1
linux/drivers/usb/core/buffer.c

216 lines
4.5 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* DMA memory management for framework level HCD code (hc_driver)
*
* This implementation plugs in through generic "usb_bus" level methods,
* and should work with all USB controllers, regardless of bus type.
*
* Released under the GPLv2 only.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/mm.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/genalloc.h>
#include <linux/usb.h>
#include <linux/usb/hcd.h>
/*
* DMA-Coherent Buffers
*/
/* FIXME tune these based on pool statistics ... */
usb: core: buffer: smallest buffer should start at ARCH_DMA_MINALIGN the following error pops up during "testusb -a -t 10" | musb-hdrc musb-hdrc.1.auto: dma_pool_free buffer-128, f134e000/be842000 (bad dma) hcd_buffer_create() creates a few buffers, the smallest has 32 bytes of size. ARCH_KMALLOC_MINALIGN is set to 64 bytes. This combo results in hcd_buffer_alloc() returning memory which is 32 bytes aligned and it might by identified by buffer_offset() as another buffer. This means the buffer which is on a 32 byte boundary will not get freed, instead it tries to free another buffer with the error message. This patch fixes the issue by creating the smallest DMA buffer with the size of ARCH_KMALLOC_MINALIGN (or 32 in case ARCH_KMALLOC_MINALIGN is smaller). This might be 32, 64 or even 128 bytes. The next three pools will have the size 128, 512 and 2048. In case the smallest pool is 128 bytes then we have only three pools instead of four (and zero the first entry in the array). The last pool size is always 2048 bytes which is the assumed PAGE_SIZE / 2 of 4096. I doubt it makes sense to continue using PAGE_SIZE / 2 where we would end up with 8KiB buffer in case we have 16KiB pages. Instead I think it makes sense to have a common size(s) and extend them if there is need to. There is a BUILD_BUG_ON() now in case someone has a minalign of more than 128 bytes. Cc: stable@vger.kernel.org Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-12-05 07:13:54 -07:00
static size_t pool_max[HCD_BUFFER_POOLS] = {
32, 128, 512, 2048,
};
usb: core: buffer: smallest buffer should start at ARCH_DMA_MINALIGN the following error pops up during "testusb -a -t 10" | musb-hdrc musb-hdrc.1.auto: dma_pool_free buffer-128, f134e000/be842000 (bad dma) hcd_buffer_create() creates a few buffers, the smallest has 32 bytes of size. ARCH_KMALLOC_MINALIGN is set to 64 bytes. This combo results in hcd_buffer_alloc() returning memory which is 32 bytes aligned and it might by identified by buffer_offset() as another buffer. This means the buffer which is on a 32 byte boundary will not get freed, instead it tries to free another buffer with the error message. This patch fixes the issue by creating the smallest DMA buffer with the size of ARCH_KMALLOC_MINALIGN (or 32 in case ARCH_KMALLOC_MINALIGN is smaller). This might be 32, 64 or even 128 bytes. The next three pools will have the size 128, 512 and 2048. In case the smallest pool is 128 bytes then we have only three pools instead of four (and zero the first entry in the array). The last pool size is always 2048 bytes which is the assumed PAGE_SIZE / 2 of 4096. I doubt it makes sense to continue using PAGE_SIZE / 2 where we would end up with 8KiB buffer in case we have 16KiB pages. Instead I think it makes sense to have a common size(s) and extend them if there is need to. There is a BUILD_BUG_ON() now in case someone has a minalign of more than 128 bytes. Cc: stable@vger.kernel.org Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-12-05 07:13:54 -07:00
void __init usb_init_pool_max(void)
{
/*
* The pool_max values must never be smaller than
* ARCH_DMA_MINALIGN.
