1
linux/drivers/net/gianfar.c

2136 lines
57 KiB
C
Raw Normal View History

/*
* drivers/net/gianfar.c
*
* Gianfar Ethernet Driver
* Driver for FEC on MPC8540 and TSEC on MPC8540/MPC8560
* Based on 8260_io/fcc_enet.c
*
* Author: Andy Fleming
* Maintainer: Kumar Gala (kumar.gala@freescale.com)
*
* Copyright (c) 2002-2004 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* Gianfar: AKA Lambda Draconis, "Dragon"
* RA 11 31 24.2
* Dec +69 19 52
* V 3.84
* B-V +1.62
*
* Theory of operation
* This driver is designed for the non-CPM ethernet controllers
* on the 85xx and 83xx family of integrated processors
*
* The driver is initialized through platform_device. Structures which
* define the configuration needed by the board are defined in a
* board structure in arch/ppc/platforms (though I do not
* discount the possibility that other architectures could one
* day be supported. One assumption the driver currently makes
* is that the PHY is configured in such a way to advertise all
* capabilities. This is a sensible default, and on certain
* PHYs, changing this default encounters substantial errata
* issues. Future versions may remove this requirement, but for
* now, it is best for the firmware to ensure this is the case.
*
* The Gianfar Ethernet Controller uses a ring of buffer
* descriptors. The beginning is indicated by a register
* pointing to the physical address of the start of the ring.
* The end is determined by a "wrap" bit being set in the
* last descriptor of the ring.
*
* When a packet is received, the RXF bit in the
* IEVENT register is set, triggering an interrupt when the
* corresponding bit in the IMASK register is also set (if
* interrupt coalescing is active, then the interrupt may not
* happen immediately, but will wait until either a set number
* of frames or amount of time have passed.). In NAPI, the
* interrupt handler will signal there is work to be done, and
* exit. Without NAPI, the packet(s) will be handled
* immediately. Both methods will start at the last known empty
* descriptor, and process every subsequent descriptor until there
* are none left with data (NAPI will stop after a set number of
* packets to give time to other tasks, but will eventually
* process all the packets). The data arrives inside a
* pre-allocated skb, and so after the skb is passed up to the
* stack, a new skb must be allocated, and the address field in
* the buffer descriptor must be updated to indicate this new
* skb.
*
* When the kernel requests that a packet be transmitted, the
* driver starts where it left off last time, and points the
* descriptor at the buffer which was passed in. The driver
* then informs the DMA engine that there are packets ready to
* be transmitted. Once the controller is finished transmitting
* the packet, an interrupt may be triggered (under the same
* conditions as for reception, but depending on the TXF bit).
* The driver then cleans up the buffer.
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/if_vlan.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/device.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/dma-mapping.h>
#include <linux/crc32.h>
#include "gianfar.h"
#include "gianfar_phy.h"
#define TX_TIMEOUT (1*HZ)
#define SKB_ALLOC_TIMEOUT 1000000
#undef BRIEF_GFAR_ERRORS
#undef VERBOSE_GFAR_ERRORS
#ifdef CONFIG_GFAR_NAPI
#define RECEIVE(x) netif_receive_skb(x)
#else
#define RECEIVE(x) netif_rx(x)
#endif
const char gfar_driver_name[] = "Gianfar Ethernet";
const char gfar_driver_version[] = "1.1";
int startup_gfar(struct net_device *dev);
static int gfar_enet_open(struct net_device *dev);
static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
static void gfar_timeout(struct net_device *dev);
static int gfar_close(struct net_device *dev);
struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
static struct net_device_stats *gfar_get_stats(struct net_device *dev);
static int gfar_set_mac_address(struct net_device *dev);
static int gfar_change_mtu(struct net_device *dev, int new_mtu);
static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs);
static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs);
static irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs);
static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs);
static irqreturn_t phy_interrupt(int irq, void *dev_id, struct pt_regs *regs);
static void gfar_phy_change(void *data);
static void gfar_phy_timer(unsigned long data);
static void adjust_link(struct net_device *dev);
static void init_registers(struct net_device *dev);
static int init_phy(struct net_device *dev);
static int gfar_probe(struct device *device);
static int gfar_remove(struct device *device);
void free_skb_resources(struct gfar_private *priv);
static void gfar_set_multi(struct net_device *dev);
static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
#ifdef CONFIG_GFAR_NAPI
static int gfar_poll(struct net_device *dev, int *budget);
#endif
int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
static void gfar_phy_startup_timer(unsigned long data);
static void gfar_vlan_rx_register(struct net_device *netdev,
struct vlan_group *grp);
static void gfar_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
extern struct ethtool_ops gfar_ethtool_ops;
MODULE_AUTHOR("Freescale Semiconductor, Inc");
MODULE_DESCRIPTION("Gianfar Ethernet Driver");
MODULE_LICENSE("GPL");
int gfar_uses_fcb(struct gfar_private *priv)
{
if (priv->vlan_enable || priv->rx_csum_enable)
return 1;
else
return 0;
}
static int gfar_probe(struct device *device)
{
u32 tempval;
struct net_device *dev = NULL;
struct gfar_private *priv = NULL;
struct platform_device *pdev = to_platform_device(device);
struct gianfar_platform_data *einfo;
struct resource *r;
int idx;
int err = 0;
einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
if (einfo == NULL) {
printk(KERN_ERR "gfar %d: Missing additional data!\n",
pdev->id);
return -ENODEV;
}
/* Create an ethernet device instance */
dev = alloc_etherdev(sizeof (*priv));
if (dev == NULL)
return -ENOMEM;
priv = netdev_priv(dev);
/* Set the info in the priv to the current info */
priv->einfo = einfo;
/* fill out IRQ fields */
if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
priv->interruptError = platform_get_irq_byname(pdev, "error");
} else {
priv->interruptTransmit = platform_get_irq(pdev, 0);
