1
linux/drivers/net/fec.c

2474 lines
63 KiB
C
Raw Normal View History

/*
* Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
* Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
*
* This version of the driver is specific to the FADS implementation,
* since the board contains control registers external to the processor
* for the control of the LevelOne LXT970 transceiver. The MPC860T manual
* describes connections using the internal parallel port I/O, which
* is basically all of Port D.
*
* Right now, I am very wasteful with the buffers. I allocate memory
* pages and then divide them into 2K frame buffers. This way I know I
* have buffers large enough to hold one frame within one buffer descriptor.
* Once I get this working, I will use 64 or 128 byte CPM buffers, which
* will be much more memory efficient and will easily handle lots of
* small packets.
*
* Much better multiple PHY support by Magnus Damm.
* Copyright (c) 2000 Ericsson Radio Systems AB.
*
* Support for FEC controller of ColdFire processors.
* Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
*
* Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
* Copyright (c) 2004-2005 Macq Electronique SA.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/bitops.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
defined(CONFIG_M5272) || defined(CONFIG_M528x) || \
defined(CONFIG_M520x)
#include <asm/coldfire.h>
#include <asm/mcfsim.h>
#include "fec.h"
#else
#include <asm/8xx_immap.h>
#include <asm/mpc8xx.h>
#include "commproc.h"
#endif
#if defined(CONFIG_FEC2)
#define FEC_MAX_PORTS 2
#else
#define FEC_MAX_PORTS 1
#endif
/*
* Define the fixed address of the FEC hardware.
*/
static unsigned int fec_hw[] = {
#if defined(CONFIG_M5272)
(MCF_MBAR + 0x840),
#elif defined(CONFIG_M527x)
(MCF_MBAR + 0x1000),
(MCF_MBAR + 0x1800),
#elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
(MCF_MBAR + 0x1000),
#elif defined(CONFIG_M520x)
(MCF_MBAR+0x30000),
#else
&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
#endif
};
static unsigned char fec_mac_default[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
/*
* Some hardware gets it MAC address out of local flash memory.
* if this is non-zero then assume it is the address to get MAC from.
*/
#if defined(CONFIG_NETtel)
#define FEC_FLASHMAC 0xf0006006
#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
#define FEC_FLASHMAC 0xf0006000
#elif defined (CONFIG_MTD_KeyTechnology)
#define FEC_FLASHMAC 0xffe04000
#elif defined(CONFIG_CANCam)
#define FEC_FLASHMAC 0xf0020000
#elif defined (CONFIG_M5272C3)
#define FEC_FLASHMAC (0xffe04000 + 4)
#elif defined(CONFIG_MOD5272)
#define FEC_FLASHMAC 0xffc0406b
#else
#define FEC_FLASHMAC 0
#endif
/* Forward declarations of some structures to support different PHYs
*/
typedef struct {
uint mii_data;
void (*funct)(uint mii_reg, struct net_device *dev);
} phy_cmd_t;
typedef struct {
uint id;
char *name;
const phy_cmd_t *config;
const phy_cmd_t *startup;
const phy_cmd_t *ack_int;
const phy_cmd_t *shutdown;
} phy_info_t;
/* The number of Tx and Rx buffers. These are allocated from the page
* pool. The code may assume these are power of two, so it it best
* to keep them that size.
* We don't need to allocate pages for the transmitter. We just use
* the skbuffer directly.
*/
#define FEC_ENET_RX_PAGES 8
#define FEC_ENET_RX_FRSIZE 2048
#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
#define FEC_ENET_TX_FRSIZE 2048
#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
#define TX_RING_SIZE 16 /* Must be power of two */
#define TX_RING_MOD_MASK 15 /* for this to work */
#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
#error "FEC: descriptor ring size contants too large"
#endif
/* Interrupt events/masks.
*/
#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
/* The FEC stores dest/src/type, data, and checksum for receive packets.
*/
#define PKT_MAXBUF_SIZE 1518
#define PKT_MINBUF_SIZE 64
#define PKT_MAXBLR_SIZE 1520
/*
* The 5270/5271/5280/5282 RX control register also contains maximum frame
* size bits. Other FEC hardware does not, so we need to take that into
* account when setting it.
*/
#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
defined(CONFIG_M520x)
#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
#else
#define OPT_FRAME_SIZE 0
#endif
/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
* tx_bd_base always point to the base of the buffer descriptors. The
* cur_rx and cur_tx point to the currently available buffer.
* The dirty_tx tracks the current buffer that is being sent by the
* controller. The cur_tx and dirty_tx are equal under both completely
* empty and completely full conditions. The empty/ready indicator in
* the buffer descriptor determines the actual condition.
*/
struct fec_enet_private {
/* Hardware registers of the FEC device */
volatile fec_t *hwp;
/* The saved address of a sent-in-place packet/buffer, for skfree(). */
unsigned char *tx_bounce[TX_RING_SIZE];
struct sk_buff* tx_skbuff[TX_RING_SIZE];
ushort skb_cur;
ushort skb_dirty;
/* CPM dual port RAM relative addresses.
*/
cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
cbd_t *tx_bd_base;
cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
cbd_t *dirty_tx; /* The ring entries to be free()ed. */
struct net_device_stats stats;
uint tx_full;
spinlock_t lock;
uint phy_id;
uint phy_id_done;
uint phy_status;
uint phy_speed;
phy_info_t const *phy;
struct work_struct phy_task;
uint sequence_done;
uint mii_phy_task_queued;
uint phy_addr;
int index;
int opened;
int link;
int old_link;
int full_duplex;
};
static int fec_enet_open(struct net_device *dev);
static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
static void fec_enet_mii(struct net_device *dev);
static irqreturn_t fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs);
static void fec_enet_tx(struct net_device *dev);
static void fec_enet_rx(struct net_device *dev);
static int fec_enet_close(struct net_device *dev);
static struct net_device_stats *fec_enet_get_stats(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);
static void fec_restart(struct net_device *dev, int duplex);
static void fec_stop(struct net_device *dev);
static void fec_set_mac_address(struct net_device *dev);
/* MII processing. We keep this as simple as possible. Requests are
* placed on the list (if there is room). When the request is finished
* by the MII, an optional function may be called.
*/
typedef struct mii_list {
uint mii_regval;
void (*mii_func)(uint val, struct net_device *dev);
struct mii_list *mii_next;
} mii_list_t;
#define NMII 20
static mii_list_t mii_cmds[NMII];
static mii_list_t *mii_free;
static mii_list_t *mii_head;
static mii_list_t *mii_tail;
static int mii_queue(struct net_device *dev, int request,
void (*func)(uint, struct net_device *));
/* Make MII read/write commands for the FEC.
*/
#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
(VAL & 0xffff))
#define mk_mii_end 0
/* Transmitter timeout.
*/
#define TX_TIMEOUT (2*HZ)
/* Register definitions for the PHY.
