1
linux/arch/x86/kernel/cpu/mshyperv.c

657 lines
18 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* HyperV Detection code.
*
* Copyright (C) 2010, Novell, Inc.
* Author : K. Y. Srinivasan <ksrinivasan@novell.com>
*/
#include <linux/types.h>
#include <linux/time.h>
#include <linux/clocksource.h>
#include <linux/init.h>
#include <linux/export.h>
#include <linux/hardirq.h>
#include <linux/efi.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kexec.h>
clocksource/drivers: Make Hyper-V clocksource ISA agnostic Hyper-V clock/timer code and data structures are currently mixed in with other code in the ISA independent drivers/hv directory as well as the ISA dependent Hyper-V code under arch/x86. Consolidate this code and data structures into a Hyper-V clocksource driver to better follow the Linux model. In doing so, separate out the ISA dependent portions so the new clocksource driver works for x86 and for the in-process Hyper-V on ARM64 code. To start, move the existing clockevents code to create the new clocksource driver. Update the VMbus driver to call initialization and cleanup routines since the Hyper-V synthetic timers are not independently enumerated in ACPI. No behavior is changed and no new functionality is added. Suggested-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Michael Kelley <mikelley@microsoft.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: "bp@alien8.de" <bp@alien8.de> Cc: "will.deacon@arm.com" <will.deacon@arm.com> Cc: "catalin.marinas@arm.com" <catalin.marinas@arm.com> Cc: "mark.rutland@arm.com" <mark.rutland@arm.com> Cc: "linux-arm-kernel@lists.infradead.org" <linux-arm-kernel@lists.infradead.org> Cc: "gregkh@linuxfoundation.org" <gregkh@linuxfoundation.org> Cc: "linux-hyperv@vger.kernel.org" <linux-hyperv@vger.kernel.org> Cc: "olaf@aepfle.de" <olaf@aepfle.de> Cc: "apw@canonical.com" <apw@canonical.com> Cc: "jasowang@redhat.com" <jasowang@redhat.com> Cc: "marcelo.cerri@canonical.com" <marcelo.cerri@canonical.com> Cc: Sunil Muthuswamy <sunilmut@microsoft.com> Cc: KY Srinivasan <kys@microsoft.com> Cc: "sashal@kernel.org" <sashal@kernel.org> Cc: "vincenzo.frascino@arm.com" <vincenzo.frascino@arm.com> Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org> Cc: "linux-mips@vger.kernel.org" <linux-mips@vger.kernel.org> Cc: "linux-kselftest@vger.kernel.org" <linux-kselftest@vger.kernel.org> Cc: "arnd@arndb.de" <arnd@arndb.de> Cc: "linux@armlinux.org.uk" <linux@armlinux.org.uk> Cc: "ralf@linux-mips.org" <ralf@linux-mips.org> Cc: "paul.burton@mips.com" <paul.burton@mips.com> Cc: "daniel.lezcano@linaro.org" <daniel.lezcano@linaro.org> Cc: "salyzyn@android.com" <salyzyn@android.com> Cc: "pcc@google.com" <pcc@google.com> Cc: "shuah@kernel.org" <shuah@kernel.org> Cc: "0x7f454c46@gmail.com" <0x7f454c46@gmail.com> Cc: "linux@rasmusvillemoes.dk" <linux@rasmusvillemoes.dk> Cc: "huw@codeweavers.com" <huw@codeweavers.com> Cc: "sfr@canb.auug.org.au" <sfr@canb.auug.org.au> Cc: "pbonzini@redhat.com" <pbonzini@redhat.com> Cc: "rkrcmar@redhat.com" <rkrcmar@redhat.com> Cc: "kvm@vger.kernel.org" <kvm@vger.kernel.org> Link: https://lkml.kernel.org/r/1561955054-1838-2-git-send-email-mikelley@microsoft.com
2019-06-30 21:25:56 -07:00
#include <linux/random.h>
#include <asm/processor.h>
#include <asm/hypervisor.h>
#include <asm/hyperv-tlfs.h>
#include <asm/mshyperv.h>
#include <asm/desc.h>
#include <asm/idtentry.h>
#include <asm/irq_regs.h>
#include <asm/i8259.h>
#include <asm/apic.h>
#include <asm/timer.h>
#include <asm/reboot.h>
