1
linux/drivers/thermal/mediatek/lvts_thermal.c

1803 lines
48 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2023 MediaTek Inc.
* Author: Balsam CHIHI <bchihi@baylibre.com>
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/debugfs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/thermal.h>
#include <dt-bindings/thermal/mediatek,lvts-thermal.h>
#include "../thermal_hwmon.h"
#define LVTS_MONCTL0(__base) (__base + 0x0000)
#define LVTS_MONCTL1(__base) (__base + 0x0004)
#define LVTS_MONCTL2(__base) (__base + 0x0008)
#define LVTS_MONINT(__base) (__base + 0x000C)
#define LVTS_MONINTSTS(__base) (__base + 0x0010)
#define LVTS_MONIDET0(__base) (__base + 0x0014)
#define LVTS_MONIDET1(__base) (__base + 0x0018)
#define LVTS_MONIDET2(__base) (__base + 0x001C)
#define LVTS_MONIDET3(__base) (__base + 0x0020)
#define LVTS_H2NTHRE(__base) (__base + 0x0024)
#define LVTS_HTHRE(__base) (__base + 0x0028)
#define LVTS_OFFSETH(__base) (__base + 0x0030)
#define LVTS_OFFSETL(__base) (__base + 0x0034)
#define LVTS_MSRCTL0(__base) (__base + 0x0038)
#define LVTS_MSRCTL1(__base) (__base + 0x003C)
#define LVTS_TSSEL(__base) (__base + 0x0040)
#define LVTS_CALSCALE(__base) (__base + 0x0048)
#define LVTS_ID(__base) (__base + 0x004C)
#define LVTS_CONFIG(__base) (__base + 0x0050)
#define LVTS_EDATA00(__base) (__base + 0x0054)
#define LVTS_EDATA01(__base) (__base + 0x0058)
#define LVTS_EDATA02(__base) (__base + 0x005C)
#define LVTS_EDATA03(__base) (__base + 0x0060)
#define LVTS_MSR0(__base) (__base + 0x0090)
#define LVTS_MSR1(__base) (__base + 0x0094)
#define LVTS_MSR2(__base) (__base + 0x0098)
#define LVTS_MSR3(__base) (__base + 0x009C)
#define LVTS_IMMD0(__base) (__base + 0x00A0)
#define LVTS_IMMD1(__base) (__base + 0x00A4)
#define LVTS_IMMD2(__base) (__base + 0x00A8)
#define LVTS_IMMD3(__base) (__base + 0x00AC)
#define LVTS_PROTCTL(__base) (__base + 0x00C0)
#define LVTS_PROTTA(__base) (__base + 0x00C4)
#define LVTS_PROTTB(__base) (__base + 0x00C8)
#define LVTS_PROTTC(__base) (__base + 0x00CC)
#define LVTS_CLKEN(__base) (__base + 0x00E4)
#define LVTS_PERIOD_UNIT 0
#define LVTS_GROUP_INTERVAL 0
#define LVTS_FILTER_INTERVAL 0
#define LVTS_SENSOR_INTERVAL 0
#define LVTS_HW_FILTER 0x0
#define LVTS_TSSEL_CONF 0x13121110
#define LVTS_CALSCALE_CONF 0x300
#define LVTS_MONINT_CONF 0x8300318C
#define LVTS_MONINT_OFFSET_SENSOR0 0xC
#define LVTS_MONINT_OFFSET_SENSOR1 0x180
#define LVTS_MONINT_OFFSET_SENSOR2 0x3000
#define LVTS_MONINT_OFFSET_SENSOR3 0x3000000
#define LVTS_INT_SENSOR0 0x0009001F
#define LVTS_INT_SENSOR1 0x001203E0
#define LVTS_INT_SENSOR2 0x00247C00
#define LVTS_INT_SENSOR3 0x1FC00000
#define LVTS_SENSOR_MAX 4
#define LVTS_GOLDEN_TEMP_MAX 62
#define LVTS_GOLDEN_TEMP_DEFAULT 50
#define LVTS_COEFF_A_MT8195 -250460
#define LVTS_COEFF_B_MT8195 250460
#define LVTS_COEFF_A_MT7988 -204650
#define LVTS_COEFF_B_MT7988 204650
#define LVTS_MSR_IMMEDIATE_MODE 0
#define LVTS_MSR_FILTERED_MODE 1
#define LVTS_MSR_READ_TIMEOUT_US 400
#define LVTS_MSR_READ_WAIT_US (LVTS_MSR_READ_TIMEOUT_US / 2)
#define LVTS_HW_TSHUT_TEMP 105000
#define LVTS_MINIMUM_THRESHOLD 20000
static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT;
static int golden_temp_offset;
struct lvts_sensor_data {
int dt_id;
u8 cal_offsets[3];
};
struct lvts_ctrl_data {
struct lvts_sensor_data lvts_sensor[LVTS_SENSOR_MAX];
u8 valid_sensor_mask;
int offset;
int mode;
};
#define VALID_SENSOR_MAP(s0, s1, s2, s3) \
.valid_sensor_mask = (((s0) ? BIT(0) : 0) | \
((s1) ? BIT(1) : 0) | \
((s2) ? BIT(2) : 0) | \
((s3) ? BIT(3) : 0))
#define lvts_for_each_valid_sensor(i, lvts_ctrl) \
for ((i) = 0; (i) < LVTS_SENSOR_MAX; (i)++) \
if (!((lvts_ctrl)->valid_sensor_mask & BIT(i))) \
continue; \
else
struct lvts_data {
const struct lvts_ctrl_data *lvts_ctrl;
int num_lvts_ctrl;
int temp_factor;
int temp_offset;
int gt_calib_bit_offset;
unsigned int def_calibration;
};
struct lvts_sensor {
struct thermal_zone_device *tz;
void __iomem *msr;
void __iomem *base;
int id;
int dt_id;
int low_thresh;
int high_thresh;
};
struct lvts_ctrl {
struct lvts_sensor sensors[LVTS_SENSOR_MAX];
const struct lvts_data *lvts_data;
u32 calibration[LVTS_SENSOR_MAX];
u32 hw_tshut_raw_temp;
u8 valid_sensor_mask;
int mode;
void __iomem *base;
int low_thresh;
int high_thresh;
};
struct lvts_domain {
struct lvts_ctrl *lvts_ctrl;
struct reset_control *reset;
struct clk *clk;
int num_lvts_ctrl;
void __iomem *base;
size_t calib_len;
u8 *calib;
#ifdef CONFIG_DEBUG_FS
struct dentry *dom_dentry;
#endif
};
#ifdef CONFIG_MTK_LVTS_THERMAL_DEBUGFS
#define LVTS_DEBUG_FS_REGS(__reg) \
{ \
.name = __stringify(__reg), \
.offset = __reg(0), \
}
static const struct debugfs_reg32 lvts_regs[] = {
LVTS_DEBUG_FS_REGS(LVTS_MONCTL0),
LVTS_DEBUG_FS_REGS(LVTS_MONCTL1),
LVTS_DEBUG_FS_REGS(LVTS_MONCTL2),
LVTS_DEBUG_FS_REGS(LVTS_MONINT),
LVTS_DEBUG_FS_REGS(LVTS_MONINTSTS),
LVTS_DEBUG_FS_REGS(LVTS_MONIDET0),
LVTS_DEBUG_FS_REGS(LVTS_MONIDET1),
LVTS_DEBUG_FS_REGS(LVTS_MONIDET2),
LVTS_DEBUG_FS_REGS(LVTS_MONIDET3),
LVTS_DEBUG_FS_REGS(LVTS_H2NTHRE),
LVTS_DEBUG_FS_REGS(LVTS_HTHRE),
LVTS_DEBUG_FS_REGS(LVTS_OFFSETH),
LVTS_DEBUG_FS_REGS(LVTS_OFFSETL),
LVTS_DEBUG_FS_REGS(LVTS_MSRCTL0),
LVTS_DEBUG_FS_REGS(LVTS_MSRCTL1),
LVTS_DEBUG_FS_REGS(LVTS_TSSEL),
LVTS_DEBUG_FS_REGS(LVTS_CALSCALE),
LVTS_DEBUG_FS_REGS(LVTS_ID),
LVTS_DEBUG_FS_REGS(LVTS_CONFIG),
LVTS_DEBUG_FS_REGS(LVTS_EDATA00),
LVTS_DEBUG_FS_REGS(LVTS_EDATA01),
LVTS_DEBUG_FS_REGS(LVTS_EDATA02),
LVTS_DEBUG_FS_REGS(LVTS_EDATA03),
LVTS_DEBUG_FS_REGS(LVTS_MSR0),
LVTS_DEBUG_FS_REGS(LVTS_MSR1),
LVTS_DEBUG_FS_REGS(LVTS_MSR2),
LVTS_DEBUG_FS_REGS(LVTS_MSR3),
LVTS_DEBUG_FS_REGS(LVTS_IMMD0),
LVTS_DEBUG_FS_REGS(LVTS_IMMD1),
LVTS_DEBUG_FS_REGS(LVTS_IMMD2),
LVTS_DEBUG_FS_REGS(LVTS_IMMD3),
LVTS_DEBUG_FS_REGS(LVTS_PROTCTL),
LVTS_DEBUG_FS_REGS(LVTS_PROTTA),
LVTS_DEBUG_FS_REGS(LVTS_PROTTB),
LVTS_DEBUG_FS_REGS(LVTS_PROTTC),
LVTS_DEBUG_FS_REGS(LVTS_CLKEN),
};
static int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td)
{
struct debugfs_regset32 *regset;
struct lvts_ctrl *lvts_ctrl;
struct dentry *dentry;
char name[64];
int i;
lvts_td->dom_dentry = debugfs_create_dir(dev_name(dev), NULL);
if (IS_ERR(lvts_td->dom_dentry))
return 0;
for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
lvts_ctrl = &lvts_td->lvts_ctrl[i];