}
/* get a pointer to the register memory */
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->regs = (struct gfar *)
ioremap(r->start, sizeof (struct gfar));
if (priv->regs == NULL) {
err = -ENOMEM;
goto regs_fail;
}
/* Set the PHY base address */
priv->phyregs = (struct gfar *)
ioremap(einfo->phy_reg_addr, sizeof (struct gfar));
if (priv->phyregs == NULL) {
err = -ENOMEM;
goto phy_regs_fail;
}
spin_lock_init(&priv->lock);
dev_set_drvdata(device, dev);
/* Stop the DMA engine now, in case it was running before */
/* (The firmware could have used it, and left it running). */
/* To do this, we write Graceful Receive Stop and Graceful */
/* Transmit Stop, and then wait until the corresponding bits */
/* in IEVENT indicate the stops have completed. */
tempval = gfar_read(&priv->regs->dmactrl);
tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
gfar_write(&priv->regs->dmactrl, tempval);
tempval = gfar_read(&priv->regs->dmactrl);
tempval |= (DMACTRL_GRS | DMACTRL_GTS);
gfar_write(&priv->regs->dmactrl, tempval);
while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
cpu_relax();
/* Reset MAC layer */
gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
gfar_write(&priv->regs->maccfg1, tempval);
/* Initialize MACCFG2. */
gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
/* Initialize ECNTRL */
gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
/* Copy the station address into the dev structure, */
memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
/* Set the dev->base_addr to the gfar reg region */
dev->base_addr = (unsigned long) (priv->regs);
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, device);
/* Fill in the dev structure */
dev->open = gfar_enet_open;
dev->hard_start_xmit = gfar_start_xmit;
dev->tx_timeout = gfar_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
#ifdef CONFIG_GFAR_NAPI
dev->poll = gfar_poll;
dev->weight = GFAR_DEV_WEIGHT;
#endif
dev->stop = gfar_close;
dev->get_stats = gfar_get_stats;
dev->change_mtu = gfar_change_mtu;
dev->mtu = 1500;
dev->set_multicast_list = gfar_set_multi;
dev->ethtool_ops = &gfar_ethtool_ops;
if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
priv->rx_csum_enable = 1;
dev->features |= NETIF_F_IP_CSUM;
} else
priv->rx_csum_enable = 0;
priv->vlgrp = NULL;
if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
dev->vlan_rx_register = gfar_vlan_rx_register;
dev->vlan_rx_kill_vid = gfar_vlan_rx_kill_vid;
dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
priv->vlan_enable = 1;
}
if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
priv->extended_hash = 1;
priv->hash_width = 9;
priv->hash_regs[0] = &priv->regs->igaddr0;
priv->hash_regs[1] = &priv->regs->igaddr1;
priv->hash_regs[2] = &priv->regs->igaddr2;
priv->hash_regs[3] = &priv->regs->igaddr3;
priv->hash_regs[4] = &priv->regs->igaddr4;
priv->hash_regs[5] = &priv->regs->igaddr5;
priv->hash_regs[6] = &priv->regs->igaddr6;
priv->hash_regs[7] = &priv->regs->igaddr7;
priv->hash_regs[8] = &priv->regs->gaddr0;
priv->hash_regs[9] = &priv->regs->gaddr1;
priv->hash_regs[10] = &priv->regs->gaddr2;
priv->hash_regs[11] = &priv->regs->gaddr3;
priv->hash_regs[12] = &priv->regs->gaddr4;
priv->hash_regs[13] = &priv->regs->gaddr5;
priv->hash_regs[14] = &priv->regs->gaddr6;
priv->hash_regs[15] = &priv->regs->gaddr7;
} else {
priv->extended_hash = 0;
priv->hash_width = 8;
priv->hash_regs[0] = &priv->regs->gaddr0;
priv->hash_regs[1] = &priv->regs->gaddr1;
priv->hash_regs[2] = &priv->regs->gaddr2;
priv->hash_regs[3] = &priv->regs->gaddr3;
priv->hash_regs[4] = &priv->regs->gaddr4;
priv->hash_regs[5] = &priv->regs->gaddr5;
priv->hash_regs[6] = &priv->regs->gaddr6;
priv->hash_regs[7] = &priv->regs->gaddr7;
}
if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
priv->padding = DEFAULT_PADDING;
else
priv->padding = 0;
dev->hard_header_len += priv->padding;
if (dev->features & NETIF_F_IP_CSUM)
dev->hard_header_len += GMAC_FCB_LEN;
priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
#ifdef CONFIG_GFAR_BUFSTASH
priv->rx_stash_size = STASH_LENGTH;
#endif
priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
priv->txcoalescing = DEFAULT_TX_COALESCE;
priv->txcount = DEFAULT_TXCOUNT;
priv->txtime = DEFAULT_TXTIME;
priv->rxcoalescing = DEFAULT_RX_COALESCE;
priv->rxcount = DEFAULT_RXCOUNT;
priv->rxtime = DEFAULT_RXTIME;
/* Enable most messages by default */
priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
err = register_netdev(dev);
if (err) {
printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
dev->name);
goto register_fail;
}
/* Print out the device info */
printk(KERN_INFO DEVICE_NAME, dev->name);
for (idx = 0; idx < 6; idx++)
printk("%2.2x%c", dev->dev_addr[idx], idx == 5 ? ' ' : ':');
printk("\n");
/* Even more device info helps when determining which kernel */
/* provided which set of benchmarks. Since this is global for all */
/* devices, we only print it once */
#ifdef CONFIG_GFAR_NAPI
printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
#else
printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
#endif
printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
dev->name, priv->rx_ring_size, priv->tx_ring_size);
return 0;
register_fail:
iounmap((void *) priv->phyregs);
phy_regs_fail:
iounmap((void *) priv->regs);
regs_fail:
free_netdev(dev);
return -ENOMEM;
}
static int gfar_remove(struct device *device)
{
struct net_device *dev = dev_get_drvdata(device);
struct gfar_private *priv = netdev_priv(dev);
dev_set_drvdata(device, NULL);
iounmap((void *) priv->regs);
iounmap((void *) priv->phyregs);
free_netdev(dev);
return 0;
}
/* Configure the PHY for dev.
* returns 0 if success. -1 if failure
*/
static int init_phy(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct phy_info *curphy;
unsigned int timeout = PHY_INIT_TIMEOUT;
struct gfar *phyregs = priv->phyregs;
struct gfar_mii_info *mii_info;
int err;
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
mii_info = kmalloc(sizeof(struct gfar_mii_info),
GFP_KERNEL);
if(NULL == mii_info) {
if (netif_msg_ifup(priv))
printk(KERN_ERR "%s: Could not allocate mii_info\n",
dev->name);
return -ENOMEM;
}
mii_info->speed = SPEED_1000;
mii_info->duplex = DUPLEX_FULL;
mii_info->pause = 0;
mii_info->link = 1;
mii_info->advertising = (ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full |