*/
#define MII_REG_CR 0 /* Control Register */
#define MII_REG_SR 1 /* Status Register */
#define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
#define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
#define MII_REG_ANAR 4 /* A-N Advertisement Register */
#define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
#define MII_REG_ANER 6 /* A-N Expansion Register */
#define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
#define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
/* values for phy_status */
#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
#define PHY_STAT_SPMASK 0xf000 /* mask for speed */
#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
static int
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct fec_enet_private *fep;
volatile fec_t *fecp;
volatile cbd_t *bdp;
fep = netdev_priv(dev);
fecp = (volatile fec_t*)dev->base_addr;
if (!fep->link) {
/* Link is down or autonegotiation is in progress. */
return 1;
}
/* Fill in a Tx ring entry */
bdp = fep->cur_tx;
#ifndef final_version
if (bdp->cbd_sc & BD_ENET_TX_READY) {
/* Ooops. All transmit buffers are full. Bail out.
* This should not happen, since dev->tbusy should be set.
*/
printk("%s: tx queue full!.\n", dev->name);
return 1;
}
#endif
/* Clear all of the status flags.
*/
bdp->cbd_sc &= ~BD_ENET_TX_STATS;
/* Set buffer length and buffer pointer.
*/
bdp->cbd_bufaddr = __pa(skb->data);
bdp->cbd_datlen = skb->len;
/*
* On some FEC implementations data must be aligned on
* 4-byte boundaries. Use bounce buffers to copy data
* and get it aligned. Ugh.
*/
if (bdp->cbd_bufaddr & 0x3) {
unsigned int index;
index = bdp - fep->tx_bd_base;
memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
}
/* Save skb pointer.
*/
fep->tx_skbuff[fep->skb_cur] = skb;
fep->stats.tx_bytes += skb->len;
fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
/* Push the data cache so the CPM does not get stale memory
* data.
*/
flush_dcache_range((unsigned long)skb->data,
(unsigned long)skb->data + skb->len);
spin_lock_irq(&fep->lock);
/* Send it on its way. Tell FEC its ready, interrupt when done,
* its the last BD of the frame, and to put the CRC on the end.
*/
bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
| BD_ENET_TX_LAST | BD_ENET_TX_TC);
dev->trans_start = jiffies;
/* Trigger transmission start */
fecp->fec_x_des_active = 0x01000000;
/* If this was the last BD in the ring, start at the beginning again.
*/
if (bdp->cbd_sc & BD_ENET_TX_WRAP) {
bdp = fep->tx_bd_base;
} else {
bdp++;
}
if (bdp == fep->dirty_tx) {
fep->tx_full = 1;
netif_stop_queue(dev);
}
fep->cur_tx = (cbd_t *)bdp;
spin_unlock_irq(&fep->lock);
return 0;
}
static void
fec_timeout(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
printk("%s: transmit timed out.\n", dev->name);
fep->stats.tx_errors++;
#ifndef final_version
{
int i;
cbd_t *bdp;
printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
(unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
(unsigned long)fep->dirty_tx,
(unsigned long)fep->cur_rx);
bdp = fep->tx_bd_base;
printk(" tx: %u buffers\n", TX_RING_SIZE);
for (i = 0 ; i < TX_RING_SIZE; i++) {
printk(" %08x: %04x %04x %08x\n",
(uint) bdp,
bdp->cbd_sc,
bdp->cbd_datlen,
(int) bdp->cbd_bufaddr);
bdp++;
}
bdp = fep->rx_bd_base;
printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
for (i = 0 ; i < RX_RING_SIZE; i++) {
printk(" %08x: %04x %04x %08x\n",
(uint) bdp,
bdp->cbd_sc,
bdp->cbd_datlen,
(int) bdp->cbd_bufaddr);
bdp++;
}
}
#endif
fec_restart(dev, fep->full_duplex);
netif_wake_queue(dev);
}
/* The interrupt handler.
* This is called from the MPC core interrupt.
*/
static irqreturn_t
fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs)
{
struct net_device *dev = dev_id;
volatile fec_t *fecp;
uint int_events;
int handled = 0;
fecp = (volatile fec_t*)dev->base_addr;
/* Get the interrupt events that caused us to be here.
*/
while ((int_events = fecp->fec_ievent) != 0) {
fecp->fec_ievent = int_events;
/* Handle receive event in its own function.
*/
if (int_events & FEC_ENET_RXF) {
handled = 1;
fec_enet_rx(dev);
}
/* Transmit OK, or non-fatal error. Update the buffer
descriptors. FEC handles all errors, we just discover
them as part of the transmit process.
*/
if (int_events & FEC_ENET_TXF) {
handled = 1;
fec_enet_tx(dev);
}
if (int_events & FEC_ENET_MII) {
handled = 1;
fec_enet_mii(dev);
}
}
return IRQ_RETVAL(handled);
}
static void
fec_enet_tx(struct net_device *dev)
{
struct fec_enet_private *fep;
volatile cbd_t *bdp;
struct sk_buff *skb;
fep = netdev_priv(dev);
spin_lock(&fep->lock);
bdp = fep->dirty_tx;
while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) {
if (bdp == fep->cur_tx && fep->tx_full == 0) break;
skb = fep->tx_skbuff[fep->skb_dirty];
/* Check for errors. */
if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
BD_ENET_TX_RL | BD_ENET_TX_UN |
BD_ENET_TX_CSL)) {
fep->stats.tx_errors++;
if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
fep->stats.tx_heartbeat_errors++;
if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
fep->stats.tx_window_errors++;
if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
fep->stats.tx_aborted_errors++;
if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
fep->stats.tx_fifo_errors++;
if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
fep->stats.tx_carrier_errors++;
} else {
fep->stats.tx_packets++;
}
#ifndef final_version
if (bdp->cbd_sc & BD_ENET_TX_READY)
printk("HEY! Enet xmit interrupt and TX_READY.\n");
#endif
/* Deferred means some collisions occurred during transmit,
* but we eventually sent the packet OK.
*/
if (bdp->cbd_sc & BD_ENET_TX_DEF)
fep->stats.collisions++;
/* Free the sk buffer associated with this last transmit.
*/
dev_kfree_skb_any(skb);
fep->tx_skbuff[fep->skb_dirty] = NULL;
fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
/* Update pointer to next buffer descriptor to be transmitted.
*/
if (bdp->cbd_sc & BD_ENET_TX_WRAP)
bdp = fep->tx_bd_base;
else
bdp++;
/* Since we have freed up a buffer, the ring is no longer
* full.
*/
if (fep->tx_full) {
fep->tx_full = 0;
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
}
}
fep->dirty_tx = (cbd_t *)bdp;
spin_unlock(&fep->lock);
}
/* During a receive, the cur_rx points to the current incoming buffer.
* When we update through the ring, if the next incoming buffer has
* not been given to the system, we just set the empty indicator,
* effectively tossing the packet.
*/
static void
fec_enet_rx(struct net_device *dev)
{
struct fec_enet_private *fep;
volatile fec_t *fecp;
volatile cbd_t *bdp;
struct sk_buff *skb;
ushort pkt_len;
__u8 *data;
fep = netdev_priv(dev);
fecp = (volatile fec_t*)dev->base_addr;
/* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
*/
bdp = fep->cur_rx;
while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) {
#ifndef final_version
/* Since we have allocated space to hold a complete frame,
* the last indicator should be set.