sprintf(name, "controller%d", i);
dentry = debugfs_create_dir(name, lvts_td->dom_dentry);
if (IS_ERR(dentry))
continue;
regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
if (!regset)
continue;
regset->base = lvts_ctrl->base;
regset->regs = lvts_regs;
regset->nregs = ARRAY_SIZE(lvts_regs);
debugfs_create_regset32("registers", 0400, dentry, regset);
}
return 0;
}
static void lvts_debugfs_exit(struct lvts_domain *lvts_td)
{
debugfs_remove_recursive(lvts_td->dom_dentry);
}
#else
static inline int lvts_debugfs_init(struct device *dev,
struct lvts_domain *lvts_td)
{
return 0;
}
static void lvts_debugfs_exit(struct lvts_domain *lvts_td) { }
#endif
static int lvts_raw_to_temp(u32 raw_temp, int temp_factor)
{
int temperature;
temperature = ((s64)(raw_temp & 0xFFFF) * temp_factor) >> 14;
temperature += golden_temp_offset;
return temperature;
}
static u32 lvts_temp_to_raw(int temperature, int temp_factor)
{
u32 raw_temp = ((s64)(golden_temp_offset - temperature)) << 14;
raw_temp = div_s64(raw_temp, -temp_factor);
return raw_temp;
}
static int lvts_get_temp(struct thermal_zone_device *tz, int *temp)
{
2023-03-01 13:14:30 -07:00
struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl,
sensors[lvts_sensor->id]);
const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
void __iomem *msr = lvts_sensor->msr;
u32 value;
int rc;
/*
* Measurement registers:
*
* LVTS_MSR[0-3] / LVTS_IMMD[0-3]
*
* Bits:
*
* 32-17: Unused
* 16 : Valid temperature
* 15-0 : Raw temperature
*/
rc = readl_poll_timeout(msr, value, value & BIT(16),
LVTS_MSR_READ_WAIT_US, LVTS_MSR_READ_TIMEOUT_US);
/*
* As the thermal zone temperature will read before the
* hardware sensor is fully initialized, we have to check the
* validity of the temperature returned when reading the
* measurement register. The thermal controller will set the
* valid bit temperature only when it is totally initialized.
*
* Otherwise, we may end up with garbage values out of the
* functionning temperature and directly jump to a system
* shutdown.
*/
if (rc)
return -EAGAIN;
*temp = lvts_raw_to_temp(value & 0xFFFF, lvts_data->temp_factor);
return 0;
}
static void lvts_update_irq_mask(struct lvts_ctrl *lvts_ctrl)
{
u32 masks[] = {
LVTS_MONINT_OFFSET_SENSOR0,
LVTS_MONINT_OFFSET_SENSOR1,
LVTS_MONINT_OFFSET_SENSOR2,
LVTS_MONINT_OFFSET_SENSOR3,
};
u32 value = 0;
int i;
value = readl(LVTS_MONINT(lvts_ctrl->base));
for (i = 0; i < ARRAY_SIZE(masks); i++) {
if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
&& lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
value |= masks[i];
else
value &= ~masks[i];
}
writel(value, LVTS_MONINT(lvts_ctrl->base));
}
static bool lvts_should_update_thresh(struct lvts_ctrl *lvts_ctrl, int high)
{
int i;
if (high > lvts_ctrl->high_thresh)
return true;
lvts_for_each_valid_sensor(i, lvts_ctrl)
if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
&& lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
return false;
return true;
}
static int lvts_set_trips(struct thermal_zone_device *tz, int low, int high)
{
2023-03-01 13:14:30 -07:00
struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl,
sensors[lvts_sensor->id]);
const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
void __iomem *base = lvts_sensor->base;
u32 raw_low = lvts_temp_to_raw(low != -INT_MAX ? low : LVTS_MINIMUM_THRESHOLD,
lvts_data->temp_factor);
u32 raw_high = lvts_temp_to_raw(high, lvts_data->temp_factor);
bool should_update_thresh;
lvts_sensor->low_thresh = low;
lvts_sensor->high_thresh = high;
should_update_thresh = lvts_should_update_thresh(lvts_ctrl, high);
if (should_update_thresh) {
lvts_ctrl->high_thresh = high;
lvts_ctrl->low_thresh = low;
}
lvts_update_irq_mask(lvts_ctrl);
if (!should_update_thresh)
return 0;
/*
* Low offset temperature threshold
*
* LVTS_OFFSETL
*
* Bits:
*
* 14-0 : Raw temperature for threshold
*/
pr_debug("%s: Setting low limit temperature interrupt: %d\n",
thermal_zone_device_type(tz), low);
writel(raw_low, LVTS_OFFSETL(base));
/*
* High offset temperature threshold
*
* LVTS_OFFSETH
*
* Bits:
*
* 14-0 : Raw temperature for threshold
*/
pr_debug("%s: Setting high limit temperature interrupt: %d\n",
thermal_zone_device_type(tz), high);
writel(raw_high, LVTS_OFFSETH(base));
return 0;
}
static irqreturn_t lvts_ctrl_irq_handler(struct lvts_ctrl *lvts_ctrl)
{
irqreturn_t iret = IRQ_NONE;
u32 value;
u32 masks[] = {
LVTS_INT_SENSOR0,
LVTS_INT_SENSOR1,
LVTS_INT_SENSOR2,
LVTS_INT_SENSOR3
};
int i;
/*
* Interrupt monitoring status
*
* LVTS_MONINTST
*
* Bits:
*
* 31 : Interrupt for stage 3
* 30 : Interrupt for stage 2
* 29 : Interrupt for state 1
* 28 : Interrupt using filter on sensor 3
*
* 27 : Interrupt using immediate on sensor 3
* 26 : Interrupt normal to hot on sensor 3
* 25 : Interrupt high offset on sensor 3
* 24 : Interrupt low offset on sensor 3
*
* 23 : Interrupt hot threshold on sensor 3
* 22 : Interrupt cold threshold on sensor 3
* 21 : Interrupt using filter on sensor 2
* 20 : Interrupt using filter on sensor 1
*
* 19 : Interrupt using filter on sensor 0
* 18 : Interrupt using immediate on sensor 2
* 17 : Interrupt using immediate on sensor 1
* 16 : Interrupt using immediate on sensor 0
*
* 15 : Interrupt device access timeout interrupt
* 14 : Interrupt normal to hot on sensor 2
* 13 : Interrupt high offset interrupt on sensor 2
* 12 : Interrupt low offset interrupt on sensor 2
*
* 11 : Interrupt hot threshold on sensor 2
* 10 : Interrupt cold threshold on sensor 2
* 9 : Interrupt normal to hot on sensor 1
* 8 : Interrupt high offset interrupt on sensor 1
*
* 7 : Interrupt low offset interrupt on sensor 1
* 6 : Interrupt hot threshold on sensor 1
* 5 : Interrupt cold threshold on sensor 1
* 4 : Interrupt normal to hot on sensor 0
*
* 3 : Interrupt high offset interrupt on sensor 0
* 2 : Interrupt low offset interrupt on sensor 0
* 1 : Interrupt hot threshold on sensor 0
* 0 : Interrupt cold threshold on sensor 0
*
* We are interested in the sensor(s) responsible of the
* interrupt event. We update the thermal framework with the
* thermal zone associated with the sensor. The framework will
* take care of the rest whatever the kind of interrupt, we
* are only interested in which sensor raised the interrupt.