ADVERTISED_1000baseT_Full);
mii_info->autoneg = 1;
spin_lock_init(&mii_info->mdio_lock);
mii_info->mii_id = priv->einfo->phyid;
mii_info->dev = dev;
mii_info->mdio_read = &read_phy_reg;
mii_info->mdio_write = &write_phy_reg;
priv->mii_info = mii_info;
/* Reset the management interface */
gfar_write(&phyregs->miimcfg, MIIMCFG_RESET);
/* Setup the MII Mgmt clock speed */
gfar_write(&phyregs->miimcfg, MIIMCFG_INIT_VALUE);
/* Wait until the bus is free */
while ((gfar_read(&phyregs->miimind) & MIIMIND_BUSY) &&
timeout--)
cpu_relax();
if(timeout <= 0) {
printk(KERN_ERR "%s: The MII Bus is stuck!\n",
dev->name);
err = -1;
goto bus_fail;
}
/* get info for this PHY */
curphy = get_phy_info(priv->mii_info);
if (curphy == NULL) {
if (netif_msg_ifup(priv))
printk(KERN_ERR "%s: No PHY found\n", dev->name);
err = -1;
goto no_phy;
}
mii_info->phyinfo = curphy;
/* Run the commands which initialize the PHY */
if(curphy->init) {
err = curphy->init(priv->mii_info);
if (err)
goto phy_init_fail;
}
return 0;
phy_init_fail:
no_phy:
bus_fail:
kfree(mii_info);
return err;
}
static void init_registers(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
/* Clear IEVENT */
gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
/* Initialize IMASK */
gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
/* Init hash registers to zero */
gfar_write(&priv->regs->igaddr0, 0);
gfar_write(&priv->regs->igaddr1, 0);
gfar_write(&priv->regs->igaddr2, 0);
gfar_write(&priv->regs->igaddr3, 0);
gfar_write(&priv->regs->igaddr4, 0);
gfar_write(&priv->regs->igaddr5, 0);
gfar_write(&priv->regs->igaddr6, 0);
gfar_write(&priv->regs->igaddr7, 0);
gfar_write(&priv->regs->gaddr0, 0);
gfar_write(&priv->regs->gaddr1, 0);
gfar_write(&priv->regs->gaddr2, 0);
gfar_write(&priv->regs->gaddr3, 0);
gfar_write(&priv->regs->gaddr4, 0);
gfar_write(&priv->regs->gaddr5, 0);
gfar_write(&priv->regs->gaddr6, 0);
gfar_write(&priv->regs->gaddr7, 0);
/* Zero out the rmon mib registers if it has them */
if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
memset((void *) &(priv->regs->rmon), 0,
sizeof (struct rmon_mib));
/* Mask off the CAM interrupts */
gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
}
/* Initialize the max receive buffer length */
gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
#ifdef CONFIG_GFAR_BUFSTASH
/* If we are stashing buffers, we need to set the
* extraction length to the size of the buffer */
gfar_write(&priv->regs->attreli, priv->rx_stash_size << 16);
#endif
/* Initialize the Minimum Frame Length Register */
gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
/* Setup Attributes so that snooping is on for rx */
gfar_write(&priv->regs->attr, ATTR_INIT_SETTINGS);
gfar_write(&priv->regs->attreli, ATTRELI_INIT_SETTINGS);
/* Assign the TBI an address which won't conflict with the PHYs */
gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
}
/* Halt the receive and transmit queues */
void gfar_halt(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar *regs = priv->regs;
u32 tempval;
/* Mask all interrupts */
gfar_write(&regs->imask, IMASK_INIT_CLEAR);
/* Clear all interrupts */
gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
/* Stop the DMA, and wait for it to stop */
tempval = gfar_read(&priv->regs->dmactrl);
if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
!= (DMACTRL_GRS | DMACTRL_GTS)) {
tempval |= (DMACTRL_GRS | DMACTRL_GTS);
gfar_write(&priv->regs->dmactrl, tempval);
while (!(gfar_read(&priv->regs->ievent) &
(IEVENT_GRSC | IEVENT_GTSC)))
cpu_relax();
}
/* Disable Rx and Tx */
tempval = gfar_read(&regs->maccfg1);
tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
gfar_write(&regs->maccfg1, tempval);
}
void stop_gfar(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar *regs = priv->regs;
unsigned long flags;
/* Lock it down */
spin_lock_irqsave(&priv->lock, flags);
/* Tell the kernel the link is down */
priv->mii_info->link = 0;
adjust_link(dev);
gfar_halt(dev);
if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) {
/* Clear any pending interrupts */
mii_clear_phy_interrupt(priv->mii_info);
/* Disable PHY Interrupts */
mii_configure_phy_interrupt(priv->mii_info,
MII_INTERRUPT_DISABLED);
}
spin_unlock_irqrestore(&priv->lock, flags);
/* Free the IRQs */
if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
free_irq(priv->interruptError, dev);
free_irq(priv->interruptTransmit, dev);
free_irq(priv->interruptReceive, dev);
} else {
free_irq(priv->interruptTransmit, dev);
}
if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) {
free_irq(priv->einfo->interruptPHY, dev);
} else {
del_timer_sync(&priv->phy_info_timer);
}
free_skb_resources(priv);
dma_free_coherent(NULL,
sizeof(struct txbd8)*priv->tx_ring_size
+ sizeof(struct rxbd8)*priv->rx_ring_size,
priv->tx_bd_base,
gfar_read(&regs->tbase0));
}
/* If there are any tx skbs or rx skbs still around, free them.
* Then free tx_skbuff and rx_skbuff */
void free_skb_resources(struct gfar_private *priv)
{
struct rxbd8 *rxbdp;
struct txbd8 *txbdp;
int i;
/* Go through all the buffer descriptors and free their data buffers */
txbdp = priv->tx_bd_base;
for (i = 0; i < priv->tx_ring_size; i++) {
if (priv->tx_skbuff[i]) {
dma_unmap_single(NULL, txbdp->bufPtr,
txbdp->length,
DMA_TO_DEVICE);
dev_kfree_skb_any(priv->tx_skbuff[i]);
priv->tx_skbuff[i] = NULL;
}
}
kfree(priv->tx_skbuff);
rxbdp = priv->rx_bd_base;
/* rx_skbuff is not guaranteed to be allocated, so only
* free it and its contents if it is allocated */
if(priv->rx_skbuff != NULL) {
for (i = 0; i < priv->rx_ring_size; i++) {
if (priv->rx_skbuff[i]) {
dma_unmap_single(NULL, rxbdp->bufPtr,
priv->rx_buffer_size
+ RXBUF_ALIGNMENT,
DMA_FROM_DEVICE);
dev_kfree_skb_any(priv->rx_skbuff[i]);
priv->rx_skbuff[i] = NULL;
}
rxbdp->status = 0;
rxbdp->length = 0;
rxbdp->bufPtr = 0;
rxbdp++;
}
kfree(priv->rx_skbuff);
}
}
void gfar_start(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar *regs = priv->regs;
u32 tempval;
/* Enable Rx and Tx in MACCFG1 */
tempval = gfar_read(&regs->maccfg1);
tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
gfar_write(&regs->maccfg1, tempval);
/* Initialize DMACTRL to have WWR and WOP */
tempval = gfar_read(&priv->regs->dmactrl);
tempval |= DMACTRL_INIT_SETTINGS;
gfar_write(&priv->regs->dmactrl, tempval);
/* Clear THLT, so that the DMA starts polling now */
gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
/* Make sure we aren't stopped */
tempval = gfar_read(&priv->regs->dmactrl);
tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
gfar_write(&priv->regs->dmactrl, tempval);
/* Unmask the interrupts we look for */
gfar_write(&regs->imask, IMASK_DEFAULT);
}
/* Bring the controller up and running */
int startup_gfar(struct net_device *dev)
{
struct txbd8 *txbdp;
struct rxbd8 *rxbdp;
dma_addr_t addr;
unsigned long vaddr;
int i;
struct gfar_private *priv = netdev_priv(dev);
struct gfar *regs = priv->regs;
int err = 0;
u32 rctrl = 0;
gfar_write(&regs->imask, IMASK_INIT_CLEAR);
/* Allocate memory for the buffer descriptors */
vaddr = (unsigned long) dma_alloc_coherent(NULL,
sizeof (struct txbd8) * priv->tx_ring_size +
sizeof (struct rxbd8) * priv->rx_ring_size,
&addr, GFP_KERNEL);
if (vaddr == 0) {
if (netif_msg_ifup(priv))
printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
dev->name);
return -ENOMEM;
}
priv->tx_bd_base = (struct txbd8 *) vaddr;
/* enet DMA only understands physical addresses */
gfar_write(&regs->tbase0, addr);
/* Start the rx descriptor ring where the tx ring leaves off */
addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
priv->rx_bd_base = (struct rxbd8 *) vaddr;
gfar_write(&regs->rbase0, addr);
/* Setup the skbuff rings */
priv->tx_skbuff =
(struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
priv->tx_ring_size, GFP_KERNEL);
if (priv->tx_skbuff == NULL) {
if (netif_msg_ifup(priv))
printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
dev->name);
err = -ENOMEM;
goto tx_skb_fail;
}
for (i = 0; i < priv->tx_ring_size; i++)
priv->tx_skbuff[i] = NULL;
priv->rx_skbuff =
(struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
priv->rx_ring_size, GFP_KERNEL);
if (priv->rx_skbuff == NULL) {
if (netif_msg_ifup(priv))
printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
dev->name);
err = -ENOMEM;
goto rx_skb_fail;
}
for (i = 0; i < priv->rx_ring_size; i++)
priv->rx_skbuff[i] = NULL;
/* Initialize some variables in our dev structure */
priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
priv->cur_rx = priv->rx_bd_base;
priv->skb_curtx = priv->skb_dirtytx = 0;
priv->skb_currx = 0;
/* Initialize Transmit Descriptor Ring */
txbdp = priv->tx_bd_base;
for (i = 0; i < priv->tx_ring_size; i++) {
txbdp->status = 0;
txbdp->length = 0;
txbdp->bufPtr = 0;
txbdp++;
}
/* Set the last descriptor in the ring to indicate wrap */
txbdp--;
txbdp->status |= TXBD_WRAP;
rxbdp = priv->rx_bd_base;
for (i = 0; i < priv->rx_ring_size; i++) {
struct sk_buff *skb = NULL;
rxbdp->status = 0;
skb = gfar_new_skb(dev, rxbdp);
priv->rx_skbuff[i] = skb;
rxbdp++;
}
/* Set the last descriptor in the ring to wrap */
rxbdp--;
rxbdp->status |= RXBD_WRAP;
/* If the device has multiple interrupts, register for
* them. Otherwise, only register for the one */
if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
/* Install our interrupt handlers for Error,
* Transmit, and Receive */
if (request_irq(priv->interruptError, gfar_error,
0, "enet_error", dev) < 0) {
if (netif_msg_intr(priv))
printk(KERN_ERR "%s: Can't get IRQ %d\n",
dev->name, priv->interruptError);
err = -1;
goto err_irq_fail;
}
if (request_irq(priv->interruptTransmit, gfar_transmit,
0, "enet_tx", dev) < 0) {
if (netif_msg_intr(priv))
printk(KERN_ERR "%s: Can't get IRQ %d\n",
dev->name, priv->interruptTransmit);
err = -1;
goto tx_irq_fail;
}
if (request_irq(priv->interruptReceive, gfar_receive,
0, "enet_rx", dev) < 0) {
if (netif_msg_intr(priv))
printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
dev->name, priv->interruptReceive);
err = -1;
goto rx_irq_fail;
}
} else {
if (request_irq(priv->interruptTransmit, gfar_interrupt,
0, "gfar_interrupt", dev) < 0) {
if (netif_msg_intr(priv))
printk(KERN_ERR "%s: Can't get IRQ %d\n",
dev->name, priv->interruptError);
err = -1;
goto err_irq_fail;
}
}
/* Set up the PHY change work queue */
INIT_WORK(&priv->tq, gfar_phy_change, dev);
init_timer(&priv->phy_info_timer);
priv->phy_info_timer.function = &gfar_phy_startup_timer;
priv->phy_info_timer.data = (unsigned long) priv->mii_info;
mod_timer(&priv->phy_info_timer, jiffies + HZ);
/* Configure the coalescing support */
if (priv->txcoalescing)
gfar_write(&regs->txic,
mk_ic_value(priv->txcount, priv->txtime));
else
gfar_write(&regs->txic, 0);
if (priv->rxcoalescing)
gfar_write(&regs->rxic,
mk_ic_value(priv->rxcount, priv->rxtime));
else
gfar_write(&regs->rxic, 0);
if (priv->rx_csum_enable)
rctrl |= RCTRL_CHECKSUMMING;
if (priv->extended_hash)
rctrl |= RCTRL_EXTHASH;
if (priv->vlan_enable)
rctrl |= RCTRL_VLAN;
/* Init rctrl based on our settings */
gfar_write(&priv->regs->rctrl, rctrl);
if (dev->features & NETIF_F_IP_CSUM)
gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
gfar_start(dev);
return 0;
rx_irq_fail:
free_irq(priv->interruptTransmit, dev);
tx_irq_fail:
free_irq(priv->interruptError, dev);
err_irq_fail:
rx_skb_fail:
free_skb_resources(priv);
tx_skb_fail:
dma_free_coherent(NULL,
sizeof(struct txbd8)*priv->tx_ring_size
+ sizeof(struct rxbd8)*priv->rx_ring_size,
priv->tx_bd_base,
gfar_read(&regs->tbase0));
if (priv->mii_info->phyinfo->close)
priv->mii_info->phyinfo->close(priv->mii_info);
kfree(priv->mii_info);
return err;
}
/* Called when something needs to use the ethernet device */
/* Returns 0 for success. */
static int gfar_enet_open(struct net_device *dev)
{
int err;
/* Initialize a bunch of registers */
init_registers(dev);
gfar_set_mac_address(dev);
err = init_phy(dev);
if(err)
return err;
err = startup_gfar(dev);
netif_start_queue(dev);
return err;
}
static struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
{
struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
memset(fcb, 0, GMAC_FCB_LEN);
/* Flag the bd so the controller looks for the FCB */
bdp->status |= TXBD_TOE;
return fcb;
}
static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
{
int len;
/* If we're here, it's a IP packet with a TCP or UDP
* payload. We set it to checksum, using a pseudo-header
* we provide
*/
fcb->ip = 1;
fcb->tup = 1;
fcb->ctu = 1;
fcb->nph = 1;
/* Notify the controller what the protocol is */
if (skb->nh.iph->protocol == IPPROTO_UDP)
fcb->udp = 1;
/* l3os is the distance between the start of the
* frame (skb->data) and the start of the IP hdr.
