regions(pdev, spider_net_driver_name)) {
pr_err("Couldn't obtain PCI resources, aborting.\n");
goto out_disable_dev;
}
pci_set_master(pdev);
card = spider_net_alloc_card();
if (!card) {
pr_err("Couldn't allocate net_device structure, "
"aborting.\n");
goto out_release_regions;
}
card->pdev = pdev;
/* fetch base address and length of first resource */
mmio_start = pci_resource_start(pdev, 0);
mmio_len = pci_resource_len(pdev, 0);
card->netdev->mem_start = mmio_start;
card->netdev->mem_end = mmio_start + mmio_len;
card->regs = ioremap(mmio_start, mmio_len);
if (!card->regs) {
pr_err("Couldn't obtain PCI resources, aborting.\n");
goto out_release_regions;
}
return card;
out_release_regions:
pci_release_regions(pdev);
out_disable_dev:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
return NULL;
}
/**
* spider_net_probe - initialization of a device
* @pdev: PCI device
* @ent: entry in the device id list
*
* Returns 0 on success, <0 on failure
*
* spider_net_probe initializes pdev and registers a net_device
* structure for it. After that, the device can be ifconfig'ed up
**/
static int __devinit
spider_net_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int err = -EIO;
struct spider_net_card *card;
card = spider_net_setup_pci_dev(pdev);
if (!card)
goto out;
spider_net_workaround_rxramfull(card);
spider_net_init_card(card);
err = spider_net_setup_phy(card);
if (err)
goto out_undo_pci;
err = spider_net_init_firmware(card);
if (err)
goto out_undo_pci;
err = spider_net_setup_netdev(card);
if (err)
goto out_undo_pci;
return 0;
out_undo_pci:
spider_net_undo_pci_setup(card);
free_netdev(card->netdev);
out:
return err;
}
/**
* spider_net_remove - removal of a device
* @pdev: PCI device
*
* Returns 0 on success, <0 on failure
*
* spider_net_remove is called to remove the device and unregisters the
* net_device
**/
static void __devexit
spider_net_remove(struct pci_dev *pdev)
{
struct net_device *netdev;
struct spider_net_card *card;
netdev = pci_get_drvdata(pdev);
card = netdev_priv(netdev);
wait_event(card->waitq,
atomic_read(&card->tx_timeout_task_counter) == 0);
unregister_netdev(netdev);
/* switch off card */
spider_net_write_reg(card, SPIDER_NET_CKRCTRL,
SPIDER_NET_CKRCTRL_STOP_VALUE);
spider_net_write_reg(card, SPIDER_NET_CKRCTRL,
SPIDER_NET_CKRCTRL_RUN_VALUE);
spider_net_undo_pci_setup(card);
free_netdev(netdev);
}
static struct pci_driver spider_net_driver = {
.name = spider_net_driver_name,
.id_table = spider_net_pci_tbl,
.probe = spider_net_probe,
.remove = __devexit_p(spider_net_remove)
};
/**
* spider_net_init - init function when the driver is loaded
*
* spider_net_init registers the device driver
*/
static int __init spider_net_init(void)
{
printk(KERN_INFO "Spidernet version %s.\n", VERSION);
if (rx_descriptors < SPIDER_NET_RX_DESCRIPTORS_MIN) {
rx_descriptors = SPIDER_NET_RX_DESCRIPTORS_MIN;
pr_info("adjusting rx descriptors to %i.\n", rx_descriptors);
}
if (rx_descriptors > SPIDER_NET_RX_DESCRIPTORS_MAX) {
rx_descriptors = SPIDER_NET_RX_DESCRIPTORS_MAX;
pr_info("adjusting rx descriptors to %i.\n", rx_descriptors);
}
if (tx_descriptors < SPIDER_NET_TX_DESCRIPTORS_MIN) {
tx_descriptors = SPIDER_NET_TX_DESCRIPTORS_MIN;
pr_info("adjusting tx descriptors to %i.\n", tx_descriptors);
}
if (tx_descriptors > SPIDER_NET_TX_DESCRIPTORS_MAX) {
tx_descriptors = SPIDER_NET_TX_DESCRIPTORS_MAX;
pr_info("adjusting tx descriptors to %i.\n", tx_descriptors);
}
return pci_register_driver(&spider_net_driver);
}
/**
* spider_net_cleanup - exit function when driver is unloaded
*
* spider_net_cleanup unregisters the device driver
*/
static void __exit spider_net_cleanup(void)
{
pci_unregister_driver(&spider_net_driver);
}
module_init(spider_net_init);
module_exit(spider_net_cleanup);