*
* sensor 3 interrupt: 0001 1111 1100 0000 0000 0000 0000 0000
* => 0x1FC00000
* sensor 2 interrupt: 0000 0000 0010 0100 0111 1100 0000 0000
* => 0x00247C00
* sensor 1 interrupt: 0000 0000 0001 0010 0000 0011 1110 0000
* => 0X001203E0
* sensor 0 interrupt: 0000 0000 0000 1001 0000 0000 0001 1111
* => 0x0009001F
*/
value = readl(LVTS_MONINTSTS(lvts_ctrl->base));
/*
* Let's figure out which sensors raised the interrupt
*
* NOTE: the masks array must be ordered with the index
* corresponding to the sensor id eg. index=0, mask for
* sensor0.
*/
for (i = 0; i < ARRAY_SIZE(masks); i++) {
if (!(value & masks[i]))
continue;
thermal_zone_device_update(lvts_ctrl->sensors[i].tz,
THERMAL_TRIP_VIOLATED);
iret = IRQ_HANDLED;
}
/*
* Write back to clear the interrupt status (W1C)
*/
writel(value, LVTS_MONINTSTS(lvts_ctrl->base));
return iret;
}
/*
* Temperature interrupt handler. Even if the driver supports more
* interrupt modes, we use the interrupt when the temperature crosses
* the hot threshold the way up and the way down (modulo the
* hysteresis).
*
* Each thermal domain has a couple of interrupts, one for hardware
* reset and another one for all the thermal events happening on the
* different sensors.
*
* The interrupt is configured for thermal events when crossing the
* hot temperature limit. At each interrupt, we check in every
* controller if there is an interrupt pending.
*/
static irqreturn_t lvts_irq_handler(int irq, void *data)
{
struct lvts_domain *lvts_td = data;
irqreturn_t aux, iret = IRQ_NONE;
int i;
for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
aux = lvts_ctrl_irq_handler(&lvts_td->lvts_ctrl[i]);
if (aux != IRQ_HANDLED)
continue;
iret = IRQ_HANDLED;
}
return iret;
}
static struct thermal_zone_device_ops lvts_ops = {
.get_temp = lvts_get_temp,
.set_trips = lvts_set_trips,
};
static int lvts_sensor_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
const struct lvts_ctrl_data *lvts_ctrl_data)
{
struct lvts_sensor *lvts_sensor = lvts_ctrl->sensors;
void __iomem *msr_regs[] = {
LVTS_MSR0(lvts_ctrl->base),
LVTS_MSR1(lvts_ctrl->base),
LVTS_MSR2(lvts_ctrl->base),
LVTS_MSR3(lvts_ctrl->base)
};
void __iomem *imm_regs[] = {
LVTS_IMMD0(lvts_ctrl->base),
LVTS_IMMD1(lvts_ctrl->base),
LVTS_IMMD2(lvts_ctrl->base),
LVTS_IMMD3(lvts_ctrl->base)
};
int i;
lvts_for_each_valid_sensor(i, lvts_ctrl_data) {
int dt_id = lvts_ctrl_data->lvts_sensor[i].dt_id;
/*
* At this point, we don't know which id matches which
* sensor. Let's set arbitrally the id from the index.
*/
lvts_sensor[i].id = i;
/*
* The thermal zone registration will set the trip
* point interrupt in the thermal controller
* register. But this one will be reset in the
* initialization after. So we need to post pone the
* thermal zone creation after the controller is
* setup. For this reason, we store the device tree
* node id from the data in the sensor structure
*/
lvts_sensor[i].dt_id = dt_id;
/*
* We assign the base address of the thermal
* controller as a back pointer. So it will be
* accessible from the different thermal framework ops
* as we pass the lvts_sensor pointer as thermal zone
* private data.
*/
lvts_sensor[i].base = lvts_ctrl->base;
/*
* Each sensor has its own register address to read from.
*/
lvts_sensor[i].msr = lvts_ctrl_data->mode == LVTS_MSR_IMMEDIATE_MODE ?
imm_regs[i] : msr_regs[i];
lvts_sensor[i].low_thresh = INT_MIN;
lvts_sensor[i].high_thresh = INT_MIN;
};
lvts_ctrl->valid_sensor_mask = lvts_ctrl_data->valid_sensor_mask;
return 0;
}
/*
* The efuse blob values follows the sensor enumeration per thermal
* controller. The decoding of the stream is as follow:
*
* MT8192 :
* Stream index map for MCU Domain mt8192 :
*
* <-----mcu-tc#0-----> <-----sensor#0-----> <-----sensor#1----->
* 0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09 | 0x0A | 0x0B
*
* <-----sensor#2-----> <-----sensor#3----->
* 0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12 | 0x13
*
* <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> <-----sensor#7----->
* 0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21 | 0x22 | 0x23
*
* Stream index map for AP Domain mt8192 :
*
* <-----sensor#0-----> <-----sensor#1----->
* 0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A | 0x2B
*
* <-----sensor#2-----> <-----sensor#3----->
* 0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
*
* <-----sensor#4-----> <-----sensor#5----->
* 0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B
*
* <-----sensor#6-----> <-----sensor#7-----> <-----sensor#8----->
* 0x3C | 0x3D | 0x3E | 0x3F | 0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47
*
* MT8195 :
* Stream index map for MCU Domain mt8195 :
*
* <-----mcu-tc#0-----> <-----sensor#0-----> <-----sensor#1----->
* 0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09
*
* <-----mcu-tc#1-----> <-----sensor#2-----> <-----sensor#3----->
* 0x0A | 0x0B | 0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12
*
* <-----mcu-tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> <-----sensor#7----->
* 0x13 | 0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21
*
* Stream index map for AP Domain mt8195 :
*
* <-----ap--tc#0-----> <-----sensor#0-----> <-----sensor#1----->
* 0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A
*
* <-----ap--tc#1-----> <-----sensor#2-----> <-----sensor#3----->
* 0x2B | 0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
*
* <-----ap--tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6----->
* 0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B | 0x3C | 0x3D | 0x3E | 0x3F
*
* <-----ap--tc#3-----> <-----sensor#7-----> <-----sensor#8----->
* 0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47 | 0x48
*
* Note: In some cases, values don't strictly follow a little endian ordering.