* l4os is the distance between the start of the
* l3 hdr and the l4 hdr */
fcb->l3os = (u16)(skb->nh.raw - skb->data - GMAC_FCB_LEN);
fcb->l4os = (u16)(skb->h.raw - skb->nh.raw);
len = skb->nh.iph->tot_len - fcb->l4os;
/* Provide the pseudoheader csum */
fcb->phcs = ~csum_tcpudp_magic(skb->nh.iph->saddr,
skb->nh.iph->daddr, len,
skb->nh.iph->protocol, 0);
}
void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
{
fcb->vln = 1;
fcb->vlctl = vlan_tx_tag_get(skb);
}
/* This is called by the kernel when a frame is ready for transmission. */
/* It is pointed to by the dev->hard_start_xmit function pointer */
static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct txfcb *fcb = NULL;
struct txbd8 *txbdp;
/* Update transmit stats */
priv->stats.tx_bytes += skb->len;
/* Lock priv now */
spin_lock_irq(&priv->lock);
/* Point at the first free tx descriptor */
txbdp = priv->cur_tx;
/* Clear all but the WRAP status flags */
txbdp->status &= TXBD_WRAP;
/* Set up checksumming */
if ((dev->features & NETIF_F_IP_CSUM)
&& (CHECKSUM_HW == skb->ip_summed)) {
fcb = gfar_add_fcb(skb, txbdp);
gfar_tx_checksum(skb, fcb);
}
if (priv->vlan_enable &&
unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
if (NULL == fcb)
fcb = gfar_add_fcb(skb, txbdp);
gfar_tx_vlan(skb, fcb);
}
/* Set buffer length and pointer */
txbdp->length = skb->len;
txbdp->bufPtr = dma_map_single(NULL, skb->data,
skb->len, DMA_TO_DEVICE);
/* Save the skb pointer so we can free it later */
priv->tx_skbuff[priv->skb_curtx] = skb;
/* Update the current skb pointer (wrapping if this was the last) */
priv->skb_curtx =
(priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
/* Flag the BD as interrupt-causing */
txbdp->status |= TXBD_INTERRUPT;
/* Flag the BD as ready to go, last in frame, and */
/* in need of CRC */
txbdp->status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
dev->trans_start = jiffies;
/* If this was the last BD in the ring, the next one */
/* is at the beginning of the ring */
if (txbdp->status & TXBD_WRAP)
txbdp = priv->tx_bd_base;
else
txbdp++;
/* If the next BD still needs to be cleaned up, then the bds
are full. We need to tell the kernel to stop sending us stuff. */
if (txbdp == priv->dirty_tx) {
netif_stop_queue(dev);
priv->stats.tx_fifo_errors++;
}
/* Update the current txbd to the next one */
priv->cur_tx = txbdp;
/* Tell the DMA to go go go */
gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
/* Unlock priv */
spin_unlock_irq(&priv->lock);
return 0;
}
/* Stops the kernel queue, and halts the controller */
static int gfar_close(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
stop_gfar(dev);
/* Shutdown the PHY */
if (priv->mii_info->phyinfo->close)
priv->mii_info->phyinfo->close(priv->mii_info);
kfree(priv->mii_info);
netif_stop_queue(dev);
return 0;
}
/* returns a net_device_stats structure pointer */
static struct net_device_stats * gfar_get_stats(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
return &(priv->stats);
}
/* Changes the mac address if the controller is not running. */
int gfar_set_mac_address(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
int i;
char tmpbuf[MAC_ADDR_LEN];
u32 tempval;
/* Now copy it into the mac registers backwards, cuz */
/* little endian is silly */
for (i = 0; i < MAC_ADDR_LEN; i++)
tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->dev_addr[i];
gfar_write(&priv->regs->macstnaddr1, *((u32 *) (tmpbuf)));
tempval = *((u32 *) (tmpbuf + 4));
gfar_write(&priv->regs->macstnaddr2, tempval);
return 0;
}
/* Enables and disables VLAN insertion/extraction */
static void gfar_vlan_rx_register(struct net_device *dev,
struct vlan_group *grp)
{
struct gfar_private *priv = netdev_priv(dev);
unsigned long flags;
u32 tempval;
spin_lock_irqsave(&priv->lock, flags);
priv->vlgrp = grp;
if (grp) {
/* Enable VLAN tag insertion */
tempval = gfar_read(&priv->regs->tctrl);
tempval |= TCTRL_VLINS;
gfar_write(&priv->regs->tctrl, tempval);
/* Enable VLAN tag extraction */
tempval = gfar_read(&priv->regs->rctrl);
tempval |= RCTRL_VLEX;
gfar_write(&priv->regs->rctrl, tempval);
} else {
/* Disable VLAN tag insertion */
tempval = gfar_read(&priv->regs->tctrl);
tempval &= ~TCTRL_VLINS;
gfar_write(&priv->regs->tctrl, tempval);
/* Disable VLAN tag extraction */
tempval = gfar_read(&priv->regs->rctrl);
tempval &= ~RCTRL_VLEX;
gfar_write(&priv->regs->rctrl, tempval);
}
spin_unlock_irqrestore(&priv->lock, flags);
}
static void gfar_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid)
{
struct gfar_private *priv = netdev_priv(dev);
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
if (priv->vlgrp)
priv->vlgrp->vlan_devices[vid] = NULL;
spin_unlock_irqrestore(&priv->lock, flags);
}
static int gfar_change_mtu(struct net_device *dev, int new_mtu)
{
int tempsize, tempval;
struct gfar_private *priv = netdev_priv(dev);
int oldsize = priv->rx_buffer_size;
int frame_size = new_mtu + ETH_HLEN;
if (priv->vlan_enable)
frame_size += VLAN_ETH_HLEN;
if (gfar_uses_fcb(priv))
frame_size += GMAC_FCB_LEN;
frame_size += priv->padding;
if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
if (netif_msg_drv(priv))
printk(KERN_ERR "%s: Invalid MTU setting\n",
dev->name);
return -EINVAL;
}
tempsize =
(frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
INCREMENTAL_BUFFER_SIZE;
/* Only stop and start the controller if it isn't already
* stopped */
if ((oldsize != tempsize) && (dev->flags & IFF_UP))
stop_gfar(dev);
priv->rx_buffer_size = tempsize;
dev->mtu = new_mtu;
gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
/* If the mtu is larger than the max size for standard
* ethernet frames (ie, a jumbo frame), then set maccfg2
* to allow huge frames, and to check the length */
tempval = gfar_read(&priv->regs->maccfg2);
if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
else
tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
gfar_write(&priv->regs->maccfg2, tempval);
if ((oldsize != tempsize) && (dev->flags & IFF_UP))
startup_gfar(dev);
return 0;
}
/* gfar_timeout gets called when a packet has not been
* transmitted after a set amount of time.
* For now, assume that clearing out all the structures, and
* starting over will fix the problem. */
static void gfar_timeout(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
priv->stats.tx_errors++;
if (dev->flags & IFF_UP) {
stop_gfar(dev);
startup_gfar(dev);
}
netif_schedule(dev);
}
/* Interrupt Handler for Transmit complete */
static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) dev_id;
struct gfar_private *priv = netdev_priv(dev);
struct txbd8 *bdp;
/* Clear IEVENT */
gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
/* Lock priv */
spin_lock(&priv->lock);
bdp = priv->dirty_tx;
while ((bdp->status & TXBD_READY) == 0) {
/* If dirty_tx and cur_tx are the same, then either the */
/* ring is empty or full now (it could only be full in the beginning, */
/* obviously). If it is empty, we are done. */