x86/hyperv: Handle unknown NMIs on one CPU when unknown_nmi_panic There is a feature in Hyper-V ('Debug-VM --InjectNonMaskableInterrupt') which injects NMI to the guest. We may want to crash the guest and do kdump on this NMI by enabling unknown_nmi_panic. To make kdump succeed we need to allow the kdump kernel to re-establish VMBus connection so it will see VMBus devices (storage, network,..). To properly unload VMBus making it possible to start over during kdump we need to do the following: - Send an 'unload' message to the hypervisor. This can be done on any CPU so we do this the crashing CPU. - Receive the 'unload finished' reply message. WS2012R2 delivers this message to the CPU which was used to establish VMBus connection during module load and this CPU may differ from the CPU sending 'unload'. Receiving a VMBus message means the following: - There is a per-CPU slot in memory for one message. This slot can in theory be accessed by any CPU. - We get an interrupt on the CPU when a message was placed into the slot. - When we read the message we need to clear the slot and signal the fact to the hypervisor. In case there are more messages to this CPU pending the hypervisor will deliver the next message. The signaling is done by writing to an MSR so this can only be done on the appropriate CPU. To avoid doing cross-CPU work on crash we have vmbus_wait_for_unload() function which checks message slots for all CPUs in a loop waiting for the 'unload finished' messages. However, there is an issue which arises when these conditions are met: - We're crashing on a CPU which is different from the one which was used to initially contact the hypervisor. - The CPU which was used for the initial contact is blocked with interrupts disabled and there is a message pending in the message slot. In this case we won't be able to read the 'unload finished' message on the crashing CPU. This is reproducible when we receive unknown NMIs on all CPUs simultaneously: the first CPU entering panic() will proceed to crash and all other CPUs will stop themselves with interrupts disabled. The suggested solution is to handle unknown NMIs for Hyper-V guests on the first CPU which gets them only. This will allow us to rely on VMBus interrupt handler being able to receive the 'unload finish' message in case it is delivered to a different CPU. The issue is not reproducible on WS2016 as Debug-VM delivers NMI to the boot CPU only, WS2012R2 and earlier Hyper-V versions are affected. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Acked-by: K. Y. Srinivasan <kys@microsoft.com> Cc: devel@linuxdriverproject.org Cc: Haiyang Zhang <haiyangz@microsoft.com> Link: http://lkml.kernel.org/r/20161202100720.28121-1-vkuznets@redhat.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-12-02 03:07:20 -07:00
#include <asm/nmi.h>
#include <clocksource/hyperv_timer.h>
#include <asm/numa.h>
#include <asm/svm.h>
/* Is Linux running as the root partition? */
bool hv_root_partition;
/* Is Linux running on nested Microsoft Hypervisor */
bool hv_nested;
struct ms_hyperv_info ms_hyperv;
x86/hyperv: Introduce a global variable hyperv_paravisor_present The new variable hyperv_paravisor_present is set only when the VM is a SNP/TDX VM with the paravisor running: see ms_hyperv_init_platform(). We introduce hyperv_paravisor_present because we can not use ms_hyperv.paravisor_present in arch/x86/include/asm/mshyperv.h: struct ms_hyperv_info is defined in include/asm-generic/mshyperv.h, which is included at the end of arch/x86/include/asm/mshyperv.h, but at the beginning of arch/x86/include/asm/mshyperv.h, we would already need to use struct ms_hyperv_info in hv_do_hypercall(). We use hyperv_paravisor_present only in include/asm-generic/mshyperv.h, and use ms_hyperv.paravisor_present elsewhere. In the future, we'll introduce a hypercall function structure for different VM types, and at boot time, the right function pointers would be written into the structure so that runtime testing of TDX vs. SNP vs. normal will be avoided and hyperv_paravisor_present will no longer be needed. Call hv_vtom_init() when it's a VBS VM or when ms_hyperv.paravisor_present is true, i.e. the VM is a SNP VM or TDX VM with the paravisor. Enhance hv_vtom_init() for a TDX VM with the paravisor. In hv_common_cpu_init(), don't decrypt the hyperv_pcpu_input_arg for a TDX VM with the paravisor, just like we don't decrypt the page for a SNP VM with the paravisor. Signed-off-by: Dexuan Cui <decui@microsoft.com> Reviewed-by: Tianyu Lan <tiala@microsoft.com> Reviewed-by: Michael Kelley <mikelley@microsoft.com> Signed-off-by: Wei Liu <wei.liu@kernel.org> Link: https://lore.kernel.org/r/20230824080712.30327-7-decui@microsoft.com