* The data description gives byte offsets constituting each calibration value
* for each sensor.
*/
static int lvts_calibration_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
const struct lvts_ctrl_data *lvts_ctrl_data,
u8 *efuse_calibration,
size_t calib_len)
{
int i;
u32 gt;
/* A zero value for gt means that device has invalid efuse data */
gt = (((u32 *)efuse_calibration)[0] >> lvts_ctrl->lvts_data->gt_calib_bit_offset) & 0xff;
lvts_for_each_valid_sensor(i, lvts_ctrl_data) {
const struct lvts_sensor_data *sensor =
&lvts_ctrl_data->lvts_sensor[i];
if (sensor->cal_offsets[0] >= calib_len ||
sensor->cal_offsets[1] >= calib_len ||
sensor->cal_offsets[2] >= calib_len)
return -EINVAL;
if (gt) {
lvts_ctrl->calibration[i] =
(efuse_calibration[sensor->cal_offsets[0]] << 0) +
(efuse_calibration[sensor->cal_offsets[1]] << 8) +
(efuse_calibration[sensor->cal_offsets[2]] << 16);
} else if (lvts_ctrl->lvts_data->def_calibration) {
lvts_ctrl->calibration[i] = lvts_ctrl->lvts_data->def_calibration;
} else {
dev_err(dev, "efuse contains invalid calibration data and no default given.\n");
return -ENODATA;
}
}
return 0;
}
/*
* The efuse bytes stream can be split into different chunk of
* nvmems. This function reads and concatenate those into a single
* buffer so it can be read sequentially when initializing the
* calibration data.
*/
static int lvts_calibration_read(struct device *dev, struct lvts_domain *lvts_td,
const struct lvts_data *lvts_data)
{
struct device_node *np = dev_of_node(dev);
struct nvmem_cell *cell;
struct property *prop;
const char *cell_name;
of_property_for_each_string(np, "nvmem-cell-names", prop, cell_name) {
size_t len;
u8 *efuse;
cell = of_nvmem_cell_get(np, cell_name);
if (IS_ERR(cell)) {
dev_err(dev, "Failed to get cell '%s'\n", cell_name);
return PTR_ERR(cell);
}
efuse = nvmem_cell_read(cell, &len);
nvmem_cell_put(cell);
if (IS_ERR(efuse)) {
dev_err(dev, "Failed to read cell '%s'\n", cell_name);
return PTR_ERR(efuse);
}
lvts_td->calib = devm_krealloc(dev, lvts_td->calib,
lvts_td->calib_len + len, GFP_KERNEL);
if (!lvts_td->calib) {
kfree(efuse);
return -ENOMEM;
}
memcpy(lvts_td->calib + lvts_td->calib_len, efuse, len);
lvts_td->calib_len += len;
kfree(efuse);
}
return 0;
}
static int lvts_golden_temp_init(struct device *dev, u8 *calib,
const struct lvts_data *lvts_data)
{
u32 gt;
/*
* The golden temp information is contained in the first 32-bit
* word of efuse data at a specific bit offset.
*/
gt = (((u32 *)calib)[0] >> lvts_data->gt_calib_bit_offset) & 0xff;
/* A zero value for gt means that device has invalid efuse data */
if (gt && gt < LVTS_GOLDEN_TEMP_MAX)
golden_temp = gt;
golden_temp_offset = golden_temp * 500 + lvts_data->temp_offset;
dev_info(dev, "%sgolden temp=%d\n", gt ? "" : "fake ", golden_temp);
return 0;
}
static int lvts_ctrl_init(struct device *dev, struct lvts_domain *lvts_td,
const struct lvts_data *lvts_data)
{
size_t size = sizeof(*lvts_td->lvts_ctrl) * lvts_data->num_lvts_ctrl;
struct lvts_ctrl *lvts_ctrl;
int i, ret;
/*
* Create the calibration bytes stream from efuse data
*/
ret = lvts_calibration_read(dev, lvts_td, lvts_data);
if (ret)
return ret;
ret = lvts_golden_temp_init(dev, lvts_td->calib, lvts_data);
if (ret)
return ret;
lvts_ctrl = devm_kzalloc(dev, size, GFP_KERNEL);
if (!lvts_ctrl)
return -ENOMEM;
for (i = 0; i < lvts_data->num_lvts_ctrl; i++) {
lvts_ctrl[i].base = lvts_td->base + lvts_data->lvts_ctrl[i].offset;
lvts_ctrl[i].lvts_data = lvts_data;
ret = lvts_sensor_init(dev, &lvts_ctrl[i],
&lvts_data->lvts_ctrl[i]);
if (ret)
return ret;
ret = lvts_calibration_init(dev, &lvts_ctrl[i],
&lvts_data->lvts_ctrl[i],
lvts_td->calib,
lvts_td->calib_len);
if (ret)
return ret;
/*
* The mode the ctrl will use to read the temperature
* (filtered or immediate)
*/
lvts_ctrl[i].mode = lvts_data->lvts_ctrl[i].mode;
/*
* The temperature to raw temperature must be done
* after initializing the calibration.
*/
lvts_ctrl[i].hw_tshut_raw_temp =
lvts_temp_to_raw(LVTS_HW_TSHUT_TEMP,
lvts_data->temp_factor);
lvts_ctrl[i].low_thresh = INT_MIN;
lvts_ctrl[i].high_thresh = INT_MIN;
}
/*
* We no longer need the efuse bytes stream, let's free it
*/
devm_kfree(dev, lvts_td->calib);
lvts_td->lvts_ctrl = lvts_ctrl;
lvts_td->num_lvts_ctrl = lvts_data->num_lvts_ctrl;
return 0;
}
/*
* At this point the configuration register is the only place in the
* driver where we write multiple values. Per hardware constraint,
* each write in the configuration register must be separated by a
* delay of 2 us.
*/
static void lvts_write_config(struct lvts_ctrl *lvts_ctrl, u32 *cmds, int nr_cmds)
{
int i;
/*
* Configuration register
*/
for (i = 0; i < nr_cmds; i++) {
writel(cmds[i], LVTS_CONFIG(lvts_ctrl->base));
usleep_range(2, 4);
}
}
static int lvts_irq_init(struct lvts_ctrl *lvts_ctrl)
{
/*
* LVTS_PROTCTL : Thermal Protection Sensor Selection
*
* Bits:
*
* 19-18 : Sensor to base the protection on
* 17-16 : Strategy:
* 00 : Average of 4 sensors
* 01 : Max of 4 sensors
* 10 : Selected sensor with bits 19-18
* 11 : Reserved
*/
writel(BIT(16), LVTS_PROTCTL(lvts_ctrl->base));
/*
* LVTS_PROTTA : Stage 1 temperature threshold
* LVTS_PROTTB : Stage 2 temperature threshold
* LVTS_PROTTC : Stage 3 temperature threshold
*
* Bits:
*
* 14-0: Raw temperature threshold
*
* writel(0x0, LVTS_PROTTA(lvts_ctrl->base));
* writel(0x0, LVTS_PROTTB(lvts_ctrl->base));
*/
writel(lvts_ctrl->hw_tshut_raw_temp, LVTS_PROTTC(lvts_ctrl->base));
/*
* LVTS_MONINT : Interrupt configuration register
*
* The LVTS_MONINT register layout is the same as the LVTS_MONINTSTS
* register, except we set the bits to enable the interrupt.
