1
linux/drivers/media/video/cx88/cx88-alsa.c

851 lines
20 KiB
C
Raw Normal View History

/*
*
* Support for audio capture
* PCI function #1 of the cx2388x.
*
* (c) 2005,2006 Ricardo Cerqueira <v4l@cerqueira.org>
* (c) 2005 Mauro Carvalho Chehab <mchehab@infradead.org>
* Based on a dummy cx88 module by Gerd Knorr <kraxel@bytesex.org>
* Based on dummy.c by Jaroslav Kysela <perex@suse.cz>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <asm/delay.h>
#include <sound/driver.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/control.h>
#include <sound/initval.h>
#include "cx88.h"
#include "cx88-reg.h"
#define dprintk(level,fmt, arg...) if (debug >= level) \
printk(KERN_INFO "%s/1: " fmt, chip->core->name , ## arg)
#define dprintk_core(level,fmt, arg...) if (debug >= level) \
printk(KERN_DEBUG "%s/1: " fmt, chip->core->name , ## arg)
/****************************************************************************
Data type declarations - Can be moded to a header file later
****************************************************************************/
/* These can be replaced after done */
#define MIXER_ADDR_LAST MAX_CX88_INPUT
struct cx88_audio_dev {
struct cx88_core *core;
struct cx88_dmaqueue q;
/* pci i/o */
struct pci_dev *pci;
unsigned char pci_rev,pci_lat;
/* audio controls */
int irq;
struct snd_card *card;
spinlock_t reg_lock;
unsigned int dma_size;
unsigned int period_size;
unsigned int num_periods;
struct videobuf_dmabuf dma_risc;
int mixer_volume[MIXER_ADDR_LAST+1][2];
int capture_source[MIXER_ADDR_LAST+1][2];
long int read_count;
long int read_offset;
struct cx88_buffer *buf;
long opened;
struct snd_pcm_substream *substream;
};
typedef struct cx88_audio_dev snd_cx88_card_t;
/****************************************************************************
Module global static vars
****************************************************************************/
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static int enable[SNDRV_CARDS] = {1, [1 ... (SNDRV_CARDS - 1)] = 1};
static struct snd_card *snd_cx88_cards[SNDRV_CARDS];
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable cx88x soundcard. default enabled.");
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for cx88x capture interface(s).");
/****************************************************************************
Module macros
****************************************************************************/
MODULE_DESCRIPTION("ALSA driver module for cx2388x based TV cards");
MODULE_AUTHOR("Ricardo Cerqueira");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@infradead.org>");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{Conexant,23881},"
"{{Conexant,23882},"
"{{Conexant,23883}");
static unsigned int debug;
module_param(debug,int,0644);
MODULE_PARM_DESC(debug,"enable debug messages");
/****************************************************************************
Module specific funtions
****************************************************************************/
/*
* BOARD Specific: Sets audio DMA
*/
static int _cx88_start_audio_dma(snd_cx88_card_t *chip)
{
struct cx88_buffer *buf = chip->buf;
struct cx88_core *core=chip->core;
struct sram_channel *audio_ch = &cx88_sram_channels[SRAM_CH25];
dprintk(1, "Starting audio DMA for %i bytes/line and %i (%i) lines at address %08x\n",buf->bpl, chip->num_periods, audio_ch->fifo_size / buf->bpl, audio_ch->fifo_start);
/* setup fifo + format - out channel */
cx88_sram_channel_setup(chip->core, &cx88_sram_channels[SRAM_CH25],
buf->bpl, buf->risc.dma);
/* sets bpl size */
cx_write(MO_AUDD_LNGTH, buf->bpl);
/* reset counter */
cx_write(MO_AUDD_GPCNTRL,GP_COUNT_CONTROL_RESET);