2023-08-24 01:07:08 -07:00
/* Used in modules via hv_do_hypercall(): see arch/x86/include/asm/mshyperv.h */
bool hyperv_paravisor_present __ro_after_init;
EXPORT_SYMBOL_GPL(hyperv_paravisor_present);
#if IS_ENABLED(CONFIG_HYPERV)
hyperv-tlfs: Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_* The HV_REGISTER_ are used as arguments to hv_set/get_register(), which delegate to arch-specific mechanisms for getting/setting synthetic Hyper-V MSRs. On arm64, HV_REGISTER_ defines are synthetic VP registers accessed via the get/set vp registers hypercalls. The naming matches the TLFS document, although these register names are not specific to arm64. However, on x86 the prefix HV_REGISTER_ indicates Hyper-V MSRs accessed via rdmsrl()/wrmsrl(). This is not consistent with the TLFS doc, where HV_REGISTER_ is *only* used for used for VP register names used by the get/set register hypercalls. To fix this inconsistency and prevent future confusion, change the arch-generic aliases used by callers of hv_set/get_register() to have the prefix HV_MSR_ instead of HV_REGISTER_. Use the prefix HV_X64_MSR_ for the x86-only Hyper-V MSRs. On x86, the generic HV_MSR_'s point to the corresponding HV_X64_MSR_. Move the arm64 HV_REGISTER_* defines to the asm-generic hyperv-tlfs.h, since these are not specific to arm64. On arm64, the generic HV_MSR_'s point to the corresponding HV_REGISTER_. While at it, rename hv_get/set_registers() and related functions to hv_get/set_msr(), hv_get/set_nested_msr(), etc. These are only used for Hyper-V MSRs and this naming makes that clear. Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com> Reviewed-by: Wei Liu <wei.liu@kernel.org> Reviewed-by: Michael Kelley <mhklinux@outlook.com> Link: https://lore.kernel.org/r/1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com>
2024-02-20 07:55:33 -07:00
static inline unsigned int hv_get_nested_msr(unsigned int reg)
{
hyperv-tlfs: Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_* The HV_REGISTER_ are used as arguments to hv_set/get_register(), which delegate to arch-specific mechanisms for getting/setting synthetic Hyper-V MSRs. On arm64, HV_REGISTER_ defines are synthetic VP registers accessed via the get/set vp registers hypercalls. The naming matches the TLFS document, although these register names are not specific to arm64. However, on x86 the prefix HV_REGISTER_ indicates Hyper-V MSRs accessed via rdmsrl()/wrmsrl(). This is not consistent with the TLFS doc, where HV_REGISTER_ is *only* used for used for VP register names used by the get/set register hypercalls. To fix this inconsistency and prevent future confusion, change the arch-generic aliases used by callers of hv_set/get_register() to have the prefix HV_MSR_ instead of HV_REGISTER_. Use the prefix HV_X64_MSR_ for the x86-only Hyper-V MSRs. On x86, the generic HV_MSR_'s point to the corresponding HV_X64_MSR_. Move the arm64 HV_REGISTER_* defines to the asm-generic hyperv-tlfs.h, since these are not specific to arm64. On arm64, the generic HV_MSR_'s point to the corresponding HV_REGISTER_. While at it, rename hv_get/set_registers() and related functions to hv_get/set_msr(), hv_get/set_nested_msr(), etc. These are only used for Hyper-V MSRs and this naming makes that clear. Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com> Reviewed-by: Wei Liu <wei.liu@kernel.org> Reviewed-by: Michael Kelley <mhklinux@outlook.com> Link: https://lore.kernel.org/r/1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com>
2024-02-20 07:55:33 -07:00
if (hv_is_sint_msr(reg))
return reg - HV_X64_MSR_SINT0 + HV_X64_MSR_NESTED_SINT0;
switch (reg) {