if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
break;
priv->stats.tx_packets++;
/* Deferred means some collisions occurred during transmit, */
/* but we eventually sent the packet. */
if (bdp->status & TXBD_DEF)
priv->stats.collisions++;
/* Free the sk buffer associated with this TxBD */
dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
priv->tx_skbuff[priv->skb_dirtytx] = NULL;
priv->skb_dirtytx =
(priv->skb_dirtytx +
1) & TX_RING_MOD_MASK(priv->tx_ring_size);
/* update bdp to point at next bd in the ring (wrapping if necessary) */
if (bdp->status & TXBD_WRAP)
bdp = priv->tx_bd_base;
else
bdp++;
/* Move dirty_tx to be the next bd */
priv->dirty_tx = bdp;
/* We freed a buffer, so now we can restart transmission */
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
} /* while ((bdp->status & TXBD_READY) == 0) */
/* If we are coalescing the interrupts, reset the timer */
/* Otherwise, clear it */
if (priv->txcoalescing)
gfar_write(&priv->regs->txic,
mk_ic_value(priv->txcount, priv->txtime));
else
gfar_write(&priv->regs->txic, 0);
spin_unlock(&priv->lock);
return IRQ_HANDLED;
}
struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
{
struct gfar_private *priv = netdev_priv(dev);
struct sk_buff *skb = NULL;
unsigned int timeout = SKB_ALLOC_TIMEOUT;
/* We have to allocate the skb, so keep trying till we succeed */
while ((!skb) && timeout--)
skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
if (skb == NULL)
return NULL;
/* We need the data buffer to be aligned properly. We will reserve
* as many bytes as needed to align the data properly
*/
skb_reserve(skb,
RXBUF_ALIGNMENT -
(((unsigned) skb->data) & (RXBUF_ALIGNMENT - 1)));
skb->dev = dev;
bdp->bufPtr = dma_map_single(NULL, skb->data,
priv->rx_buffer_size + RXBUF_ALIGNMENT,
DMA_FROM_DEVICE);
bdp->length = 0;
/* Mark the buffer empty */
bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
return skb;
}
static inline void count_errors(unsigned short status, struct gfar_private *priv)
{
struct net_device_stats *stats = &priv->stats;
struct gfar_extra_stats *estats = &priv->extra_stats;
/* If the packet was truncated, none of the other errors
* matter */
if (status & RXBD_TRUNCATED) {
stats->rx_length_errors++;
estats->rx_trunc++;
return;
}
/* Count the errors, if there were any */
if (status & (RXBD_LARGE | RXBD_SHORT)) {
stats->rx_length_errors++;
if (status & RXBD_LARGE)
estats->rx_large++;
else
estats->rx_short++;
}
if (status & RXBD_NONOCTET) {
stats->rx_frame_errors++;
estats->rx_nonoctet++;
}
if (status & RXBD_CRCERR) {
estats->rx_crcerr++;
stats->rx_crc_errors++;
}
if (status & RXBD_OVERRUN) {
estats->rx_overrun++;
stats->rx_crc_errors++;
}
}
irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) dev_id;
struct gfar_private *priv = netdev_priv(dev);
#ifdef CONFIG_GFAR_NAPI
u32 tempval;
#endif
/* Clear IEVENT, so rx interrupt isn't called again
* because of this interrupt */
gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
/* support NAPI */
#ifdef CONFIG_GFAR_NAPI
if (netif_rx_schedule_prep(dev)) {
tempval = gfar_read(&priv->regs->imask);
tempval &= IMASK_RX_DISABLED;
gfar_write(&priv->regs->imask, tempval);
__netif_rx_schedule(dev);
} else {
if (netif_msg_rx_err(priv))
printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
dev->name, gfar_read(&priv->regs->ievent),
gfar_read(&priv->regs->imask));
}
#else
spin_lock(&priv->lock);
gfar_clean_rx_ring(dev, priv->rx_ring_size);
/* If we are coalescing interrupts, update the timer */
/* Otherwise, clear it */
if (priv->rxcoalescing)
gfar_write(&priv->regs->rxic,
mk_ic_value(priv->rxcount, priv->rxtime));
else
gfar_write(&priv->regs->rxic, 0);
spin_unlock(&priv->lock);
#endif
return IRQ_HANDLED;
}
static inline int gfar_rx_vlan(struct sk_buff *skb,
struct vlan_group *vlgrp, unsigned short vlctl)
{
#ifdef CONFIG_GFAR_NAPI
return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
#else
return vlan_hwaccel_rx(skb, vlgrp, vlctl);
#endif
}
static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
{
/* If valid headers were found, and valid sums
* were verified, then we tell the kernel that no
* checksumming is necessary. Otherwise, it is */
if (fcb->cip && !fcb->eip && fcb->ctu && !fcb->etu)
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
}
static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
{
struct rxfcb *fcb = (struct rxfcb *)skb->data;
/* Remove the FCB from the skb */
skb_pull(skb, GMAC_FCB_LEN);
return fcb;
}
/* gfar_process_frame() -- handle one incoming packet if skb
* isn't NULL. */
static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
int length)
{
struct gfar_private *priv = netdev_priv(dev);
struct rxfcb *fcb = NULL;
if (skb == NULL) {
if (netif_msg_rx_err(priv))
printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
priv->stats.rx_dropped++;
priv->extra_stats.rx_skbmissing++;
} else {
int ret;
/* Prep the skb for the packet */
skb_put(skb, length);
/* Grab the FCB if there is one */
if (gfar_uses_fcb(priv))
fcb = gfar_get_fcb(skb);
/* Remove the padded bytes, if there are any */
if (priv->padding)
skb_pull(skb, priv->padding);
if (priv->rx_csum_enable)
gfar_rx_checksum(skb, fcb);
/* Tell the skb what kind of packet this is */
skb->protocol = eth_type_trans(skb, dev);
/* Send the packet up the stack */
if (unlikely(priv->vlgrp && fcb->vln))
ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
else
ret = RECEIVE(skb);
if (NET_RX_DROP == ret)
priv->extra_stats.kernel_dropped++;
}
return 0;
}
/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
* until the budget/quota has been reached. Returns the number
* of frames handled
*/
int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
{
struct rxbd8 *bdp;
struct sk_buff *skb;
u16 pkt_len;
int howmany = 0;
struct gfar_private *priv = netdev_priv(dev);
/* Get the first full descriptor */
bdp = priv->cur_rx;
while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
skb = priv->rx_skbuff[priv->skb_currx];
if (!(bdp->status &
(RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
| RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
/* Increment the number of packets */
priv->stats.rx_packets++;
howmany++;
/* Remove the FCS from the packet length */
pkt_len = bdp->length - 4;
gfar_process_frame(dev, skb, pkt_len);
priv->stats.rx_bytes += pkt_len;
} else {
count_errors(bdp->status, priv);
if (skb)
dev_kfree_skb_any(skb);
priv->rx_skbuff[priv->skb_currx] = NULL;
}
dev->last_rx = jiffies;
/* Clear the status flags for this buffer */
bdp->status &= ~RXBD_STATS;
/* Add another skb for the future */
skb = gfar_new_skb(dev, bdp);
priv->rx_skbuff[priv->skb_currx] = skb;
/* Update to the next pointer */
if (bdp->status & RXBD_WRAP)
bdp = priv->rx_bd_base;
else
bdp++;
/* update to point at the next skb */
priv->skb_currx =
(priv->skb_currx +
1) & RX_RING_MOD_MASK(priv->rx_ring_size);
}
/* Update the current rxbd pointer to be the next one */