*/
writel(LVTS_MONINT_CONF, LVTS_MONINT(lvts_ctrl->base));
return 0;
}
static int lvts_domain_reset(struct device *dev, struct reset_control *reset)
{
int ret;
ret = reset_control_assert(reset);
if (ret)
return ret;
return reset_control_deassert(reset);
}
/*
* Enable or disable the clocks of a specified thermal controller
*/
static int lvts_ctrl_set_enable(struct lvts_ctrl *lvts_ctrl, int enable)
{
/*
* LVTS_CLKEN : Internal LVTS clock
*
* Bits:
*
* 0 : enable / disable clock
*/
writel(enable, LVTS_CLKEN(lvts_ctrl->base));
return 0;
}
static int lvts_ctrl_connect(struct device *dev, struct lvts_ctrl *lvts_ctrl)
{
u32 id, cmds[] = { 0xC103FFFF, 0xC502FF55 };
lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
/*
* LVTS_ID : Get ID and status of the thermal controller
*
* Bits:
*
* 0-5 : thermal controller id
* 7 : thermal controller connection is valid
*/
id = readl(LVTS_ID(lvts_ctrl->base));
if (!(id & BIT(7)))
return -EIO;
return 0;
}
static int lvts_ctrl_initialize(struct device *dev, struct lvts_ctrl *lvts_ctrl)
{
/*
* Write device mask: 0xC1030000
*/
u32 cmds[] = {
0xC1030E01, 0xC1030CFC, 0xC1030A8C, 0xC103098D, 0xC10308F1,
0xC10307A6, 0xC10306B8, 0xC1030500, 0xC1030420, 0xC1030300,
0xC1030030, 0xC10300F6, 0xC1030050, 0xC1030060, 0xC10300AC,
0xC10300FC, 0xC103009D, 0xC10300F1, 0xC10300E1
};
lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
return 0;
}
static int lvts_ctrl_calibrate(struct device *dev, struct lvts_ctrl *lvts_ctrl)
{
int i;
void __iomem *lvts_edata[] = {
LVTS_EDATA00(lvts_ctrl->base),
LVTS_EDATA01(lvts_ctrl->base),
LVTS_EDATA02(lvts_ctrl->base),
LVTS_EDATA03(lvts_ctrl->base)
};
/*
* LVTS_EDATA0X : Efuse calibration reference value for sensor X
*
* Bits:
*
* 20-0 : Efuse value for normalization data
*/
for (i = 0; i < LVTS_SENSOR_MAX; i++)
writel(lvts_ctrl->calibration[i], lvts_edata[i]);
return 0;
}
static int lvts_ctrl_configure(struct device *dev, struct lvts_ctrl *lvts_ctrl)
{
u32 value;
/*
* LVTS_TSSEL : Sensing point index numbering
*
* Bits:
*
* 31-24: ADC Sense 3
* 23-16: ADC Sense 2
* 15-8 : ADC Sense 1
* 7-0 : ADC Sense 0
*/
value = LVTS_TSSEL_CONF;
writel(value, LVTS_TSSEL(lvts_ctrl->base));
/*
* LVTS_CALSCALE : ADC voltage round
*/
value = 0x300;
value = LVTS_CALSCALE_CONF;
/*
* LVTS_MSRCTL0 : Sensor filtering strategy
*
* Filters:
*
* 000 : One sample
* 001 : Avg 2 samples
* 010 : 4 samples, drop min and max, avg 2 samples
* 011 : 6 samples, drop min and max, avg 4 samples
* 100 : 10 samples, drop min and max, avg 8 samples
* 101 : 18 samples, drop min and max, avg 16 samples
*
* Bits:
*
* 0-2 : Sensor0 filter
* 3-5 : Sensor1 filter
* 6-8 : Sensor2 filter
* 9-11 : Sensor3 filter
*/
value = LVTS_HW_FILTER << 9 | LVTS_HW_FILTER << 6 |
LVTS_HW_FILTER << 3 | LVTS_HW_FILTER;
writel(value, LVTS_MSRCTL0(lvts_ctrl->base));
/*
* LVTS_MONCTL1 : Period unit and group interval configuration
*
* The clock source of LVTS thermal controller is 26MHz.
*
* The period unit is a time base for all the interval delays
* specified in the registers. By default we use 12. The time
* conversion is done by multiplying by 256 and 1/26.10^6
*
* An interval delay multiplied by the period unit gives the
* duration in seconds.
*
* - Filter interval delay is a delay between two samples of
* the same sensor.
*
* - Sensor interval delay is a delay between two samples of
* different sensors.
*
* - Group interval delay is a delay between different rounds.
*
* For example:
* If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1,
* and two sensors, TS1 and TS2, are in a LVTS thermal controller
* and then
* Period unit time = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us
* Filter interval delay = 1 * Period unit = 118.149us
* Sensor interval delay = 2 * Period unit = 236.298us
* Group interval delay = 1 * Period unit = 118.149us
*
* TS1 TS1 ... TS1 TS2 TS2 ... TS2 TS1...
* <--> Filter interval delay
* <--> Sensor interval delay
* <--> Group interval delay
* Bits:
* 29 - 20 : Group interval
* 16 - 13 : Send a single interrupt when crossing the hot threshold (1)
* or an interrupt everytime the hot threshold is crossed (0)
* 9 - 0 : Period unit
*
*/
value = LVTS_GROUP_INTERVAL << 20 | LVTS_PERIOD_UNIT;
writel(value, LVTS_MONCTL1(lvts_ctrl->base));
/*
* LVTS_MONCTL2 : Filtering and sensor interval
*
* Bits:
*
* 25-16 : Interval unit in PERIOD_UNIT between sample on
* the same sensor, filter interval
* 9-0 : Interval unit in PERIOD_UNIT between each sensor
*
*/
value = LVTS_FILTER_INTERVAL << 16 | LVTS_SENSOR_INTERVAL;
writel(value, LVTS_MONCTL2(lvts_ctrl->base));
return lvts_irq_init(lvts_ctrl);
}
static int lvts_ctrl_start(struct device *dev, struct lvts_ctrl *lvts_ctrl)
{
struct lvts_sensor *lvts_sensors = lvts_ctrl->sensors;
struct thermal_zone_device *tz;
u32 sensor_map = 0;
int i;
/*
* Bitmaps to enable each sensor on immediate and filtered modes, as
* described in MSRCTL1 and MONCTL0 registers below, respectively.
*/
u32 sensor_imm_bitmap[] = { BIT(4), BIT(5), BIT(6), BIT(9) };
u32 sensor_filt_bitmap[] = { BIT(0), BIT(1), BIT(2), BIT(3) };
u32 *sensor_bitmap = lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE ?
sensor_imm_bitmap : sensor_filt_bitmap;
lvts_for_each_valid_sensor(i, lvts_ctrl) {
int dt_id = lvts_sensors[i].dt_id;
tz = devm_thermal_of_zone_register(dev, dt_id, &lvts_sensors[i],
&lvts_ops);
if (IS_ERR(tz)) {
/*
* This thermal zone is not described in the
* device tree. It is not an error from the
* thermal OF code POV, we just continue.
*/
if (PTR_ERR(tz) == -ENODEV)
continue;
return PTR_ERR(tz);
}
devm_thermal_add_hwmon_sysfs(dev, tz);
/*
* The thermal zone pointer will be needed in the
* interrupt handler, we store it in the sensor
* structure. The thermal domain structure will be
* passed to the interrupt handler private data as the
* interrupt is shared for all the controller
* belonging to the thermal domain.
*/
lvts_sensors[i].tz = tz;
/*
* This sensor was correctly associated with a thermal
* zone, let's set the corresponding bit in the sensor
* map, so we can enable the temperature monitoring in
* the hardware thermal controller.
*/
sensor_map |= sensor_bitmap[i];
}
/*
* The initialization of the thermal zones give us
* which sensor point to enable. If any thermal zone
* was not described in the device tree, it won't be
* enabled here in the sensor map.