dprintk(1,"Enabling IRQ, setting mask from 0x%x to 0x%x\n",chip->core->pci_irqmask,(chip->core->pci_irqmask | 0x02));
/* enable irqs */
cx_set(MO_PCI_INTMSK, chip->core->pci_irqmask | 0x02);
/* Enables corresponding bits at AUD_INT_STAT */
cx_write(MO_AUD_INTMSK,
(1<<16)|
(1<<12)|
(1<<4)|
(1<<0)
);
/* start dma */
cx_set(MO_DEV_CNTRL2, (1<<5)); /* Enables Risc Processor */
cx_set(MO_AUD_DMACNTRL, 0x11); /* audio downstream FIFO and RISC enable */
if (debug)
cx88_sram_channel_dump(chip->core, &cx88_sram_channels[SRAM_CH25]);
return 0;
}
/*
* BOARD Specific: Resets audio DMA
*/
static int _cx88_stop_audio_dma(snd_cx88_card_t *chip)
{
struct cx88_core *core=chip->core;
dprintk(1, "Stopping audio DMA\n");
/* stop dma */
cx_clear(MO_AUD_DMACNTRL, 0x11);
/* disable irqs */
cx_clear(MO_PCI_INTMSK, 0x02);
cx_clear(MO_AUD_INTMSK,
(1<<16)|
(1<<12)|
(1<<4)|
(1<<0)
);
if (debug)
cx88_sram_channel_dump(chip->core, &cx88_sram_channels[SRAM_CH25]);
return 0;
}
#define MAX_IRQ_LOOP 10
/*
* BOARD Specific: IRQ dma bits
*/
static char *cx88_aud_irqs[32] = {
"dn_risci1", "up_risci1", "rds_dn_risc1", /* 0-2 */
NULL, /* reserved */
"dn_risci2", "up_risci2", "rds_dn_risc2", /* 4-6 */
NULL, /* reserved */
"dnf_of", "upf_uf", "rds_dnf_uf", /* 8-10 */
NULL, /* reserved */
"dn_sync", "up_sync", "rds_dn_sync", /* 12-14 */
NULL, /* reserved */
"opc_err", "par_err", "rip_err", /* 16-18 */
"pci_abort", "ber_irq", "mchg_irq" /* 19-21 */
};
/*
* BOARD Specific: Threats IRQ audio specific calls
*/
static void cx8801_aud_irq(snd_cx88_card_t *chip)
{
struct cx88_core *core = chip->core;
u32 status, mask;
u32 count;
status = cx_read(MO_AUD_INTSTAT);
mask = cx_read(MO_AUD_INTMSK);
if (0 == (status & mask)) {
spin_unlock(&chip->reg_lock);
return;
}
cx_write(MO_AUD_INTSTAT, status);
if (debug > 1 || (status & mask & ~0xff))
cx88_print_irqbits(core->name, "irq aud",
cx88_aud_irqs, status, mask);
/* risc op code error */
if (status & (1 << 16)) {
printk(KERN_WARNING "%s/0: audio risc op code error\n",core->name);
cx_clear(MO_AUD_DMACNTRL, 0x11);
cx88_sram_channel_dump(core, &cx88_sram_channels[SRAM_CH25]);
}
/* risc1 downstream */
if (status & 0x01) {
spin_lock(&chip->reg_lock);
count = cx_read(MO_AUDD_GPCNT);
spin_unlock(&chip->reg_lock);
if (chip->read_count == 0)
chip->read_count += chip->dma_size;
}
if (chip->read_count >= chip->period_size) {
dprintk(2, "Elapsing period\n");
snd_pcm_period_elapsed(chip->substream);
}
dprintk(3,"Leaving audio IRQ handler...\n");
/* FIXME: Any other status should deserve a special handling? */
}
/*
* BOARD Specific: Handles IRQ calls
*/
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 06:55:46 -07:00
static irqreturn_t cx8801_irq(int irq, void *dev_id)
{
snd_cx88_card_t *chip = dev_id;
struct cx88_core *core = chip->core;
u32 status;
int loop, handled = 0;
for (loop = 0; loop < MAX_IRQ_LOOP; loop++) {
status = cx_read(MO_PCI_INTSTAT) & (core->pci_irqmask | 0x02);
if (0 == status)
goto out;
dprintk( 3, "cx8801_irq\n" );
dprintk( 3, " loop: %d/%d\n", loop, MAX_IRQ_LOOP );
dprintk( 3, " status: %d\n", status );
handled = 1;
cx_write(MO_PCI_INTSTAT, status);
if (status & 0x02)
{
dprintk( 2, " ALSA IRQ handling\n" );
cx8801_aud_irq(chip);
}
};
if (MAX_IRQ_LOOP == loop) {
dprintk( 0, "clearing mask\n" );
dprintk(1,"%s/0: irq loop -- clearing mask\n",
core->name);
cx_clear(MO_PCI_INTMSK,0x02);
}
out:
return IRQ_RETVAL(handled);
}
static int dsp_buffer_free(snd_cx88_card_t *chip)
{
BUG_ON(!chip->dma_size);
dprintk(2,"Freeing buffer\n");
videobuf_pci_dma_unmap(chip->pci, &chip->dma_risc);
videobuf_dma_free(&chip->dma_risc);
btcx_riscmem_free(chip->pci,&chip->buf->risc);
kfree(chip->buf);
chip->dma_size = 0;
return 0;
}