usb: core: buffer: smallest buffer should start at ARCH_DMA_MINALIGN the following error pops up during "testusb -a -t 10" | musb-hdrc musb-hdrc.1.auto: dma_pool_free buffer-128, f134e000/be842000 (bad dma) hcd_buffer_create() creates a few buffers, the smallest has 32 bytes of size. ARCH_KMALLOC_MINALIGN is set to 64 bytes. This combo results in hcd_buffer_alloc() returning memory which is 32 bytes aligned and it might by identified by buffer_offset() as another buffer. This means the buffer which is on a 32 byte boundary will not get freed, instead it tries to free another buffer with the error message. This patch fixes the issue by creating the smallest DMA buffer with the size of ARCH_KMALLOC_MINALIGN (or 32 in case ARCH_KMALLOC_MINALIGN is smaller). This might be 32, 64 or even 128 bytes. The next three pools will have the size 128, 512 and 2048. In case the smallest pool is 128 bytes then we have only three pools instead of four (and zero the first entry in the array). The last pool size is always 2048 bytes which is the assumed PAGE_SIZE / 2 of 4096. I doubt it makes sense to continue using PAGE_SIZE / 2 where we would end up with 8KiB buffer in case we have 16KiB pages. Instead I think it makes sense to have a common size(s) and extend them if there is need to. There is a BUILD_BUG_ON() now in case someone has a minalign of more than 128 bytes. Cc: stable@vger.kernel.org Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-12-05 07:13:54 -07:00
*/
if (ARCH_DMA_MINALIGN <= 32)
usb: core: buffer: smallest buffer should start at ARCH_DMA_MINALIGN the following error pops up during "testusb -a -t 10" | musb-hdrc musb-hdrc.1.auto: dma_pool_free buffer-128, f134e000/be842000 (bad dma) hcd_buffer_create() creates a few buffers, the smallest has 32 bytes of size. ARCH_KMALLOC_MINALIGN is set to 64 bytes. This combo results in hcd_buffer_alloc() returning memory which is 32 bytes aligned and it might by identified by buffer_offset() as another buffer. This means the buffer which is on a 32 byte boundary will not get freed, instead it tries to free another buffer with the error message. This patch fixes the issue by creating the smallest DMA buffer with the size of ARCH_KMALLOC_MINALIGN (or 32 in case ARCH_KMALLOC_MINALIGN is smaller). This might be 32, 64 or even 128 bytes. The next three pools will have the size 128, 512 and 2048. In case the smallest pool is 128 bytes then we have only three pools instead of four (and zero the first entry in the array). The last pool size is always 2048 bytes which is the assumed PAGE_SIZE / 2 of 4096. I doubt it makes sense to continue using PAGE_SIZE / 2 where we would end up with 8KiB buffer in case we have 16KiB pages. Instead I think it makes sense to have a common size(s) and extend them if there is need to. There is a BUILD_BUG_ON() now in case someone has a minalign of more than 128 bytes. Cc: stable@vger.kernel.org Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-12-05 07:13:54 -07:00
; /* Original value is okay */
else if (ARCH_DMA_MINALIGN <= 64)
usb: core: buffer: smallest buffer should start at ARCH_DMA_MINALIGN the following error pops up during "testusb -a -t 10" | musb-hdrc musb-hdrc.1.auto: dma_pool_free buffer-128, f134e000/be842000 (bad dma) hcd_buffer_create() creates a few buffers, the smallest has 32 bytes of size. ARCH_KMALLOC_MINALIGN is set to 64 bytes. This combo results in hcd_buffer_alloc() returning memory which is 32 bytes aligned and it might by identified by buffer_offset() as another buffer. This means the buffer which is on a 32 byte boundary will not get freed, instead it tries to free another buffer with the error message. This patch fixes the issue by creating the smallest DMA buffer with the size of ARCH_KMALLOC_MINALIGN (or 32 in case ARCH_KMALLOC_MINALIGN is smaller). This might be 32, 64 or even 128 bytes. The next three pools will have the size 128, 512 and 2048. In case the smallest pool is 128 bytes then we have only three pools instead of four (and zero the first entry in the array). The last pool size is always 2048 bytes which is the assumed PAGE_SIZE / 2 of 4096. I doubt it makes sense to continue using PAGE_SIZE / 2 where we would end up with 8KiB buffer in case we have 16KiB pages. Instead I think it makes sense to have a common size(s) and extend them if there is need to. There is a BUILD_BUG_ON() now in case someone has a minalign of more than 128 bytes. Cc: stable@vger.kernel.org Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-12-05 07:13:54 -07:00