*/
if (lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE) {
/*
* LVTS_MSRCTL1 : Measurement control
*
* Bits:
*
* 9: Ignore MSRCTL0 config and do immediate measurement on sensor3
* 6: Ignore MSRCTL0 config and do immediate measurement on sensor2
* 5: Ignore MSRCTL0 config and do immediate measurement on sensor1
* 4: Ignore MSRCTL0 config and do immediate measurement on sensor0
*
* That configuration will ignore the filtering and the delays
* introduced in MONCTL1 and MONCTL2
*/
writel(sensor_map, LVTS_MSRCTL1(lvts_ctrl->base));
} else {
/*
* Bits:
* 9: Single point access flow
* 0-3: Enable sensing point 0-3
*/
writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base));
}
return 0;
}
static int lvts_domain_init(struct device *dev, struct lvts_domain *lvts_td,
const struct lvts_data *lvts_data)
{
struct lvts_ctrl *lvts_ctrl;
int i, ret;
ret = lvts_ctrl_init(dev, lvts_td, lvts_data);
if (ret)
return ret;
ret = lvts_domain_reset(dev, lvts_td->reset);
if (ret) {
dev_dbg(dev, "Failed to reset domain");
return ret;
}
for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
lvts_ctrl = &lvts_td->lvts_ctrl[i];
/*
* Initialization steps:
*
* - Enable the clock
* - Connect to the LVTS
* - Initialize the LVTS
* - Prepare the calibration data
* - Select monitored sensors
* [ Configure sampling ]
* [ Configure the interrupt ]
* - Start measurement
*/
ret = lvts_ctrl_set_enable(lvts_ctrl, true);
if (ret) {
dev_dbg(dev, "Failed to enable LVTS clock");
return ret;
}
ret = lvts_ctrl_connect(dev, lvts_ctrl);
if (ret) {
dev_dbg(dev, "Failed to connect to LVTS controller");
return ret;
}
ret = lvts_ctrl_initialize(dev, lvts_ctrl);
if (ret) {
dev_dbg(dev, "Failed to initialize controller");
return ret;
}
ret = lvts_ctrl_calibrate(dev, lvts_ctrl);
if (ret) {
dev_dbg(dev, "Failed to calibrate controller");
return ret;
}
ret = lvts_ctrl_configure(dev, lvts_ctrl);
if (ret) {
dev_dbg(dev, "Failed to configure controller");
return ret;
}
ret = lvts_ctrl_start(dev, lvts_ctrl);
if (ret) {
dev_dbg(dev, "Failed to start controller");
return ret;
}
}
return lvts_debugfs_init(dev, lvts_td);
}
static int lvts_probe(struct platform_device *pdev)
{
const struct lvts_data *lvts_data;
struct lvts_domain *lvts_td;
struct device *dev = &pdev->dev;
struct resource *res;
int irq, ret;
lvts_td = devm_kzalloc(dev, sizeof(*lvts_td), GFP_KERNEL);
if (!lvts_td)
return -ENOMEM;
lvts_data = of_device_get_match_data(dev);
if (!lvts_data)
return -ENODEV;
lvts_td->clk = devm_clk_get_enabled(dev, NULL);
if (IS_ERR(lvts_td->clk))
return dev_err_probe(dev, PTR_ERR(lvts_td->clk), "Failed to retrieve clock\n");
res = platform_get_mem_or_io(pdev, 0);
if (!res)
return dev_err_probe(dev, (-ENXIO), "No IO resource\n");
lvts_td->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(lvts_td->base))
return dev_err_probe(dev, PTR_ERR(lvts_td->base), "Failed to map io resource\n");
lvts_td->reset = devm_reset_control_get_by_index(dev, 0);
if (IS_ERR(lvts_td->reset))
return dev_err_probe(dev, PTR_ERR(lvts_td->reset), "Failed to get reset control\n");
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
golden_temp_offset = lvts_data->temp_offset;
ret = lvts_domain_init(dev, lvts_td, lvts_data);
if (ret)
return dev_err_probe(dev, ret, "Failed to initialize the lvts domain\n");
/*
* At this point the LVTS is initialized and enabled. We can
* safely enable the interrupt.
*/
ret = devm_request_threaded_irq(dev, irq, NULL, lvts_irq_handler,
IRQF_ONESHOT, dev_name(dev), lvts_td);
if (ret)
return dev_err_probe(dev, ret, "Failed to request interrupt\n");
platform_set_drvdata(pdev, lvts_td);
return 0;
}
static void lvts_remove(struct platform_device *pdev)
{
struct lvts_domain *lvts_td;
int i;
lvts_td = platform_get_drvdata(pdev);
for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
lvts_debugfs_exit(lvts_td);
}
static const struct lvts_ctrl_data mt7988_lvts_ap_data_ctrl[] = {
{
.lvts_sensor = {
{ .dt_id = MT7988_CPU_0,
.cal_offsets = { 0x00, 0x01, 0x02 } },
{ .dt_id = MT7988_CPU_1,
.cal_offsets = { 0x04, 0x05, 0x06 } },
{ .dt_id = MT7988_ETH2P5G_0,
.cal_offsets = { 0x08, 0x09, 0x0a } },
{ .dt_id = MT7988_ETH2P5G_1,
.cal_offsets = { 0x0c, 0x0d, 0x0e } }
},
VALID_SENSOR_MAP(1, 1, 1, 1),
.offset = 0x0,
},
{
.lvts_sensor = {
{ .dt_id = MT7988_TOPS_0,
.cal_offsets = { 0x14, 0x15, 0x16 } },
{ .dt_id = MT7988_TOPS_1,
.cal_offsets = { 0x18, 0x19, 0x1a } },
{ .dt_id = MT7988_ETHWARP_0,
.cal_offsets = { 0x1c, 0x1d, 0x1e } },
{ .dt_id = MT7988_ETHWARP_1,
.cal_offsets = { 0x20, 0x21, 0x22 } }
},
VALID_SENSOR_MAP(1, 1, 1, 1),
.offset = 0x100,
}
};
static int lvts_suspend(struct device *dev)
{
struct lvts_domain *lvts_td;
int i;
lvts_td = dev_get_drvdata(dev);
for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
clk_disable_unprepare(lvts_td->clk);
return 0;
}
static int lvts_resume(struct device *dev)
{
struct lvts_domain *lvts_td;
int i, ret;
lvts_td = dev_get_drvdata(dev);
ret = clk_prepare_enable(lvts_td->clk);
if (ret)
return ret;
for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], true);
return 0;
}
/*
* The MT8186 calibration data is stored as packed 3-byte little-endian
* values using a weird layout that makes sense only when viewed as a 32-bit
* hexadecimal word dump. Let's suppose SxBy where x = sensor number and
* y = byte number where the LSB is y=0. We then have:
*
* [S0B2-S0B1-S0B0-S1B2] [S1B1-S1B0-S2B2-S2B1] [S2B0-S3B2-S3B1-S3B0]
*
* However, when considering a byte stream, those appear as follows:
*
* [S1B2] [S0B0[ [S0B1] [S0B2] [S2B1] [S2B2] [S1B0] [S1B1] [S3B0] [S3B1] [S3B2] [S2B0]
*
* Hence the rather confusing offsets provided below.