*/
if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0)
printk("FEC ENET: rcv is not +last\n");
#endif
if (!fep->opened)
goto rx_processing_done;
/* Check for errors. */
if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
BD_ENET_RX_CR | BD_ENET_RX_OV)) {
fep->stats.rx_errors++;
if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
/* Frame too long or too short. */
fep->stats.rx_length_errors++;
}
if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
fep->stats.rx_frame_errors++;
if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
fep->stats.rx_crc_errors++;
if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
fep->stats.rx_crc_errors++;
}
/* Report late collisions as a frame error.
* On this error, the BD is closed, but we don't know what we
* have in the buffer. So, just drop this frame on the floor.
*/
if (bdp->cbd_sc & BD_ENET_RX_CL) {
fep->stats.rx_errors++;
fep->stats.rx_frame_errors++;
goto rx_processing_done;
}
/* Process the incoming frame.
*/
fep->stats.rx_packets++;
pkt_len = bdp->cbd_datlen;
fep->stats.rx_bytes += pkt_len;
data = (__u8*)__va(bdp->cbd_bufaddr);
/* This does 16 byte alignment, exactly what we need.
* The packet length includes FCS, but we don't want to
* include that when passing upstream as it messes up
* bridging applications.
*/
skb = dev_alloc_skb(pkt_len-4);
if (skb == NULL) {
printk("%s: Memory squeeze, dropping packet.\n", dev->name);
fep->stats.rx_dropped++;
} else {
skb->dev = dev;
skb_put(skb,pkt_len-4); /* Make room */
eth_copy_and_sum(skb,
(unsigned char *)__va(bdp->cbd_bufaddr),
pkt_len-4, 0);
skb->protocol=eth_type_trans(skb,dev);
netif_rx(skb);
}
rx_processing_done:
/* Clear the status flags for this buffer.
*/
bdp->cbd_sc &= ~BD_ENET_RX_STATS;
/* Mark the buffer empty.
*/
bdp->cbd_sc |= BD_ENET_RX_EMPTY;
/* Update BD pointer to next entry.
*/
if (bdp->cbd_sc & BD_ENET_RX_WRAP)
bdp = fep->rx_bd_base;
else
bdp++;
#if 1
/* Doing this here will keep the FEC running while we process
* incoming frames. On a heavily loaded network, we should be
* able to keep up at the expense of system resources.
*/
fecp->fec_r_des_active = 0x01000000;
#endif
} /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */
fep->cur_rx = (cbd_t *)bdp;
#if 0
/* Doing this here will allow us to process all frames in the
* ring before the FEC is allowed to put more there. On a heavily
* loaded network, some frames may be lost. Unfortunately, this
* increases the interrupt overhead since we can potentially work
* our way back to the interrupt return only to come right back
* here.
*/
fecp->fec_r_des_active = 0x01000000;
#endif
}
static void
fec_enet_mii(struct net_device *dev)
{
struct fec_enet_private *fep;
volatile fec_t *ep;
mii_list_t *mip;
uint mii_reg;
fep = netdev_priv(dev);
ep = fep->hwp;
mii_reg = ep->fec_mii_data;
if ((mip = mii_head) == NULL) {
printk("MII and no head!\n");
return;
}
if (mip->mii_func != NULL)
(*(mip->mii_func))(mii_reg, dev);
mii_head = mip->mii_next;
mip->mii_next = mii_free;
mii_free = mip;
if ((mip = mii_head) != NULL)
ep->fec_mii_data = mip->mii_regval;
}
static int
mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
{
struct fec_enet_private *fep;
unsigned long flags;
mii_list_t *mip;
int retval;
/* Add PHY address to register command.
*/
fep = netdev_priv(dev);
regval |= fep->phy_addr << 23;
retval = 0;
save_flags(flags);
cli();
if ((mip = mii_free) != NULL) {
mii_free = mip->mii_next;
mip->mii_regval = regval;
mip->mii_func = func;
mip->mii_next = NULL;
if (mii_head) {
mii_tail->mii_next = mip;
mii_tail = mip;
}
else {
mii_head = mii_tail = mip;
fep->hwp->fec_mii_data = regval;
}
}
else {
retval = 1;
}
restore_flags(flags);
return(retval);
}
static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
{
int k;
if(!c)
return;
for(k = 0; (c+k)->mii_data != mk_mii_end; k++) {
mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
}
}
static void mii_parse_sr(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
uint status;
status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
if (mii_reg & 0x0004)
status |= PHY_STAT_LINK;
if (mii_reg & 0x0010)
status |= PHY_STAT_FAULT;
if (mii_reg & 0x0020)
status |= PHY_STAT_ANC;
*s = status;
}
static void mii_parse_cr(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
uint status;
status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
if (mii_reg & 0x1000)
status |= PHY_CONF_ANE;
if (mii_reg & 0x4000)
status |= PHY_CONF_LOOP;
*s = status;
}
static void mii_parse_anar(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
uint status;
status = *s & ~(PHY_CONF_SPMASK);
if (mii_reg & 0x0020)
status |= PHY_CONF_10HDX;
if (mii_reg & 0x0040)
status |= PHY_CONF_10FDX;
if (mii_reg & 0x0080)
status |= PHY_CONF_100HDX;
if (mii_reg & 0x00100)
status |= PHY_CONF_100FDX;
*s = status;
}
/* ------------------------------------------------------------------------- */
/* The Level one LXT970 is used by many boards */
#define MII_LXT970_MIRROR 16 /* Mirror register */
#define MII_LXT970_IER 17 /* Interrupt Enable Register */
#define MII_LXT970_ISR 18 /* Interrupt Status Register */
#define MII_LXT970_CONFIG 19 /* Configuration Register */
#define MII_LXT970_CSR 20 /* Chip Status Register */
static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
uint status;
status = *s & ~(PHY_STAT_SPMASK);
if (mii_reg & 0x0800) {
if (mii_reg & 0x1000)
status |= PHY_STAT_100FDX;
else
status |= PHY_STAT_100HDX;
} else {
if (mii_reg & 0x1000)
status |= PHY_STAT_10FDX;
else
status |= PHY_STAT_10HDX;
}
*s = status;
}
static phy_cmd_t const phy_cmd_lxt970_config[] = {
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
/* read SR and ISR to acknowledge */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_read(MII_LXT970_ISR), NULL },
/* find out the current status */
{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
{ mk_mii_end, }
};
static phy_info_t const phy_info_lxt970 = {
.id = 0x07810000,
.name = "LXT970",
.config = phy_cmd_lxt970_config,
.startup = phy_cmd_lxt970_startup,
.ack_int = phy_cmd_lxt970_ack_int,
.shutdown = phy_cmd_lxt970_shutdown
};
/* ------------------------------------------------------------------------- */
/* The Level one LXT971 is used on some of my custom boards */
/* register definitions for the 971 */
#define MII_LXT971_PCR 16 /* Port Control Register */
#define MII_LXT971_SR2 17 /* Status Register 2 */
#define MII_LXT971_IER 18 /* Interrupt Enable Register */
#define MII_LXT971_ISR 19 /* Interrupt Status Register */
#define MII_LXT971_LCR 20 /* LED Control Register */
#define MII_LXT971_TCR 30 /* Transmit Control Register */
/*
* I had some nice ideas of running the MDIO faster...