/****************************************************************************
ALSA PCM Interface
****************************************************************************/
/*
* Digital hardware definition
*/
static struct snd_pcm_hardware snd_cx88_digital_hw = {
.info = SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_48000,
.rate_min = 48000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (2*2048),
.period_bytes_min = 2048,
.period_bytes_max = 2048,
.periods_min = 2,
.periods_max = 2,
};
/*
* audio pcm capture runtime free
*/
static void snd_card_cx88_runtime_free(struct snd_pcm_runtime *runtime)
{
}
/*
* audio pcm capture open callback
*/
static int snd_cx88_pcm_open(struct snd_pcm_substream *substream)
{
snd_cx88_card_t *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
if (test_and_set_bit(0, &chip->opened))
return -EBUSY;
err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
if (err < 0)
goto _error;
chip->substream = substream;
chip->read_count = 0;
chip->read_offset = 0;
runtime->private_free = snd_card_cx88_runtime_free;
runtime->hw = snd_cx88_digital_hw;
return 0;
_error:
dprintk(1,"Error opening PCM!\n");
clear_bit(0, &chip->opened);
smp_mb__after_clear_bit();
return err;
}
/*
* audio close callback
*/
static int snd_cx88_close(struct snd_pcm_substream *substream)
{
snd_cx88_card_t *chip = snd_pcm_substream_chip(substream);
clear_bit(0, &chip->opened);
smp_mb__after_clear_bit();
return 0;
}
/*
* hw_params callback
*/
static int snd_cx88_hw_params(struct snd_pcm_substream * substream,
struct snd_pcm_hw_params * hw_params)
{
snd_cx88_card_t *chip = snd_pcm_substream_chip(substream);
struct cx88_buffer *buf;
if (substream->runtime->dma_area) {
dsp_buffer_free(chip);
substream->runtime->dma_area = NULL;
}
chip->period_size = params_period_bytes(hw_params);
chip->num_periods = params_periods(hw_params);
chip->dma_size = chip->period_size * params_periods(hw_params);
BUG_ON(!chip->dma_size);
dprintk(1,"Setting buffer\n");
buf = kmalloc(sizeof(*buf),GFP_KERNEL);
if (NULL == buf)
return -ENOMEM;
memset(buf,0,sizeof(*buf));
buf->vb.memory = V4L2_MEMORY_MMAP;
buf->vb.width = chip->period_size;
buf->vb.height = chip->num_periods;
buf->vb.size = chip->dma_size;
buf->vb.field = V4L2_FIELD_NONE;
videobuf_dma_init(&buf->vb.dma);
videobuf_dma_init_kernel(&buf->vb.dma,PCI_DMA_FROMDEVICE,
(PAGE_ALIGN(buf->vb.size) >> PAGE_SHIFT));
videobuf_pci_dma_map(chip->pci,&buf->vb.dma);
cx88_risc_databuffer(chip->pci, &buf->risc,
buf->vb.dma.sglist,
buf->vb.width, buf->vb.height);
buf->risc.jmp[0] = cpu_to_le32(RISC_JUMP | RISC_IRQ1 | RISC_CNT_INC);
buf->risc.jmp[1] = cpu_to_le32(buf->risc.dma);
buf->vb.state = STATE_PREPARED;
buf->bpl = chip->period_size;
chip->buf = buf;
chip->dma_risc = buf->vb.dma;
dprintk(1,"Buffer ready at %u\n",chip->dma_risc.nr_pages);
substream->runtime->dma_area = chip->dma_risc.vmalloc;
return 0;
}
/*
* hw free callback
*/
static int snd_cx88_hw_free(struct snd_pcm_substream * substream)
{
snd_cx88_card_t *chip = snd_pcm_substream_chip(substream);
if (substream->runtime->dma_area) {
dsp_buffer_free(chip);
substream->runtime->dma_area = NULL;
}
return 0;
}
/*
* prepare callback
*/
static int snd_cx88_prepare(struct snd_pcm_substream *substream)
{
return 0;
}
/*
* trigger callback
*/
static int snd_cx88_card_trigger(struct snd_pcm_substream *substream, int cmd)
{
snd_cx88_card_t *chip = snd_pcm_substream_chip(substream);
int err;
spin_lock(&chip->reg_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
err=_cx88_start_audio_dma(chip);
break;
case SNDRV_PCM_TRIGGER_STOP:
err=_cx88_stop_audio_dma(chip);
break;
default:
err=-EINVAL;
break;
}
spin_unlock(&chip->reg_lock);
return err;
}