*/
static const struct lvts_ctrl_data mt8186_lvts_data_ctrl[] = {
{
.lvts_sensor = {
{ .dt_id = MT8186_LITTLE_CPU0,
.cal_offsets = { 5, 6, 7 } },
{ .dt_id = MT8186_LITTLE_CPU1,
.cal_offsets = { 10, 11, 4 } },
{ .dt_id = MT8186_LITTLE_CPU2,
.cal_offsets = { 15, 8, 9 } },
{ .dt_id = MT8186_CAM,
.cal_offsets = { 12, 13, 14 } }
},
VALID_SENSOR_MAP(1, 1, 1, 1),
.offset = 0x0,
},
{
.lvts_sensor = {
{ .dt_id = MT8186_BIG_CPU0,
.cal_offsets = { 22, 23, 16 } },
{ .dt_id = MT8186_BIG_CPU1,
.cal_offsets = { 27, 20, 21 } }
},
VALID_SENSOR_MAP(1, 1, 0, 0),
.offset = 0x100,
},
{
.lvts_sensor = {
{ .dt_id = MT8186_NNA,
.cal_offsets = { 29, 30, 31 } },
{ .dt_id = MT8186_ADSP,
.cal_offsets = { 34, 35, 28 } },
{ .dt_id = MT8186_GPU,
.cal_offsets = { 39, 32, 33 } }
},
VALID_SENSOR_MAP(1, 1, 1, 0),
.offset = 0x200,
}
};
static const struct lvts_ctrl_data mt8188_lvts_mcu_data_ctrl[] = {
{
.lvts_sensor = {
{ .dt_id = MT8188_MCU_LITTLE_CPU0,
.cal_offsets = { 22, 23, 24 } },
{ .dt_id = MT8188_MCU_LITTLE_CPU1,
.cal_offsets = { 25, 26, 27 } },
{ .dt_id = MT8188_MCU_LITTLE_CPU2,
.cal_offsets = { 28, 29, 30 } },
{ .dt_id = MT8188_MCU_LITTLE_CPU3,
.cal_offsets = { 31, 32, 33 } },
},
VALID_SENSOR_MAP(1, 1, 1, 1),
.offset = 0x0,
},
{
.lvts_sensor = {
{ .dt_id = MT8188_MCU_BIG_CPU0,
.cal_offsets = { 34, 35, 36 } },
{ .dt_id = MT8188_MCU_BIG_CPU1,
.cal_offsets = { 37, 38, 39 } },
},
VALID_SENSOR_MAP(1, 1, 0, 0),
.offset = 0x100,
}
};
static const struct lvts_ctrl_data mt8188_lvts_ap_data_ctrl[] = {
{
.lvts_sensor = {
{ /* unused */ },
{ .dt_id = MT8188_AP_APU,
.cal_offsets = { 40, 41, 42 } },
},
VALID_SENSOR_MAP(0, 1, 0, 0),
.offset = 0x0,
},
{
.lvts_sensor = {
{ .dt_id = MT8188_AP_GPU0,
.cal_offsets = { 43, 44, 45 } },
{ .dt_id = MT8188_AP_GPU1,
.cal_offsets = { 46, 47, 48 } },
{ .dt_id = MT8188_AP_ADSP,
.cal_offsets = { 49, 50, 51 } },
},
VALID_SENSOR_MAP(1, 1, 1, 0),
.offset = 0x100,
},
{
.lvts_sensor = {
{ .dt_id = MT8188_AP_VDO,
.cal_offsets = { 52, 53, 54 } },
{ .dt_id = MT8188_AP_INFRA,
.cal_offsets = { 55, 56, 57 } },
},
VALID_SENSOR_MAP(1, 1, 0, 0),
.offset = 0x200,
},
{
.lvts_sensor = {
{ .dt_id = MT8188_AP_CAM1,
.cal_offsets = { 58, 59, 60 } },
{ .dt_id = MT8188_AP_CAM2,
.cal_offsets = { 61, 62, 63 } },
},
VALID_SENSOR_MAP(1, 1, 0, 0),
.offset = 0x300,
}
};
static const struct lvts_ctrl_data mt8192_lvts_mcu_data_ctrl[] = {
{
.lvts_sensor = {
{ .dt_id = MT8192_MCU_BIG_CPU0,
.cal_offsets = { 0x04, 0x05, 0x06 } },
{ .dt_id = MT8192_MCU_BIG_CPU1,
.cal_offsets = { 0x08, 0x09, 0x0a } }
},
VALID_SENSOR_MAP(1, 1, 0, 0),
.offset = 0x0,
.mode = LVTS_MSR_FILTERED_MODE,
},
{
.lvts_sensor = {
{ .dt_id = MT8192_MCU_BIG_CPU2,
.cal_offsets = { 0x0c, 0x0d, 0x0e } },
{ .dt_id = MT8192_MCU_BIG_CPU3,
.cal_offsets = { 0x10, 0x11, 0x12 } }
},
VALID_SENSOR_MAP(1, 1, 0, 0),
.offset = 0x100,
.mode = LVTS_MSR_FILTERED_MODE,
},
{
.lvts_sensor = {
{ .dt_id = MT8192_MCU_LITTLE_CPU0,
.cal_offsets = { 0x14, 0x15, 0x16 } },
{ .dt_id = MT8192_MCU_LITTLE_CPU1,
.cal_offsets = { 0x18, 0x19, 0x1a } },
{ .dt_id = MT8192_MCU_LITTLE_CPU2,
.cal_offsets = { 0x1c, 0x1d, 0x1e } },
{ .dt_id = MT8192_MCU_LITTLE_CPU3,
.cal_offsets = { 0x20, 0x21, 0x22 } }
},
VALID_SENSOR_MAP(1, 1, 1, 1),
.offset = 0x200,
.mode = LVTS_MSR_FILTERED_MODE,
}
};
static const struct lvts_ctrl_data mt8192_lvts_ap_data_ctrl[] = {
{
.lvts_sensor = {
{ .dt_id = MT8192_AP_VPU0,
.cal_offsets = { 0x24, 0x25, 0x26 } },
{ .dt_id = MT8192_AP_VPU1,
.cal_offsets = { 0x28, 0x29, 0x2a } }
},
VALID_SENSOR_MAP(1, 1, 0, 0),
.offset = 0x0,
},
{
.lvts_sensor = {
{ .dt_id = MT8192_AP_GPU0,
.cal_offsets = { 0x2c, 0x2d, 0x2e } },
{ .dt_id = MT8192_AP_GPU1,
.cal_offsets = { 0x30, 0x31, 0x32 } }
},
VALID_SENSOR_MAP(1, 1, 0, 0),
.offset = 0x100,
},
{
.lvts_sensor = {
{ .dt_id = MT8192_AP_INFRA,
.cal_offsets = { 0x34, 0x35, 0x36 } },
{ .dt_id = MT8192_AP_CAM,
.cal_offsets = { 0x38, 0x39, 0x3a } },
},
VALID_SENSOR_MAP(1, 1, 0, 0),
.offset = 0x200,
},
{
.lvts_sensor = {
{ .dt_id = MT8192_AP_MD0,
.cal_offsets = { 0x3c, 0x3d, 0x3e } },
{ .dt_id = MT8192_AP_MD1,
.cal_offsets = { 0x40, 0x41, 0x42 } },
{ .dt_id = MT8192_AP_MD2,
.cal_offsets = { 0x44, 0x45, 0x46 } }
},
VALID_SENSOR_MAP(1, 1, 1, 0),
.offset = 0x300,
}
};
static const struct lvts_ctrl_data mt8195_lvts_mcu_data_ctrl[] = {
{
.lvts_sensor = {
{ .dt_id = MT8195_MCU_BIG_CPU0,
.cal_offsets = { 0x04, 0x05, 0x06 } },
{ .dt_id = MT8195_MCU_BIG_CPU1,
.cal_offsets = { 0x07, 0x08, 0x09 } }
},
VALID_SENSOR_MAP(1, 1, 0, 0),
.offset = 0x0,
},
{
.lvts_sensor = {
{ .dt_id = MT8195_MCU_BIG_CPU2,
.cal_offsets = { 0x0d, 0x0e, 0x0f } },
{ .dt_id = MT8195_MCU_BIG_CPU3,
.cal_offsets = { 0x10, 0x11, 0x12 } }
},
VALID_SENSOR_MAP(1, 1, 0, 0),
.offset = 0x100,