* The 971 should support 8MHz and I tried it, but things acted really
* weird, so 2.5 MHz ought to be enough for anyone...
*/
static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
uint status;
status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
if (mii_reg & 0x0400) {
fep->link = 1;
status |= PHY_STAT_LINK;
} else {
fep->link = 0;
}
if (mii_reg & 0x0080)
status |= PHY_STAT_ANC;
if (mii_reg & 0x4000) {
if (mii_reg & 0x0200)
status |= PHY_STAT_100FDX;
else
status |= PHY_STAT_100HDX;
} else {
if (mii_reg & 0x0200)
status |= PHY_STAT_10FDX;
else
status |= PHY_STAT_10HDX;
}
if (mii_reg & 0x0008)
status |= PHY_STAT_FAULT;
*s = status;
}
static phy_cmd_t const phy_cmd_lxt971_config[] = {
/* limit to 10MBit because my prototype board
* doesn't work with 100. */
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
/* Somehow does the 971 tell me that the link is down
* the first read after power-up.
* read here to get a valid value in ack_int */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
/* acknowledge the int before reading status ! */
{ mk_mii_read(MII_LXT971_ISR), NULL },
/* find out the current status */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
{ mk_mii_end, }
};
static phy_info_t const phy_info_lxt971 = {
.id = 0x0001378e,
.name = "LXT971",
.config = phy_cmd_lxt971_config,
.startup = phy_cmd_lxt971_startup,
.ack_int = phy_cmd_lxt971_ack_int,
.shutdown = phy_cmd_lxt971_shutdown
};
/* ------------------------------------------------------------------------- */
/* The Quality Semiconductor QS6612 is used on the RPX CLLF */
/* register definitions */
#define MII_QS6612_MCR 17 /* Mode Control Register */
#define MII_QS6612_FTR 27 /* Factory Test Register */
#define MII_QS6612_MCO 28 /* Misc. Control Register */
#define MII_QS6612_ISR 29 /* Interrupt Source Register */
#define MII_QS6612_IMR 30 /* Interrupt Mask Register */
#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
uint status;
status = *s & ~(PHY_STAT_SPMASK);
switch((mii_reg >> 2) & 7) {
case 1: status |= PHY_STAT_10HDX; break;
case 2: status |= PHY_STAT_100HDX; break;
case 5: status |= PHY_STAT_10FDX; break;
case 6: status |= PHY_STAT_100FDX; break;
}
*s = status;
}
static phy_cmd_t const phy_cmd_qs6612_config[] = {
/* The PHY powers up isolated on the RPX,
* so send a command to allow operation.
*/
{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
/* parse cr and anar to get some info */
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
/* we need to read ISR, SR and ANER to acknowledge */
{ mk_mii_read(MII_QS6612_ISR), NULL },
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_read(MII_REG_ANER), NULL },
/* read pcr to get info */
{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
{ mk_mii_end, }
};
static phy_info_t const phy_info_qs6612 = {
.id = 0x00181440,
.name = "QS6612",
.config = phy_cmd_qs6612_config,
.startup = phy_cmd_qs6612_startup,
.ack_int = phy_cmd_qs6612_ack_int,
.shutdown = phy_cmd_qs6612_shutdown
};
/* ------------------------------------------------------------------------- */
/* AMD AM79C874 phy */
/* register definitions for the 874 */
#define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
#define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
#define MII_AM79C874_DR 18 /* Diagnostic Register */
#define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
#define MII_AM79C874_MCR 21 /* ModeControl Register */
#define MII_AM79C874_DC 23 /* Disconnect Counter */
#define MII_AM79C874_REC 24 /* Recieve Error Counter */
static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
uint status;
status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
if (mii_reg & 0x0080)
status |= PHY_STAT_ANC;
if (mii_reg & 0x0400)
status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
else
status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
*s = status;
}
static phy_cmd_t const phy_cmd_am79c874_config[] = {
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
{ mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
/* find out the current status */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
/* we only need to read ISR to acknowledge */
{ mk_mii_read(MII_AM79C874_ICSR), NULL },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
{ mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
{ mk_mii_end, }
};
static phy_info_t const phy_info_am79c874 = {
.id = 0x00022561,
.name = "AM79C874",
.config = phy_cmd_am79c874_config,
.startup = phy_cmd_am79c874_startup,
.ack_int = phy_cmd_am79c874_ack_int,
.shutdown = phy_cmd_am79c874_shutdown
};
/* ------------------------------------------------------------------------- */
/* Kendin KS8721BL phy */
/* register definitions for the 8721 */
#define MII_KS8721BL_RXERCR 21
#define MII_KS8721BL_ICSR 22
#define MII_KS8721BL_PHYCR 31
static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
{ mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
/* find out the current status */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
/* we only need to read ISR to acknowledge */
{ mk_mii_read(MII_KS8721BL_ICSR), NULL },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
{ mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
{ mk_mii_end, }
};
static phy_info_t const phy_info_ks8721bl = {
.id = 0x00022161,
.name = "KS8721BL",
.config = phy_cmd_ks8721bl_config,
.startup = phy_cmd_ks8721bl_startup,
.ack_int = phy_cmd_ks8721bl_ack_int,
.shutdown = phy_cmd_ks8721bl_shutdown
};
/* ------------------------------------------------------------------------- */
/* register definitions for the DP83848 */
#define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = dev->priv;
volatile uint *s = &(fep->phy_status);
*s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
/* Link up */
if (mii_reg & 0x0001) {
fep->link = 1;
*s |= PHY_STAT_LINK;
} else
fep->link = 0;
/* Status of link */
if (mii_reg & 0x0010) /* Autonegotioation complete */
*s |= PHY_STAT_ANC;
if (mii_reg & 0x0002) { /* 10MBps? */
if (mii_reg & 0x0004) /* Full Duplex? */
*s |= PHY_STAT_10FDX;
else
*s |= PHY_STAT_10HDX;
} else { /* 100 Mbps? */
if (mii_reg & 0x0004) /* Full Duplex? */
*s |= PHY_STAT_100FDX;
else
*s |= PHY_STAT_100HDX;
}
if (mii_reg & 0x0008)
*s |= PHY_STAT_FAULT;
}
static phy_info_t phy_info_dp83848= {
0x020005c9,
"DP83848",
(const phy_cmd_t []) { /* config */
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* startup - enable interrupts */
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* shutdown */
{ mk_mii_end, }
},
};
/* ------------------------------------------------------------------------- */
static phy_info_t const * const phy_info[] = {
&phy_info_lxt970,
&phy_info_lxt971,
&phy_info_qs6612,
&phy_info_am79c874,
&phy_info_ks8721bl,
&phy_info_dp83848,
NULL
};
/* ------------------------------------------------------------------------- */
#ifdef CONFIG_RPXCLASSIC
static void
mii_link_interrupt(void *dev_id);
#else
static irqreturn_t
mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs);
#endif
#if defined(CONFIG_M5272)
/*
* Code specific to Coldfire 5272 setup.