/*
* pointer callback
*/
static snd_pcm_uframes_t snd_cx88_pointer(struct snd_pcm_substream *substream)
{
snd_cx88_card_t *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
if (chip->read_count) {
chip->read_count -= snd_pcm_lib_period_bytes(substream);
chip->read_offset += snd_pcm_lib_period_bytes(substream);
if (chip->read_offset == chip->dma_size)
chip->read_offset = 0;
}
dprintk(2, "Pointer time, will return %li, read %li\n",chip->read_offset,chip->read_count);
return bytes_to_frames(runtime, chip->read_offset);
}
/*
* operators
*/
static struct snd_pcm_ops snd_cx88_pcm_ops = {
.open = snd_cx88_pcm_open,
.close = snd_cx88_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_cx88_hw_params,
.hw_free = snd_cx88_hw_free,
.prepare = snd_cx88_prepare,
.trigger = snd_cx88_card_trigger,
.pointer = snd_cx88_pointer,
};
/*
* create a PCM device
*/
static int __devinit snd_cx88_pcm(snd_cx88_card_t *chip, int device, char *name)
{
int err;
struct snd_pcm *pcm;
err = snd_pcm_new(chip->card, name, device, 0, 1, &pcm);
if (err < 0)
return err;
pcm->private_data = chip;
strcpy(pcm->name, name);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cx88_pcm_ops);
return 0;
}
/****************************************************************************
CONTROL INTERFACE
****************************************************************************/
static int snd_cx88_capture_volume_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *info)
{
info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
info->count = 1;
info->value.integer.min = 0;
info->value.integer.max = 0x3f;
return 0;
}
/* OK - TODO: test it */
static int snd_cx88_capture_volume_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *value)
{
snd_cx88_card_t *chip = snd_kcontrol_chip(kcontrol);
struct cx88_core *core=chip->core;
value->value.integer.value[0] = 0x3f - (cx_read(AUD_VOL_CTL) & 0x3f);
return 0;
}
/* OK - TODO: test it */
static int snd_cx88_capture_volume_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *value)
{
snd_cx88_card_t *chip = snd_kcontrol_chip(kcontrol);
struct cx88_core *core=chip->core;
int v;
u32 old_control;
spin_lock_irq(&chip->reg_lock);
old_control = 0x3f - (cx_read(AUD_VOL_CTL) & 0x3f);
v = 0x3f - (value->value.integer.value[0] & 0x3f);
cx_andor(AUD_VOL_CTL, 0x3f, v);
spin_unlock_irq(&chip->reg_lock);
return v != old_control;
}
static struct snd_kcontrol_new snd_cx88_capture_volume = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Capture Volume",
.info = snd_cx88_capture_volume_info,
.get = snd_cx88_capture_volume_get,
.put = snd_cx88_capture_volume_put,
};
/****************************************************************************
Basic Flow for Sound Devices
****************************************************************************/
/*
* PCI ID Table - 14f1:8801 and 14f1:8811 means function 1: Audio
* Only boards with eeprom and byte 1 at eeprom=1 have it
*/
static struct pci_device_id cx88_audio_pci_tbl[] __devinitdata = {
{0x14f1,0x8801,PCI_ANY_ID,PCI_ANY_ID,0,0,0},
{0x14f1,0x8811,PCI_ANY_ID,PCI_ANY_ID,0,0,0},
{0, }
};
MODULE_DEVICE_TABLE(pci, cx88_audio_pci_tbl);
/*
* Chip-specific destructor
*/
static int snd_cx88_free(snd_cx88_card_t *chip)
{
if (chip->irq >= 0){
synchronize_irq(chip->irq);
free_irq(chip->irq, chip);
}
cx88_core_put(chip->core,chip->pci);
pci_disable_device(chip->pci);
return 0;
}
/*
* Component Destructor
*/
static void snd_cx88_dev_free(struct snd_card * card)
{
snd_cx88_card_t *chip = card->private_data;
snd_cx88_free(chip);
}
/*
* Alsa Constructor - Component probe
*/
static int devno;
static int __devinit snd_cx88_create(struct snd_card *card,
struct pci_dev *pci,
snd_cx88_card_t **rchip)