priv->cur_rx = bdp;
/* If no packets have arrived since the
* last one we processed, clear the IEVENT RX and
* BSY bits so that another interrupt won't be
* generated when we set IMASK */
if (bdp->status & RXBD_EMPTY)
gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
return howmany;
}
#ifdef CONFIG_GFAR_NAPI
static int gfar_poll(struct net_device *dev, int *budget)
{
int howmany;
struct gfar_private *priv = netdev_priv(dev);
int rx_work_limit = *budget;
if (rx_work_limit > dev->quota)
rx_work_limit = dev->quota;
howmany = gfar_clean_rx_ring(dev, rx_work_limit);
dev->quota -= howmany;
rx_work_limit -= howmany;
*budget -= howmany;
if (rx_work_limit >= 0) {
netif_rx_complete(dev);
/* Clear the halt bit in RSTAT */
gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
gfar_write(&priv->regs->imask, IMASK_DEFAULT);
/* If we are coalescing interrupts, update the timer */
/* Otherwise, clear it */
if (priv->rxcoalescing)
gfar_write(&priv->regs->rxic,
mk_ic_value(priv->rxcount, priv->rxtime));
else
gfar_write(&priv->regs->rxic, 0);
}
return (rx_work_limit < 0) ? 1 : 0;
}
#endif
/* The interrupt handler for devices with one interrupt */
static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = dev_id;
struct gfar_private *priv = netdev_priv(dev);
/* Save ievent for future reference */
u32 events = gfar_read(&priv->regs->ievent);
/* Clear IEVENT */
gfar_write(&priv->regs->ievent, events);
/* Check for reception */
if ((events & IEVENT_RXF0) || (events & IEVENT_RXB0))
gfar_receive(irq, dev_id, regs);
/* Check for transmit completion */
if ((events & IEVENT_TXF) || (events & IEVENT_TXB))
gfar_transmit(irq, dev_id, regs);
/* Update error statistics */
if (events & IEVENT_TXE) {
priv->stats.tx_errors++;
if (events & IEVENT_LC)
priv->stats.tx_window_errors++;
if (events & IEVENT_CRL)
priv->stats.tx_aborted_errors++;
if (events & IEVENT_XFUN) {
if (netif_msg_tx_err(priv))
printk(KERN_WARNING "%s: tx underrun. dropped packet\n", dev->name);
priv->stats.tx_dropped++;
priv->extra_stats.tx_underrun++;
/* Reactivate the Tx Queues */
gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
}
}
if (events & IEVENT_BSY) {
priv->stats.rx_errors++;
priv->extra_stats.rx_bsy++;
gfar_receive(irq, dev_id, regs);
#ifndef CONFIG_GFAR_NAPI
/* Clear the halt bit in RSTAT */
gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
#endif
if (netif_msg_rx_err(priv))
printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
dev->name,
gfar_read(&priv->regs->rstat));
}
if (events & IEVENT_BABR) {
priv->stats.rx_errors++;
priv->extra_stats.rx_babr++;
if (netif_msg_rx_err(priv))
printk(KERN_DEBUG "%s: babbling error\n", dev->name);
}
if (events & IEVENT_EBERR) {
priv->extra_stats.eberr++;
if (netif_msg_rx_err(priv))
printk(KERN_DEBUG "%s: EBERR\n", dev->name);
}
if ((events & IEVENT_RXC) && (netif_msg_rx_err(priv)))
printk(KERN_DEBUG "%s: control frame\n", dev->name);
if (events & IEVENT_BABT) {
priv->extra_stats.tx_babt++;
if (netif_msg_rx_err(priv))
printk(KERN_DEBUG "%s: babt error\n", dev->name);
}
return IRQ_HANDLED;
}
static irqreturn_t phy_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) dev_id;
struct gfar_private *priv = netdev_priv(dev);
/* Clear the interrupt */
mii_clear_phy_interrupt(priv->mii_info);
/* Disable PHY interrupts */
mii_configure_phy_interrupt(priv->mii_info,
MII_INTERRUPT_DISABLED);
/* Schedule the phy change */
schedule_work(&priv->tq);
return IRQ_HANDLED;
}
/* Scheduled by the phy_interrupt/timer to handle PHY changes */
static void gfar_phy_change(void *data)
{
struct net_device *dev = (struct net_device *) data;
struct gfar_private *priv = netdev_priv(dev);
int result = 0;
/* Delay to give the PHY a chance to change the
* register state */
msleep(1);
/* Update the link, speed, duplex */
result = priv->mii_info->phyinfo->read_status(priv->mii_info);
/* Adjust the known status as long as the link
* isn't still coming up */
if((0 == result) || (priv->mii_info->link == 0))
adjust_link(dev);
/* Reenable interrupts, if needed */
if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR)
mii_configure_phy_interrupt(priv->mii_info,
MII_INTERRUPT_ENABLED);
}
/* Called every so often on systems that don't interrupt
* the core for PHY changes */
static void gfar_phy_timer(unsigned long data)
{
struct net_device *dev = (struct net_device *) data;
struct gfar_private *priv = netdev_priv(dev);
schedule_work(&priv->tq);
mod_timer(&priv->phy_info_timer, jiffies +
GFAR_PHY_CHANGE_TIME * HZ);
}
/* Keep trying aneg for some time
* If, after GFAR_AN_TIMEOUT seconds, it has not
* finished, we switch to forced.
* Either way, once the process has completed, we either
* request the interrupt, or switch the timer over to
* using gfar_phy_timer to check status */
static void gfar_phy_startup_timer(unsigned long data)
{
int result;
static int secondary = GFAR_AN_TIMEOUT;
struct gfar_mii_info *mii_info = (struct gfar_mii_info *)data;
struct gfar_private *priv = netdev_priv(mii_info->dev);
/* Configure the Auto-negotiation */
result = mii_info->phyinfo->config_aneg(mii_info);
/* If autonegotiation failed to start, and
* we haven't timed out, reset the timer, and return */
if (result && secondary--) {
mod_timer(&priv->phy_info_timer, jiffies + HZ);
return;
} else if (result) {
/* Couldn't start autonegotiation.
* Try switching to forced */
mii_info->autoneg = 0;
result = mii_info->phyinfo->config_aneg(mii_info);
/* Forcing failed! Give up */
if(result) {
if (netif_msg_link(priv))
printk(KERN_ERR "%s: Forcing failed!\n",
mii_info->dev->name);
return;
}
}
/* Kill the timer so it can be restarted */
del_timer_sync(&priv->phy_info_timer);
/* Grab the PHY interrupt, if necessary/possible */
if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) {
if (request_irq(priv->einfo->interruptPHY,
phy_interrupt,
SA_SHIRQ,
"phy_interrupt",
mii_info->dev) < 0) {
if (netif_msg_intr(priv))
printk(KERN_ERR "%s: Can't get IRQ %d (PHY)\n",
mii_info->dev->name,
priv->einfo->interruptPHY);
} else {
mii_configure_phy_interrupt(priv->mii_info,
MII_INTERRUPT_ENABLED);
return;
}
}
/* Start the timer again, this time in order to
* handle a change in status */
init_timer(&priv->phy_info_timer);
priv->phy_info_timer.function = &gfar_phy_timer;
priv->phy_info_timer.data = (unsigned long) mii_info->dev;
mod_timer(&priv->phy_info_timer, jiffies +
GFAR_PHY_CHANGE_TIME * HZ);
}
/* Called every time the controller might need to be made
* aware of new link state. The PHY code conveys this
* information through variables in the priv structure, and this
* function converts those variables into the appropriate
* register values, and can bring down the device if needed.
*/
static void adjust_link(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar *regs = priv->regs;
u32 tempval;
struct gfar_mii_info *mii_info = priv->mii_info;
if (mii_info->link) {
/* Now we make sure that we can be in full duplex mode.