*/
static void __inline__ fec_request_intrs(struct net_device *dev)
{
volatile unsigned long *icrp;
static const struct idesc {
char *name;
unsigned short irq;
irqreturn_t (*handler)(int, void *, struct pt_regs *);
} *idp, id[] = {
{ "fec(RX)", 86, fec_enet_interrupt },
{ "fec(TX)", 87, fec_enet_interrupt },
{ "fec(OTHER)", 88, fec_enet_interrupt },
{ "fec(MII)", 66, mii_link_interrupt },
{ NULL },
};
/* Setup interrupt handlers. */
for (idp = id; idp->name; idp++) {
if (request_irq(idp->irq, idp->handler, 0, idp->name, dev) != 0)
printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
}
/* Unmask interrupt at ColdFire 5272 SIM */
icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
*icrp = 0x00000ddd;
icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
*icrp = (*icrp & 0x70777777) | 0x0d000000;
}
static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
volatile fec_t *fecp;
fecp = fep->hwp;
fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
fecp->fec_x_cntrl = 0x00;
/*
* Set MII speed to 2.5 MHz
* See 5272 manual section 11.5.8: MSCR
*/
fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
fecp->fec_mii_speed = fep->phy_speed;
fec_restart(dev, 0);
}
static void __inline__ fec_get_mac(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile fec_t *fecp;
unsigned char *iap, tmpaddr[ETH_ALEN];
fecp = fep->hwp;
if (FEC_FLASHMAC) {
/*
* Get MAC address from FLASH.
* If it is all 1's or 0's, use the default.
*/
iap = (unsigned char *)FEC_FLASHMAC;
if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
(iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
iap = fec_mac_default;
if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
(iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
iap = fec_mac_default;
} else {
*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
iap = &tmpaddr[0];
}
memcpy(dev->dev_addr, iap, ETH_ALEN);
/* Adjust MAC if using default MAC address */
if (iap == fec_mac_default)
dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
}
static void __inline__ fec_enable_phy_intr(void)
{
}
static void __inline__ fec_disable_phy_intr(void)
{
volatile unsigned long *icrp;
icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
*icrp = (*icrp & 0x70777777) | 0x08000000;
}
static void __inline__ fec_phy_ack_intr(void)
{
volatile unsigned long *icrp;
/* Acknowledge the interrupt */
icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
*icrp = (*icrp & 0x77777777) | 0x08000000;
}
static void __inline__ fec_localhw_setup(void)
{
}
/*
* Do not need to make region uncached on 5272.
*/
static void __inline__ fec_uncache(unsigned long addr)
{
}
/* ------------------------------------------------------------------------- */
#elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
/*
* Code specific to Coldfire 5230/5231/5232/5234/5235,
* the 5270/5271/5274/5275 and 5280/5282 setups.
*/
static void __inline__ fec_request_intrs(struct net_device *dev)
{
struct fec_enet_private *fep;
int b;
static const struct idesc {
char *name;
unsigned short irq;
} *idp, id[] = {
{ "fec(TXF)", 23 },
{ "fec(TXB)", 24 },
{ "fec(TXFIFO)", 25 },
{ "fec(TXCR)", 26 },
{ "fec(RXF)", 27 },
{ "fec(RXB)", 28 },
{ "fec(MII)", 29 },
{ "fec(LC)", 30 },
{ "fec(HBERR)", 31 },
{ "fec(GRA)", 32 },
{ "fec(EBERR)", 33 },
{ "fec(BABT)", 34 },
{ "fec(BABR)", 35 },
{ NULL },
};
fep = netdev_priv(dev);
b = (fep->index) ? 128 : 64;
/* Setup interrupt handlers. */
for (idp = id; idp->name; idp++) {
if (request_irq(b+idp->irq, fec_enet_interrupt, 0, idp->name, dev) != 0)
printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
}
/* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
{
volatile unsigned char *icrp;
volatile unsigned long *imrp;
int i;
b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
MCFINTC_ICR0);
for (i = 23; (i < 36); i++)
icrp[i] = 0x23;
imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
MCFINTC_IMRH);
*imrp &= ~0x0000000f;
imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
MCFINTC_IMRL);
*imrp &= ~0xff800001;
}
#if defined(CONFIG_M528x)
/* Set up gpio outputs for MII lines */
{
volatile u16 *gpio_paspar;
volatile u8 *gpio_pehlpar;
gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
*gpio_paspar |= 0x0f00;
*gpio_pehlpar = 0xc0;
}
#endif
}
static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
volatile fec_t *fecp;
fecp = fep->hwp;
fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
fecp->fec_x_cntrl = 0x00;
/*
* Set MII speed to 2.5 MHz
* See 5282 manual section 17.5.4.7: MSCR
*/
fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
fecp->fec_mii_speed = fep->phy_speed;
fec_restart(dev, 0);
}
static void __inline__ fec_get_mac(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile fec_t *fecp;
unsigned char *iap, tmpaddr[ETH_ALEN];
fecp = fep->hwp;
if (FEC_FLASHMAC) {
/*
* Get MAC address from FLASH.
* If it is all 1's or 0's, use the default.
*/
iap = FEC_FLASHMAC;
if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
(iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
iap = fec_mac_default;
if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
(iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
iap = fec_mac_default;
} else {
*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
iap = &tmpaddr[0];
}
memcpy(dev->dev_addr, iap, ETH_ALEN);
/* Adjust MAC if using default MAC address */
if (iap == fec_mac_default)
dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
}
static void __inline__ fec_enable_phy_intr(void)
{
}
static void __inline__ fec_disable_phy_intr(void)
{
}
static void __inline__ fec_phy_ack_intr(void)
{
}
static void __inline__ fec_localhw_setup(void)
{
}
/*
* Do not need to make region uncached on 5272.
*/
static void __inline__ fec_uncache(unsigned long addr)
{
}
/* ------------------------------------------------------------------------- */
#elif defined(CONFIG_M520x)
/*
* Code specific to Coldfire 520x
*/
static void __inline__ fec_request_intrs(struct net_device *dev)
{
struct fec_enet_private *fep;
int b;
static const struct idesc {
char *name;
unsigned short irq;
} *idp, id[] = {
{ "fec(TXF)", 23 },
{ "fec(TXB)", 24 },
{ "fec(TXFIFO)", 25 },
{ "fec(TXCR)", 26 },
{ "fec(RXF)", 27 },
{ "fec(RXB)", 28 },
{ "fec(MII)", 29 },
{ "fec(LC)", 30 },
{ "fec(HBERR)", 31 },
{ "fec(GRA)", 32 },
{ "fec(EBERR)", 33 },
{ "fec(BABT)", 34 },
{ "fec(BABR)", 35 },
{ NULL },
};
fep = netdev_priv(dev);
b = 64 + 13;
/* Setup interrupt handlers. */
for (idp = id; idp->name; idp++) {
if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0)
printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
}
/* Unmask interrupts at ColdFire interrupt controller */
{
volatile unsigned char *icrp;
volatile unsigned long *imrp;
icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
MCFINTC_ICR0);
for (b = 36; (b < 49); b++)
icrp[b] = 0x04;
imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
MCFINTC_IMRH);
*imrp &= ~0x0001FFF0;
}
*(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
*(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
}
static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
volatile fec_t *fecp;
fecp = fep->hwp;
fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
fecp->fec_x_cntrl = 0x00;
/*
* Set MII speed to 2.5 MHz
* See 5282 manual section 17.5.4.7: MSCR
*/
fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
fecp->fec_mii_speed = fep->phy_speed;
fec_restart(dev, 0);
}
static void __inline__ fec_get_mac(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile fec_t *fecp;
unsigned char *iap, tmpaddr[ETH_ALEN];
fecp = fep->hwp;
if (FEC_FLASHMAC) {
/*
* Get MAC address from FLASH.