pool_max[0] = 64;
else if (ARCH_DMA_MINALIGN <= 128)
usb: core: buffer: smallest buffer should start at ARCH_DMA_MINALIGN the following error pops up during "testusb -a -t 10" | musb-hdrc musb-hdrc.1.auto: dma_pool_free buffer-128, f134e000/be842000 (bad dma) hcd_buffer_create() creates a few buffers, the smallest has 32 bytes of size. ARCH_KMALLOC_MINALIGN is set to 64 bytes. This combo results in hcd_buffer_alloc() returning memory which is 32 bytes aligned and it might by identified by buffer_offset() as another buffer. This means the buffer which is on a 32 byte boundary will not get freed, instead it tries to free another buffer with the error message. This patch fixes the issue by creating the smallest DMA buffer with the size of ARCH_KMALLOC_MINALIGN (or 32 in case ARCH_KMALLOC_MINALIGN is smaller). This might be 32, 64 or even 128 bytes. The next three pools will have the size 128, 512 and 2048. In case the smallest pool is 128 bytes then we have only three pools instead of four (and zero the first entry in the array). The last pool size is always 2048 bytes which is the assumed PAGE_SIZE / 2 of 4096. I doubt it makes sense to continue using PAGE_SIZE / 2 where we would end up with 8KiB buffer in case we have 16KiB pages. Instead I think it makes sense to have a common size(s) and extend them if there is need to. There is a BUILD_BUG_ON() now in case someone has a minalign of more than 128 bytes. Cc: stable@vger.kernel.org Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-12-05 07:13:54 -07:00
pool_max[0] = 0; /* Don't use this pool */
else
BUILD_BUG(); /* We don't allow this */
}
/* SETUP primitives */
/**
* hcd_buffer_create - initialize buffer pools
* @hcd: the bus whose buffer pools are to be initialized
*
* Context: task context, might sleep
*
* Call this as part of initializing a host controller that uses the dma
* memory allocators. It initializes some pools of dma-coherent memory that
* will be shared by all drivers using that controller.
*
* Call hcd_buffer_destroy() to clean up after using those pools.
*
* Return: 0 if successful. A negative errno value otherwise.
*/
int hcd_buffer_create(struct usb_hcd *hcd)
{
char name[16];
int i, size;
if (hcd->localmem_pool || !hcd_uses_dma(hcd))
return 0;
for (i = 0; i < HCD_BUFFER_POOLS; i++) {
size = pool_max[i];
if (!size)
continue;
snprintf(name, sizeof(name), "buffer-%d", size);
usb: separate out sysdev pointer from usb_bus For xhci-hcd platform device, all the DMA parameters are not configured properly, notably dma ops for dwc3 devices. The idea here is that you pass in the parent of_node along with the child device pointer, so it would behave exactly like the parent already does. The difference is that it also handles all the other attributes besides the mask. sysdev will represent the physical device, as seen from firmware or bus.Splitting the usb_bus->controller field into the Linux-internal device (used for the sysfs hierarchy, for printks and for power management) and a new pointer (used for DMA, DT enumeration and phy lookup) probably covers all that we really need. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Sriram Dash <sriram.dash@nxp.com> Tested-by: Baolin Wang <baolin.wang@linaro.org> Tested-by: Brian Norris <briannorris@chromium.org> Tested-by: Alexander Sverdlin <alexander.sverdlin@nokia.com> Tested-by: Vivek Gautam <vivek.gautam@codeaurora.org> Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com> Signed-off-by: Peter Chen <peter.chen@nxp.com> Cc: Felipe Balbi <felipe.balbi@linux.intel.com> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Cc: Sinjan Kumar <sinjank@codeaurora.org> Cc: David Fisher <david.fisher1@synopsys.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: "Thang Q. Nguyen" <tqnguyen@apm.com> Cc: Yoshihiro Shimoda <yoshihiro.shimoda.uh@renesas.com> Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Bjorn Andersson <bjorn.andersson@linaro.org> Cc: Ming Lei <tom.leiming@gmail.com> Cc: Jon Masters <jcm@redhat.com> Cc: Dann Frazier <dann.frazier@canonical.com> Cc: Peter Chen <peter.chen@nxp.com> Cc: Leo Li <pku.leo@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-03-12 19:18:41 -07:00
hcd->pool[i] = dma_pool_create(name, hcd->self.sysdev,
size, size, 0);
if (!hcd->pool[i]) {
hcd_buffer_destroy(hcd);
return -ENOMEM;
}
}
return 0;
}
/**
* hcd_buffer_destroy - deallocate buffer pools
* @hcd: the bus whose buffer pools are to be destroyed
*
* Context: task context, might sleep
*
* This frees the buffer pools created by hcd_buffer_create().