{
snd_cx88_card_t *chip;
struct cx88_core *core;
int err;
*rchip = NULL;
err = pci_enable_device(pci);
if (err < 0)
return err;
pci_set_master(pci);
chip = (snd_cx88_card_t *) card->private_data;
core = cx88_core_get(pci);
if (NULL == core) {
err = -EINVAL;
kfree (chip);
return err;
}
if (!pci_dma_supported(pci,0xffffffff)) {
dprintk(0, "%s/1: Oops: no 32bit PCI DMA ???\n",core->name);
err = -EIO;
cx88_core_put(core,pci);
return err;
}
/* pci init */
chip->card = card;
chip->pci = pci;
chip->irq = -1;
spin_lock_init(&chip->reg_lock);
chip->core = core;
/* get irq */
err = request_irq(chip->pci->irq, cx8801_irq,
IRQF_SHARED | IRQF_DISABLED, chip->core->name, chip);
if (err < 0) {
dprintk(0, "%s: can't get IRQ %d\n",
chip->core->name, chip->pci->irq);
return err;
}
/* print pci info */
pci_read_config_byte(pci, PCI_CLASS_REVISION, &chip->pci_rev);
pci_read_config_byte(pci, PCI_LATENCY_TIMER, &chip->pci_lat);
dprintk(1,"ALSA %s/%i: found at %s, rev: %d, irq: %d, "
"latency: %d, mmio: 0x%llx\n", core->name, devno,
pci_name(pci), chip->pci_rev, pci->irq,
chip->pci_lat,(unsigned long long)pci_resource_start(pci,0));
chip->irq = pci->irq;
synchronize_irq(chip->irq);
snd_card_set_dev(card, &pci->dev);
*rchip = chip;
return 0;
}
static int __devinit cx88_audio_initdev(struct pci_dev *pci,
const struct pci_device_id *pci_id)
{
struct snd_card *card;
snd_cx88_card_t *chip;
int err;
if (devno >= SNDRV_CARDS)
return (-ENODEV);
if (!enable[devno]) {
++devno;
return (-ENOENT);
}
card = snd_card_new(index[devno], id[devno], THIS_MODULE, sizeof(snd_cx88_card_t));
if (!card)
return (-ENOMEM);
card->private_free = snd_cx88_dev_free;
err = snd_cx88_create(card, pci, &chip);
if (err < 0)
return (err);
err = snd_cx88_pcm(chip, 0, "CX88 Digital");
if (err < 0) {
snd_card_free(card);
return (err);
}
err = snd_ctl_add(card, snd_ctl_new1(&snd_cx88_capture_volume, chip));
if (err < 0) {
snd_card_free(card);
return (err);
}
strcpy (card->driver, "CX88x");
sprintf(card->shortname, "Conexant CX%x", pci->device);
sprintf(card->longname, "%s at %#llx",
card->shortname,(unsigned long long)pci_resource_start(pci, 0));
strcpy (card->mixername, "CX88");
dprintk (0, "%s/%i: ALSA support for cx2388x boards\n",
card->driver,devno);
err = snd_card_register(card);
if (err < 0) {
snd_card_free(card);
return (err);
}
snd_cx88_cards[devno] = card;
pci_set_drvdata(pci,card);
devno++;
return 0;
}
/*
* ALSA destructor
*/
static void __devexit cx88_audio_finidev(struct pci_dev *pci)
{
struct cx88_audio_dev *card = pci_get_drvdata(pci);
snd_card_free((void *)card);
pci_set_drvdata(pci, NULL);
devno--;
}
/*
* PCI driver definition
*/
static struct pci_driver cx88_audio_pci_driver = {
.name = "cx88_audio",
.id_table = cx88_audio_pci_tbl,
.probe = cx88_audio_initdev,
.remove = cx88_audio_finidev,
};
/****************************************************************************
LINUX MODULE INIT
****************************************************************************/
/*
* module init
*/
static int cx88_audio_init(void)
{
printk(KERN_INFO "cx2388x alsa driver version %d.%d.%d loaded\n",
(CX88_VERSION_CODE >> 16) & 0xff,
(CX88_VERSION_CODE >> 8) & 0xff,
CX88_VERSION_CODE & 0xff);
#ifdef SNAPSHOT
printk(KERN_INFO "cx2388x: snapshot date %04d-%02d-%02d\n",
SNAPSHOT/10000, (SNAPSHOT/100)%100, SNAPSHOT%100);
#endif
return pci_register_driver(&cx88_audio_pci_driver);
}
/*
* module remove
*/
static void cx88_audio_fini(void)
{
pci_unregister_driver(&cx88_audio_pci_driver);
}
module_init(cx88_audio_init);
module_exit(cx88_audio_fini);
/* ----------------------------------------------------------- */
/*
* Local variables:
* c-basic-offset: 8
* End:
*/