},
{
.lvts_sensor = {
{ .dt_id = MT8195_MCU_LITTLE_CPU0,
.cal_offsets = { 0x16, 0x17, 0x18 } },
{ .dt_id = MT8195_MCU_LITTLE_CPU1,
.cal_offsets = { 0x19, 0x1a, 0x1b } },
{ .dt_id = MT8195_MCU_LITTLE_CPU2,
.cal_offsets = { 0x1c, 0x1d, 0x1e } },
{ .dt_id = MT8195_MCU_LITTLE_CPU3,
.cal_offsets = { 0x1f, 0x20, 0x21 } }
},
VALID_SENSOR_MAP(1, 1, 1, 1),
.offset = 0x200,
}
};
static const struct lvts_ctrl_data mt8195_lvts_ap_data_ctrl[] = {
{
.lvts_sensor = {
{ .dt_id = MT8195_AP_VPU0,
.cal_offsets = { 0x25, 0x26, 0x27 } },
{ .dt_id = MT8195_AP_VPU1,
.cal_offsets = { 0x28, 0x29, 0x2a } }
},
VALID_SENSOR_MAP(1, 1, 0, 0),
.offset = 0x0,
},
{
.lvts_sensor = {
{ .dt_id = MT8195_AP_GPU0,
.cal_offsets = { 0x2e, 0x2f, 0x30 } },
{ .dt_id = MT8195_AP_GPU1,
.cal_offsets = { 0x31, 0x32, 0x33 } }
},
VALID_SENSOR_MAP(1, 1, 0, 0),
.offset = 0x100,
},
{
.lvts_sensor = {
{ .dt_id = MT8195_AP_VDEC,
.cal_offsets = { 0x37, 0x38, 0x39 } },
{ .dt_id = MT8195_AP_IMG,
.cal_offsets = { 0x3a, 0x3b, 0x3c } },
{ .dt_id = MT8195_AP_INFRA,
.cal_offsets = { 0x3d, 0x3e, 0x3f } }
},
VALID_SENSOR_MAP(1, 1, 1, 0),
.offset = 0x200,
},
{
.lvts_sensor = {
{ .dt_id = MT8195_AP_CAM0,
.cal_offsets = { 0x43, 0x44, 0x45 } },
{ .dt_id = MT8195_AP_CAM1,
.cal_offsets = { 0x46, 0x47, 0x48 } }
},
VALID_SENSOR_MAP(1, 1, 0, 0),
.offset = 0x300,
}
};
static const struct lvts_data mt7988_lvts_ap_data = {
.lvts_ctrl = mt7988_lvts_ap_data_ctrl,
.num_lvts_ctrl = ARRAY_SIZE(mt7988_lvts_ap_data_ctrl),
.temp_factor = LVTS_COEFF_A_MT7988,
.temp_offset = LVTS_COEFF_B_MT7988,
.gt_calib_bit_offset = 24,
};
static const struct lvts_data mt8186_lvts_data = {
.lvts_ctrl = mt8186_lvts_data_ctrl,
.num_lvts_ctrl = ARRAY_SIZE(mt8186_lvts_data_ctrl),
.temp_factor = LVTS_COEFF_A_MT7988,
.temp_offset = LVTS_COEFF_B_MT7988,
.gt_calib_bit_offset = 24,
.def_calibration = 19000,
};
static const struct lvts_data mt8188_lvts_mcu_data = {
.lvts_ctrl = mt8188_lvts_mcu_data_ctrl,
.num_lvts_ctrl = ARRAY_SIZE(mt8188_lvts_mcu_data_ctrl),
.temp_factor = LVTS_COEFF_A_MT8195,
.temp_offset = LVTS_COEFF_B_MT8195,
.gt_calib_bit_offset = 20,
.def_calibration = 35000,
};
static const struct lvts_data mt8188_lvts_ap_data = {
.lvts_ctrl = mt8188_lvts_ap_data_ctrl,
.num_lvts_ctrl = ARRAY_SIZE(mt8188_lvts_ap_data_ctrl),
.temp_factor = LVTS_COEFF_A_MT8195,
.temp_offset = LVTS_COEFF_B_MT8195,
.gt_calib_bit_offset = 20,
.def_calibration = 35000,
};
static const struct lvts_data mt8192_lvts_mcu_data = {
.lvts_ctrl = mt8192_lvts_mcu_data_ctrl,
.num_lvts_ctrl = ARRAY_SIZE(mt8192_lvts_mcu_data_ctrl),
.temp_factor = LVTS_COEFF_A_MT8195,
.temp_offset = LVTS_COEFF_B_MT8195,
.gt_calib_bit_offset = 24,
.def_calibration = 35000,
};
static const struct lvts_data mt8192_lvts_ap_data = {
.lvts_ctrl = mt8192_lvts_ap_data_ctrl,
.num_lvts_ctrl = ARRAY_SIZE(mt8192_lvts_ap_data_ctrl),
.temp_factor = LVTS_COEFF_A_MT8195,
.temp_offset = LVTS_COEFF_B_MT8195,
.gt_calib_bit_offset = 24,
.def_calibration = 35000,
};
static const struct lvts_data mt8195_lvts_mcu_data = {
.lvts_ctrl = mt8195_lvts_mcu_data_ctrl,
.num_lvts_ctrl = ARRAY_SIZE(mt8195_lvts_mcu_data_ctrl),
.temp_factor = LVTS_COEFF_A_MT8195,
.temp_offset = LVTS_COEFF_B_MT8195,
.gt_calib_bit_offset = 24,
.def_calibration = 35000,
};
static const struct lvts_data mt8195_lvts_ap_data = {
.lvts_ctrl = mt8195_lvts_ap_data_ctrl,
.num_lvts_ctrl = ARRAY_SIZE(mt8195_lvts_ap_data_ctrl),
.temp_factor = LVTS_COEFF_A_MT8195,
.temp_offset = LVTS_COEFF_B_MT8195,
.gt_calib_bit_offset = 24,
.def_calibration = 35000,
};
static const struct of_device_id lvts_of_match[] = {
{ .compatible = "mediatek,mt7988-lvts-ap", .data = &mt7988_lvts_ap_data },
{ .compatible = "mediatek,mt8186-lvts", .data = &mt8186_lvts_data },
{ .compatible = "mediatek,mt8188-lvts-mcu", .data = &mt8188_lvts_mcu_data },
{ .compatible = "mediatek,mt8188-lvts-ap", .data = &mt8188_lvts_ap_data },
{ .compatible = "mediatek,mt8192-lvts-mcu", .data = &mt8192_lvts_mcu_data },
{ .compatible = "mediatek,mt8192-lvts-ap", .data = &mt8192_lvts_ap_data },
{ .compatible = "mediatek,mt8195-lvts-mcu", .data = &mt8195_lvts_mcu_data },
{ .compatible = "mediatek,mt8195-lvts-ap", .data = &mt8195_lvts_ap_data },
{},
};
MODULE_DEVICE_TABLE(of, lvts_of_match);
static const struct dev_pm_ops lvts_pm_ops = {
NOIRQ_SYSTEM_SLEEP_PM_OPS(lvts_suspend, lvts_resume)
};
static struct platform_driver lvts_driver = {
.probe = lvts_probe,
.remove_new = lvts_remove,
.driver = {
.name = "mtk-lvts-thermal",
.of_match_table = lvts_of_match,
.pm = &lvts_pm_ops,
},
};
module_platform_driver(lvts_driver);
MODULE_AUTHOR("Balsam CHIHI <bchihi@baylibre.com>");
MODULE_DESCRIPTION("MediaTek LVTS Thermal Driver");
MODULE_LICENSE("GPL");