*/
void hcd_buffer_destroy(struct usb_hcd *hcd)
{
int i;
if (!IS_ENABLED(CONFIG_HAS_DMA))
return;
for (i = 0; i < HCD_BUFFER_POOLS; i++) {
dma_pool_destroy(hcd->pool[i]);
hcd->pool[i] = NULL;
}
}
/* sometimes alloc/free could use kmalloc with GFP_DMA, for
* better sharing and to leverage mm/slab.c intelligence.
*/
void *hcd_buffer_alloc(
struct usb_bus *bus,
size_t size,
gfp_t mem_flags,
dma_addr_t *dma
)
{
struct usb_hcd *hcd = bus_to_hcd(bus);
int i;
if (size == 0)
return NULL;
if (hcd->localmem_pool)
return gen_pool_dma_alloc(hcd->localmem_pool, size, dma);
/* some USB hosts just use PIO */
if (!hcd_uses_dma(hcd)) {
*dma = ~(dma_addr_t) 0;
return kmalloc(size, mem_flags);
}
for (i = 0; i < HCD_BUFFER_POOLS; i++) {
if (size <= pool_max[i])
return dma_pool_alloc(hcd->pool[i], mem_flags, dma);
}
usb: separate out sysdev pointer from usb_bus For xhci-hcd platform device, all the DMA parameters are not configured properly, notably dma ops for dwc3 devices. The idea here is that you pass in the parent of_node along with the child device pointer, so it would behave exactly like the parent already does. The difference is that it also handles all the other attributes besides the mask. sysdev will represent the physical device, as seen from firmware or bus.Splitting the usb_bus->controller field into the Linux-internal device (used for the sysfs hierarchy, for printks and for power management) and a new pointer (used for DMA, DT enumeration and phy lookup) probably covers all that we really need. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Sriram Dash <sriram.dash@nxp.com> Tested-by: Baolin Wang <baolin.wang@linaro.org> Tested-by: Brian Norris <briannorris@chromium.org> Tested-by: Alexander Sverdlin <alexander.sverdlin@nokia.com> Tested-by: Vivek Gautam <vivek.gautam@codeaurora.org> Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com> Signed-off-by: Peter Chen <peter.chen@nxp.com> Cc: Felipe Balbi <felipe.balbi@linux.intel.com> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Cc: Sinjan Kumar <sinjank@codeaurora.org> Cc: David Fisher <david.fisher1@synopsys.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: "Thang Q. Nguyen" <tqnguyen@apm.com> Cc: Yoshihiro Shimoda <yoshihiro.shimoda.uh@renesas.com> Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Bjorn Andersson <bjorn.andersson@linaro.org> Cc: Ming Lei <tom.leiming@gmail.com> Cc: Jon Masters <jcm@redhat.com> Cc: Dann Frazier <dann.frazier@canonical.com> Cc: Peter Chen <peter.chen@nxp.com> Cc: Leo Li <pku.leo@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-03-12 19:18:41 -07:00
return dma_alloc_coherent(hcd->self.sysdev, size, dma, mem_flags);
}
void hcd_buffer_free(
struct usb_bus *bus,
size_t size,
void *addr,
dma_addr_t dma
)
{
struct usb_hcd *hcd = bus_to_hcd(bus);
int i;
if (!addr)
return;
if (hcd->localmem_pool) {
gen_pool_free(hcd->localmem_pool, (unsigned long)addr, size);
return;
}
if (!hcd_uses_dma(hcd)) {
kfree(addr);
return;
}
for (i = 0; i < HCD_BUFFER_POOLS; i++) {
if (size <= pool_max[i]) {
dma_pool_free(hcd->pool[i], addr, dma);
return;
}
}
usb: separate out sysdev pointer from usb_bus For xhci-hcd platform device, all the DMA parameters are not configured properly, notably dma ops for dwc3 devices. The idea here is that you pass in the parent of_node along with the child device pointer, so it would behave exactly like the parent already does. The difference is that it also handles all the other attributes besides the mask. sysdev will represent the physical device, as seen from firmware or bus.Splitting the usb_bus->controller field into the Linux-internal device (used for the sysfs hierarchy, for printks and for power management) and a new pointer (used for DMA, DT enumeration and phy lookup) probably covers all that we really need. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Sriram Dash <sriram.dash@nxp.com> Tested-by: Baolin Wang <baolin.wang@linaro.org> Tested-by: Brian Norris <briannorris@chromium.org> Tested-by: Alexander Sverdlin <alexander.sverdlin@nokia.com> Tested-by: Vivek Gautam <vivek.gautam@codeaurora.org> Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com> Signed-off-by: Peter Chen <peter.chen@nxp.com> Cc: Felipe Balbi <felipe.balbi@linux.intel.com> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Cc: Sinjan Kumar <sinjank@codeaurora.org> Cc: David Fisher <david.fisher1@synopsys.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: "Thang Q. Nguyen" <tqnguyen@apm.com> Cc: Yoshihiro Shimoda <yoshihiro.shimoda.uh@renesas.com> Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Bjorn Andersson <bjorn.andersson@linaro.org> Cc: Ming Lei <tom.leiming@gmail.com> Cc: Jon Masters <jcm@redhat.com> Cc: Dann Frazier <dann.frazier@canonical.com> Cc: Peter Chen <peter.chen@nxp.com> Cc: Leo Li <pku.leo@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-03-12 19:18:41 -07:00
dma_free_coherent(hcd->self.sysdev, size, addr, dma);
}
usb: usbfs: Enforce page requirements for mmap The current implementation of usbdev_mmap uses usb_alloc_coherent to allocate memory pages that will later be mapped into the user space. Meanwhile, usb_alloc_coherent employs three different methods to allocate memory, as outlined below: * If hcd->localmem_pool is non-null, it uses gen_pool_dma_alloc to allocate memory; * If DMA is not available, it uses kmalloc to allocate memory; * Otherwise, it uses dma_alloc_coherent. However, it should be noted that gen_pool_dma_alloc does not guarantee that the resulting memory will be page-aligned. Furthermore, trying to map slab pages (i.e., memory allocated by kmalloc) into the user space is not resonable and can lead to problems, such as a type confusion bug when PAGE_TABLE_CHECK=y [1]. To address these issues, this patch introduces hcd_alloc_coherent_pages, which addresses the above two problems. Specifically, hcd_alloc_coherent_pages uses gen_pool_dma_alloc_align instead of gen_pool_dma_alloc to ensure that the memory is page-aligned. To replace kmalloc, hcd_alloc_coherent_pages directly allocates pages by calling __get_free_pages. Reported-by: syzbot+fcf1a817ceb50935ce99@syzkaller.appspotmail.comm Closes: https://lore.kernel.org/lkml/000000000000258e5e05fae79fc1@google.com/ [1] Fixes: f7d34b445abc ("USB: Add support for usbfs zerocopy.") Fixes: ff2437befd8f ("usb: host: Fix excessive alignment restriction for local memory allocations") Cc: stable@vger.kernel.org Signed-off-by: Ruihan Li <lrh2000@pku.edu.cn> Acked-by: Alan Stern <stern@rowland.harvard.edu> Link: https://lore.kernel.org/r/20230515130958.32471-2-lrh2000@pku.edu.cn Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-05-15 06:09:55 -07:00
void *hcd_buffer_alloc_pages(struct usb_hcd *hcd,
size_t size, gfp_t mem_flags, dma_addr_t *dma)
{
if (size == 0)
return NULL;
if (hcd->localmem_pool)
return gen_pool_dma_alloc_align(hcd->localmem_pool,
size, dma, PAGE_SIZE);
/* some USB hosts just use PIO */
if (!hcd_uses_dma(hcd)) {
*dma = DMA_MAPPING_ERROR;
return (void *)__get_free_pages(mem_flags,
get_order(size));
}
return dma_alloc_coherent(hcd->self.sysdev,
size, dma, mem_flags);
}
void hcd_buffer_free_pages(struct usb_hcd *hcd,
size_t size, void *addr, dma_addr_t dma)
{
if (!addr)
return;
if (hcd->localmem_pool) {
gen_pool_free(hcd->localmem_pool,
(unsigned long)addr, size);
return;
}
if (!hcd_uses_dma(hcd)) {
free_pages((unsigned long)addr, get_order(size));
return;
}
dma_free_coherent(hcd->self.sysdev, size, addr, dma);
}