* If it is all 1's or 0's, use the default.
*/
iap = FEC_FLASHMAC;
if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
(iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
iap = fec_mac_default;
if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
(iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
iap = fec_mac_default;
} else {
*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
iap = &tmpaddr[0];
}
memcpy(dev->dev_addr, iap, ETH_ALEN);
/* Adjust MAC if using default MAC address */
if (iap == fec_mac_default)
dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
}
static void __inline__ fec_enable_phy_intr(void)
{
}
static void __inline__ fec_disable_phy_intr(void)
{
}
static void __inline__ fec_phy_ack_intr(void)
{
}
static void __inline__ fec_localhw_setup(void)
{
}
static void __inline__ fec_uncache(unsigned long addr)
{
}
/* ------------------------------------------------------------------------- */
#else
/*
* Code specific to the MPC860T setup.
*/
static void __inline__ fec_request_intrs(struct net_device *dev)
{
volatile immap_t *immap;
immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
panic("Could not allocate FEC IRQ!");
#ifdef CONFIG_RPXCLASSIC
/* Make Port C, bit 15 an input that causes interrupts.
*/
immap->im_ioport.iop_pcpar &= ~0x0001;
immap->im_ioport.iop_pcdir &= ~0x0001;
immap->im_ioport.iop_pcso &= ~0x0001;
immap->im_ioport.iop_pcint |= 0x0001;
cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
/* Make LEDS reflect Link status.
*/
*((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
#endif
#ifdef CONFIG_FADS
if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
panic("Could not allocate MII IRQ!");
#endif
}
static void __inline__ fec_get_mac(struct net_device *dev)
{
bd_t *bd;
bd = (bd_t *)__res;
memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN);
#ifdef CONFIG_RPXCLASSIC
/* The Embedded Planet boards have only one MAC address in
* the EEPROM, but can have two Ethernet ports. For the
* FEC port, we create another address by setting one of
* the address bits above something that would have (up to
* now) been allocated.
*/
dev->dev_adrd[3] |= 0x80;
#endif
}
static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
extern uint _get_IMMR(void);
volatile immap_t *immap;
volatile fec_t *fecp;
fecp = fep->hwp;
immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
/* Configure all of port D for MII.
*/
immap->im_ioport.iop_pdpar = 0x1fff;
/* Bits moved from Rev. D onward.
*/
if ((_get_IMMR() & 0xffff) < 0x0501)
immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
else
immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
/* Set MII speed to 2.5 MHz
*/
fecp->fec_mii_speed = fep->phy_speed =
((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
}
static void __inline__ fec_enable_phy_intr(void)
{
volatile fec_t *fecp;
fecp = fep->hwp;
/* Enable MII command finished interrupt
*/
fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
}
static void __inline__ fec_disable_phy_intr(void)
{
}
static void __inline__ fec_phy_ack_intr(void)
{
}
static void __inline__ fec_localhw_setup(void)
{
volatile fec_t *fecp;
fecp = fep->hwp;
fecp->fec_r_hash = PKT_MAXBUF_SIZE;
/* Enable big endian and don't care about SDMA FC.
*/
fecp->fec_fun_code = 0x78000000;
}
static void __inline__ fec_uncache(unsigned long addr)
{
pte_t *pte;
pte = va_to_pte(mem_addr);
pte_val(*pte) |= _PAGE_NO_CACHE;
flush_tlb_page(init_mm.mmap, mem_addr);
}
#endif
/* ------------------------------------------------------------------------- */
static void mii_display_status(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
if (!fep->link && !fep->old_link) {
/* Link is still down - don't print anything */
return;
}
printk("%s: status: ", dev->name);
if (!fep->link) {
printk("link down");
} else {
printk("link up");
switch(*s & PHY_STAT_SPMASK) {
case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
default:
printk(", Unknown speed/duplex");
}
if (*s & PHY_STAT_ANC)
printk(", auto-negotiation complete");
}
if (*s & PHY_STAT_FAULT)
printk(", remote fault");
printk(".\n");
}
static void mii_display_config(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
uint status = fep->phy_status;
/*
** When we get here, phy_task is already removed from
** the workqueue. It is thus safe to allow to reuse it.
*/
fep->mii_phy_task_queued = 0;
printk("%s: config: auto-negotiation ", dev->name);
if (status & PHY_CONF_ANE)
printk("on");
else
printk("off");
if (status & PHY_CONF_100FDX)
printk(", 100FDX");
if (status & PHY_CONF_100HDX)
printk(", 100HDX");
if (status & PHY_CONF_10FDX)
printk(", 10FDX");
if (status & PHY_CONF_10HDX)
printk(", 10HDX");
if (!(status & PHY_CONF_SPMASK))
printk(", No speed/duplex selected?");
if (status & PHY_CONF_LOOP)
printk(", loopback enabled");
printk(".\n");
fep->sequence_done = 1;
}
static void mii_relink(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
int duplex;
/*
** When we get here, phy_task is already removed from
** the workqueue. It is thus safe to allow to reuse it.
*/
fep->mii_phy_task_queued = 0;
fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
mii_display_status(dev);
fep->old_link = fep->link;
if (fep->link) {
duplex = 0;
if (fep->phy_status
& (PHY_STAT_100FDX | PHY_STAT_10FDX))
duplex = 1;
fec_restart(dev, duplex);
}
else
fec_stop(dev);
#if 0
enable_irq(fep->mii_irq);
#endif
}
/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
static void mii_queue_relink(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
/*
** We cannot queue phy_task twice in the workqueue. It
** would cause an endless loop in the workqueue.
** Fortunately, if the last mii_relink entry has not yet been
** executed now, it will do the job for the current interrupt,
** which is just what we want.
*/
if (fep->mii_phy_task_queued)
return;
fep->mii_phy_task_queued = 1;
INIT_WORK(&fep->phy_task, (void*)mii_relink, dev);
schedule_work(&fep->phy_task);
}
/* mii_queue_config is called in interrupt context from fec_enet_mii */
static void mii_queue_config(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
if (fep->mii_phy_task_queued)
return;
fep->mii_phy_task_queued = 1;
INIT_WORK(&fep->phy_task, (void*)mii_display_config, dev);
schedule_work(&fep->phy_task);
}
phy_cmd_t const phy_cmd_relink[] = {
{ mk_mii_read(MII_REG_CR), mii_queue_relink },
{ mk_mii_end, }
};
phy_cmd_t const phy_cmd_config[] = {
{ mk_mii_read(MII_REG_CR), mii_queue_config },
{ mk_mii_end, }
};
/* Read remainder of PHY ID.