* If not, we operate in half-duplex mode. */
if (mii_info->duplex != priv->oldduplex) {
if (!(mii_info->duplex)) {
tempval = gfar_read(&regs->maccfg2);
tempval &= ~(MACCFG2_FULL_DUPLEX);
gfar_write(&regs->maccfg2, tempval);
if (netif_msg_link(priv))
printk(KERN_INFO "%s: Half Duplex\n",
dev->name);
} else {
tempval = gfar_read(&regs->maccfg2);
tempval |= MACCFG2_FULL_DUPLEX;
gfar_write(&regs->maccfg2, tempval);
if (netif_msg_link(priv))
printk(KERN_INFO "%s: Full Duplex\n",
dev->name);
}
priv->oldduplex = mii_info->duplex;
}
if (mii_info->speed != priv->oldspeed) {
switch (mii_info->speed) {
case 1000:
tempval = gfar_read(&regs->maccfg2);
tempval =
((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
gfar_write(&regs->maccfg2, tempval);
break;
case 100:
case 10:
tempval = gfar_read(&regs->maccfg2);
tempval =
((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
gfar_write(&regs->maccfg2, tempval);
break;
default:
if (netif_msg_link(priv))
printk(KERN_WARNING
"%s: Ack! Speed (%d) is not 10/100/1000!\n",
dev->name, mii_info->speed);
break;
}
if (netif_msg_link(priv))
printk(KERN_INFO "%s: Speed %dBT\n", dev->name,
mii_info->speed);
priv->oldspeed = mii_info->speed;
}
if (!priv->oldlink) {
if (netif_msg_link(priv))
printk(KERN_INFO "%s: Link is up\n", dev->name);
priv->oldlink = 1;
netif_carrier_on(dev);
netif_schedule(dev);
}
} else {
if (priv->oldlink) {
if (netif_msg_link(priv))
printk(KERN_INFO "%s: Link is down\n",
dev->name);
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
netif_carrier_off(dev);
}
}
}
/* Update the hash table based on the current list of multicast
* addresses we subscribe to. Also, change the promiscuity of
* the device based on the flags (this function is called
* whenever dev->flags is changed */
static void gfar_set_multi(struct net_device *dev)
{
struct dev_mc_list *mc_ptr;
struct gfar_private *priv = netdev_priv(dev);
struct gfar *regs = priv->regs;
u32 tempval;
if(dev->flags & IFF_PROMISC) {
if (netif_msg_drv(priv))
printk(KERN_INFO "%s: Entering promiscuous mode.\n",
dev->name);
/* Set RCTRL to PROM */
tempval = gfar_read(&regs->rctrl);
tempval |= RCTRL_PROM;
gfar_write(&regs->rctrl, tempval);
} else {
/* Set RCTRL to not PROM */
tempval = gfar_read(&regs->rctrl);
tempval &= ~(RCTRL_PROM);
gfar_write(&regs->rctrl, tempval);
}
if(dev->flags & IFF_ALLMULTI) {
/* Set the hash to rx all multicast frames */
gfar_write(&regs->igaddr0, 0xffffffff);
gfar_write(&regs->igaddr1, 0xffffffff);
gfar_write(&regs->igaddr2, 0xffffffff);
gfar_write(&regs->igaddr3, 0xffffffff);
gfar_write(&regs->igaddr4, 0xffffffff);
gfar_write(&regs->igaddr5, 0xffffffff);
gfar_write(&regs->igaddr6, 0xffffffff);
gfar_write(&regs->igaddr7, 0xffffffff);
gfar_write(&regs->gaddr0, 0xffffffff);
gfar_write(&regs->gaddr1, 0xffffffff);
gfar_write(&regs->gaddr2, 0xffffffff);
gfar_write(&regs->gaddr3, 0xffffffff);
gfar_write(&regs->gaddr4, 0xffffffff);
gfar_write(&regs->gaddr5, 0xffffffff);
gfar_write(&regs->gaddr6, 0xffffffff);
gfar_write(&regs->gaddr7, 0xffffffff);
} else {
/* zero out the hash */
gfar_write(&regs->igaddr0, 0x0);
gfar_write(&regs->igaddr1, 0x0);
gfar_write(&regs->igaddr2, 0x0);
gfar_write(&regs->igaddr3, 0x0);
gfar_write(&regs->igaddr4, 0x0);
gfar_write(&regs->igaddr5, 0x0);
gfar_write(&regs->igaddr6, 0x0);
gfar_write(&regs->igaddr7, 0x0);
gfar_write(&regs->gaddr0, 0x0);
gfar_write(&regs->gaddr1, 0x0);
gfar_write(&regs->gaddr2, 0x0);
gfar_write(&regs->gaddr3, 0x0);
gfar_write(&regs->gaddr4, 0x0);
gfar_write(&regs->gaddr5, 0x0);
gfar_write(&regs->gaddr6, 0x0);
gfar_write(&regs->gaddr7, 0x0);
if(dev->mc_count == 0)
return;
/* Parse the list, and set the appropriate bits */
for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
}
}
return;
}
/* Set the appropriate hash bit for the given addr */
/* The algorithm works like so:
* 1) Take the Destination Address (ie the multicast address), and
* do a CRC on it (little endian), and reverse the bits of the
* result.
* 2) Use the 8 most significant bits as a hash into a 256-entry
* table. The table is controlled through 8 32-bit registers:
* gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
* gaddr7. This means that the 3 most significant bits in the
* hash index which gaddr register to use, and the 5 other bits
* indicate which bit (assuming an IBM numbering scheme, which
* for PowerPC (tm) is usually the case) in the register holds
* the entry. */
static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
{
u32 tempval;
struct gfar_private *priv = netdev_priv(dev);
u32 result = ether_crc(MAC_ADDR_LEN, addr);
int width = priv->hash_width;
u8 whichbit = (result >> (32 - width)) & 0x1f;
u8 whichreg = result >> (32 - width + 5);
u32 value = (1 << (31-whichbit));
tempval = gfar_read(priv->hash_regs[whichreg]);
tempval |= value;
gfar_write(priv->hash_regs[whichreg], tempval);
return;
}
/* GFAR error interrupt handler */
static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = dev_id;
struct gfar_private *priv = netdev_priv(dev);
/* Save ievent for future reference */
u32 events = gfar_read(&priv->regs->ievent);
/* Clear IEVENT */
gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
/* Hmm... */
if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
dev->name, events, gfar_read(&priv->regs->imask));
/* Update the error counters */
if (events & IEVENT_TXE) {
priv->stats.tx_errors++;
if (events & IEVENT_LC)
priv->stats.tx_window_errors++;
if (events & IEVENT_CRL)
priv->stats.tx_aborted_errors++;
if (events & IEVENT_XFUN) {
if (netif_msg_tx_err(priv))
printk(KERN_DEBUG "%s: underrun. packet dropped.\n",
dev->name);
priv->stats.tx_dropped++;
priv->extra_stats.tx_underrun++;
/* Reactivate the Tx Queues */
gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
}
if (netif_msg_tx_err(priv))
printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
}
if (events & IEVENT_BSY) {
priv->stats.rx_errors++;
priv->extra_stats.rx_bsy++;
gfar_receive(irq, dev_id, regs);
#ifndef CONFIG_GFAR_NAPI
/* Clear the halt bit in RSTAT */
gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
#endif
if (netif_msg_rx_err(priv))
printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
dev->name,
gfar_read(&priv->regs->rstat));
}
if (events & IEVENT_BABR) {
priv->stats.rx_errors++;
priv->extra_stats.rx_babr++;
if (netif_msg_rx_err(priv))
printk(KERN_DEBUG "%s: babbling error\n", dev->name);
}
if (events & IEVENT_EBERR) {
priv->extra_stats.eberr++;
if (netif_msg_rx_err(priv))
printk(KERN_DEBUG "%s: EBERR\n", dev->name);
}
if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
if (netif_msg_rx_status(priv))
printk(KERN_DEBUG "%s: control frame\n", dev->name);
if (events & IEVENT_BABT) {
priv->extra_stats.tx_babt++;
if (netif_msg_tx_err(priv))
printk(KERN_DEBUG "%s: babt error\n", dev->name);
}
return IRQ_HANDLED;
}
/* Structure for a device driver */
static struct device_driver gfar_driver = {
.name = "fsl-gianfar",
.bus = &platform_bus_type,
.probe = gfar_probe,
.remove = gfar_remove,
};
static int __init gfar_init(void)
{
return driver_register(&gfar_driver);
}
static void __exit gfar_exit(void)
{
driver_unregister(&gfar_driver);
}
module_init(gfar_init);
module_exit(gfar_exit);