*/
static void
mii_discover_phy3(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep;
int i;
fep = netdev_priv(dev);
fep->phy_id |= (mii_reg & 0xffff);
printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
for(i = 0; phy_info[i]; i++) {
if(phy_info[i]->id == (fep->phy_id >> 4))
break;
}
if (phy_info[i])
printk(" -- %s\n", phy_info[i]->name);
else
printk(" -- unknown PHY!\n");
fep->phy = phy_info[i];
fep->phy_id_done = 1;
}
/* Scan all of the MII PHY addresses looking for someone to respond
* with a valid ID. This usually happens quickly.
*/
static void
mii_discover_phy(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep;
volatile fec_t *fecp;
uint phytype;
fep = netdev_priv(dev);
fecp = fep->hwp;
if (fep->phy_addr < 32) {
if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
/* Got first part of ID, now get remainder.
*/
fep->phy_id = phytype << 16;
mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
mii_discover_phy3);
}
else {
fep->phy_addr++;
mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
mii_discover_phy);
}
} else {
printk("FEC: No PHY device found.\n");
/* Disable external MII interface */
fecp->fec_mii_speed = fep->phy_speed = 0;
fec_disable_phy_intr();
}
}
/* This interrupt occurs when the PHY detects a link change.
*/
#ifdef CONFIG_RPXCLASSIC
static void
mii_link_interrupt(void *dev_id)
#else
static irqreturn_t
mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs)
#endif
{
struct net_device *dev = dev_id;
struct fec_enet_private *fep = netdev_priv(dev);
fec_phy_ack_intr();
#if 0
disable_irq(fep->mii_irq); /* disable now, enable later */
#endif
mii_do_cmd(dev, fep->phy->ack_int);
mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
return IRQ_HANDLED;
}
static int
fec_enet_open(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
/* I should reset the ring buffers here, but I don't yet know
* a simple way to do that.
*/
fec_set_mac_address(dev);
fep->sequence_done = 0;
fep->link = 0;
if (fep->phy) {
mii_do_cmd(dev, fep->phy->ack_int);
mii_do_cmd(dev, fep->phy->config);
mii_do_cmd(dev, phy_cmd_config); /* display configuration */
/* FIXME: use netif_carrier_{on,off} ; this polls
* until link is up which is wrong... could be
* 30 seconds or more we are trapped in here. -jgarzik
*/
while(!fep->sequence_done)
schedule();
mii_do_cmd(dev, fep->phy->startup);
/* Set the initial link state to true. A lot of hardware
* based on this device does not implement a PHY interrupt,
* so we are never notified of link change.
*/
fep->link = 1;
} else {
fep->link = 1; /* lets just try it and see */
/* no phy, go full duplex, it's most likely a hub chip */
fec_restart(dev, 1);
}
netif_start_queue(dev);
fep->opened = 1;
return 0; /* Success */
}
static int
fec_enet_close(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
/* Don't know what to do yet.
*/
fep->opened = 0;
netif_stop_queue(dev);
fec_stop(dev);
return 0;
}
static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
return &fep->stats;
}
/* Set or clear the multicast filter for this adaptor.
* Skeleton taken from sunlance driver.
* The CPM Ethernet implementation allows Multicast as well as individual
* MAC address filtering. Some of the drivers check to make sure it is
* a group multicast address, and discard those that are not. I guess I
* will do the same for now, but just remove the test if you want
* individual filtering as well (do the upper net layers want or support
* this kind of feature?).
*/
#define HASH_BITS 6 /* #bits in hash */
#define CRC32_POLY 0xEDB88320
static void set_multicast_list(struct net_device *dev)
{
struct fec_enet_private *fep;
volatile fec_t *ep;
struct dev_mc_list *dmi;
unsigned int i, j, bit, data, crc;
unsigned char hash;
fep = netdev_priv(dev);
ep = fep->hwp;
if (dev->flags&IFF_PROMISC) {
/* Log any net taps. */
printk("%s: Promiscuous mode enabled.\n", dev->name);
ep->fec_r_cntrl |= 0x0008;
} else {
ep->fec_r_cntrl &= ~0x0008;
if (dev->flags & IFF_ALLMULTI) {
/* Catch all multicast addresses, so set the
* filter to all 1's.
*/
ep->fec_hash_table_high = 0xffffffff;
ep->fec_hash_table_low = 0xffffffff;
} else {
/* Clear filter and add the addresses in hash register.
*/
ep->fec_hash_table_high = 0;
ep->fec_hash_table_low = 0;
dmi = dev->mc_list;
for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
{
/* Only support group multicast for now.
*/
if (!(dmi->dmi_addr[0] & 1))
continue;
/* calculate crc32 value of mac address
*/
crc = 0xffffffff;
for (i = 0; i < dmi->dmi_addrlen; i++)
{
data = dmi->dmi_addr[i];
for (bit = 0; bit < 8; bit++, data >>= 1)
{
crc = (crc >> 1) ^
(((crc ^ data) & 1) ? CRC32_POLY : 0);
}
}
/* only upper 6 bits (HASH_BITS) are used
which point to specific bit in he hash registers
*/
hash = (crc >> (32 - HASH_BITS)) & 0x3f;
if (hash > 31)
ep->fec_hash_table_high |= 1 << (hash - 32);
else
ep->fec_hash_table_low |= 1 << hash;
}
}
}
}
/* Set a MAC change in hardware.
*/
static void
fec_set_mac_address(struct net_device *dev)
{
volatile fec_t *fecp;
fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
/* Set station address. */
fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
(dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
(dev->dev_addr[4] << 24);
}
/* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
*/
/*
* XXX: We need to clean up on failure exits here.
*/
int __init fec_enet_init(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
unsigned long mem_addr;
volatile cbd_t *bdp;
cbd_t *cbd_base;
volatile fec_t *fecp;
int i, j;
static int index = 0;
/* Only allow us to be probed once. */
if (index >= FEC_MAX_PORTS)
return -ENXIO;
/* Allocate memory for buffer descriptors.
*/
mem_addr = __get_free_page(GFP_KERNEL);
if (mem_addr == 0) {
printk("FEC: allocate descriptor memory failed?\n");
return -ENOMEM;
}
/* Create an Ethernet device instance.
*/
fecp = (volatile fec_t *) fec_hw[index];
fep->index = index;
fep->hwp = fecp;
/* Whack a reset. We should wait for this.
*/
fecp->fec_ecntrl = 1;
udelay(10);
/* Set the Ethernet address. If using multiple Enets on the 8xx,
* this needs some work to get unique addresses.
*
* This is our default MAC address unless the user changes
* it via eth_mac_addr (our dev->set_mac_addr handler).
*/
fec_get_mac(dev);
cbd_base = (cbd_t *)mem_addr;
/* XXX: missing check for allocation failure */
fec_uncache(mem_addr);
/* Set receive and transmit descriptor base.
*/
fep->rx_bd_base = cbd_base;
fep->tx_bd_base = cbd_base + RX_RING_SIZE;
fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
fep->cur_rx = fep->rx_bd_base;
fep->skb_cur = fep->skb_dirty = 0;
/* Initialize the receive buffer descriptors.
*/
bdp = fep->rx_bd_base;
for (i=0; i<FEC_ENET_RX_PAGES; i++) {
/* Allocate a page.
*/
mem_addr = __get_free_page(GFP_KERNEL);
/* XXX: missing check for allocation failure */
fec_uncache(mem_addr);
/* Initialize the BD for every fragment in the page.
*/
for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
bdp->cbd_sc = BD_ENET_RX_EMPTY;
bdp->cbd_bufaddr = __pa(mem_addr);
mem_addr += FEC_ENET_RX_FRSIZE;
bdp++;
}
}
/* Set the last buffer to wrap.
*/
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
/* ...and the same for transmmit.
*/
bdp = fep->tx_bd_base;
for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
if (j >= FEC_ENET_TX_FRPPG) {
mem_addr = __get_free_page(GFP_KERNEL);
j = 1;
} else {
mem_addr += FEC_ENET_TX_FRSIZE;
j++;
}
fep->tx_bounce[i] = (unsigned char *) mem_addr;
/* Initialize the BD for every fragment in the page.
*/
bdp->cbd_sc = 0;
bdp->cbd_bufaddr = 0;
bdp++;
}
/* Set the last buffer to wrap.
*/
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
/* Set receive and transmit descriptor base.
*/
fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
/* Install our interrupt handlers. This varies depending on
* the architecture.
*/
fec_request_intrs(dev);
/* Clear and enable interrupts */
fecp->fec_ievent = 0xffc00000;
fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
fecp->fec_hash_table_high = 0;
fecp->fec_hash_table_low = 0;
fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
fecp->fec_ecntrl = 2;
fecp->fec_r_des_active = 0x01000000;
dev->base_addr = (unsigned long)fecp;
/* The FEC Ethernet specific entries in the device structure. */
dev->open = fec_enet_open;
dev->hard_start_xmit = fec_enet_start_xmit;
dev->tx_timeout = fec_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
dev->stop = fec_enet_close;
dev->get_stats = fec_enet_get_stats;
dev->set_multicast_list = set_multicast_list;
for (i=0; i<NMII-1; i++)
mii_cmds[i].mii_next = &mii_cmds[i+1];
mii_free = mii_cmds;
/* setup MII interface */
fec_set_mii(dev, fep);
/* Queue up command to detect the PHY and initialize the
* remainder of the interface.
*/
fep->phy_id_done = 0;
fep->phy_addr = 0;
mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
index++;
return 0;
}
/* This function is called to start or restart the FEC during a link
* change. This only happens when switching between half and full
* duplex.
*/
static void
fec_restart(struct net_device *dev, int duplex)
{
struct fec_enet_private *fep;
volatile cbd_t *bdp;
volatile fec_t *fecp;
int i;
fep = netdev_priv(dev);
fecp = fep->hwp;
/* Whack a reset. We should wait for this.
*/
fecp->fec_ecntrl = 1;
udelay(10);
/* Enable interrupts we wish to service.
*/
fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
/* Clear any outstanding interrupt.
*/
fecp->fec_ievent = 0xffc00000;
fec_enable_phy_intr();
/* Set station address.
*/
fec_set_mac_address(dev);
/* Reset all multicast.
*/
fecp->fec_hash_table_high = 0;
fecp->fec_hash_table_low = 0;
/* Set maximum receive buffer size.
*/
fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
fec_localhw_setup();
/* Set receive and transmit descriptor base.
*/
fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
fep->cur_rx = fep->rx_bd_base;
/* Reset SKB transmit buffers.
*/
fep->skb_cur = fep->skb_dirty = 0;
for (i=0; i<=TX_RING_MOD_MASK; i++) {
if (fep->tx_skbuff[i] != NULL) {
dev_kfree_skb_any(fep->tx_skbuff[i]);
fep->tx_skbuff[i] = NULL;
}
}
/* Initialize the receive buffer descriptors.
*/
bdp = fep->rx_bd_base;
for (i=0; i<RX_RING_SIZE; i++) {
/* Initialize the BD for every fragment in the page.
*/
bdp->cbd_sc = BD_ENET_RX_EMPTY;
bdp++;
}
/* Set the last buffer to wrap.
*/
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
/* ...and the same for transmmit.
*/
bdp = fep->tx_bd_base;
for (i=0; i<TX_RING_SIZE; i++) {
/* Initialize the BD for every fragment in the page.
*/
bdp->cbd_sc = 0;
bdp->cbd_bufaddr = 0;
bdp++;
}
/* Set the last buffer to wrap.
*/
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
/* Enable MII mode.
*/
if (duplex) {
fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
fecp->fec_x_cntrl = 0x04; /* FD enable */
}
else {
/* MII enable|No Rcv on Xmit */
fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
fecp->fec_x_cntrl = 0x00;
}
fep->full_duplex = duplex;
/* Set MII speed.
*/
fecp->fec_mii_speed = fep->phy_speed;
/* And last, enable the transmit and receive processing.
*/
fecp->fec_ecntrl = 2;
fecp->fec_r_des_active = 0x01000000;
}
static void
fec_stop(struct net_device *dev)
{
volatile fec_t *fecp;
struct fec_enet_private *fep;
fep = netdev_priv(dev);
fecp = fep->hwp;
fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
while(!(fecp->fec_ievent & FEC_ENET_GRA));
/* Whack a reset. We should wait for this.
*/
fecp->fec_ecntrl = 1;
udelay(10);
/* Clear outstanding MII command interrupts.
*/
fecp->fec_ievent = FEC_ENET_MII;
fec_enable_phy_intr();
fecp->fec_imask = FEC_ENET_MII;
fecp->fec_mii_speed = fep->phy_speed;
}
static int __init fec_enet_module_init(void)
{
struct net_device *dev;
int i, j, err;
printk("FEC ENET Version 0.2\n");
for (i = 0; (i < FEC_MAX_PORTS); i++) {
dev = alloc_etherdev(sizeof(struct fec_enet_private));
if (!dev)
return -ENOMEM;
err = fec_enet_init(dev);
if (err) {
free_netdev(dev);
continue;
}
if (register_netdev(dev) != 0) {
/* XXX: missing cleanup here */
free_netdev(dev);
return -EIO;
}
printk("%s: ethernet ", dev->name);
for (j = 0; (j < 5); j++)
printk("%02x:", dev->dev_addr[j]);
printk("%02x\n", dev->dev_addr[5]);
}
return 0;
}
module_init(fec_enet_module_init);
MODULE_LICENSE("GPL");