hyperv-tlfs: Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_* The HV_REGISTER_ are used as arguments to hv_set/get_register(), which delegate to arch-specific mechanisms for getting/setting synthetic Hyper-V MSRs. On arm64, HV_REGISTER_ defines are synthetic VP registers accessed via the get/set vp registers hypercalls. The naming matches the TLFS document, although these register names are not specific to arm64. However, on x86 the prefix HV_REGISTER_ indicates Hyper-V MSRs accessed via rdmsrl()/wrmsrl(). This is not consistent with the TLFS doc, where HV_REGISTER_ is *only* used for used for VP register names used by the get/set register hypercalls. To fix this inconsistency and prevent future confusion, change the arch-generic aliases used by callers of hv_set/get_register() to have the prefix HV_MSR_ instead of HV_REGISTER_. Use the prefix HV_X64_MSR_ for the x86-only Hyper-V MSRs. On x86, the generic HV_MSR_'s point to the corresponding HV_X64_MSR_. Move the arm64 HV_REGISTER_* defines to the asm-generic hyperv-tlfs.h, since these are not specific to arm64. On arm64, the generic HV_MSR_'s point to the corresponding HV_REGISTER_. While at it, rename hv_get/set_registers() and related functions to hv_get/set_msr(), hv_get/set_nested_msr(), etc. These are only used for Hyper-V MSRs and this naming makes that clear. Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com> Reviewed-by: Wei Liu <wei.liu@kernel.org> Reviewed-by: Michael Kelley <mhklinux@outlook.com> Link: https://lore.kernel.org/r/1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com>
2024-02-20 07:55:33 -07:00
case HV_X64_MSR_SIMP:
return HV_X64_MSR_NESTED_SIMP;
case HV_X64_MSR_SIEFP:
return HV_X64_MSR_NESTED_SIEFP;
case HV_X64_MSR_SVERSION:
return HV_X64_MSR_NESTED_SVERSION;
case HV_X64_MSR_SCONTROL:
return HV_X64_MSR_NESTED_SCONTROL;
case HV_X64_MSR_EOM:
return HV_X64_MSR_NESTED_EOM;
default:
return reg;
}
}
hyperv-tlfs: Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_* The HV_REGISTER_ are used as arguments to hv_set/get_register(), which delegate to arch-specific mechanisms for getting/setting synthetic Hyper-V MSRs. On arm64, HV_REGISTER_ defines are synthetic VP registers accessed via the get/set vp registers hypercalls. The naming matches the TLFS document, although these register names are not specific to arm64. However, on x86 the prefix HV_REGISTER_ indicates Hyper-V MSRs accessed via rdmsrl()/wrmsrl(). This is not consistent with the TLFS doc, where HV_REGISTER_ is *only* used for used for VP register names used by the get/set register hypercalls. To fix this inconsistency and prevent future confusion, change the arch-generic aliases used by callers of hv_set/get_register() to have the prefix HV_MSR_ instead of HV_REGISTER_. Use the prefix HV_X64_MSR_ for the x86-only Hyper-V MSRs. On x86, the generic HV_MSR_'s point to the corresponding HV_X64_MSR_. Move the arm64 HV_REGISTER_* defines to the asm-generic hyperv-tlfs.h, since these are not specific to arm64. On arm64, the generic HV_MSR_'s point to the corresponding HV_REGISTER_. While at it, rename hv_get/set_registers() and related functions to hv_get/set_msr(), hv_get/set_nested_msr(), etc. These are only used for Hyper-V MSRs and this naming makes that clear. Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com> Reviewed-by: Wei Liu <wei.liu@kernel.org> Reviewed-by: Michael Kelley <mhklinux@outlook.com> Link: https://lore.kernel.org/r/1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com>
2024-02-20 07:55:33 -07:00
u64 hv_get_non_nested_msr(unsigned int reg)
{
u64 value;
hyperv-tlfs: Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_* The HV_REGISTER_ are used as arguments to hv_set/get_register(), which delegate to arch-specific mechanisms for getting/setting synthetic Hyper-V MSRs. On arm64, HV_REGISTER_ defines are synthetic VP registers accessed via the get/set vp registers hypercalls. The naming matches the TLFS document, although these register names are not specific to arm64. However, on x86 the prefix HV_REGISTER_ indicates Hyper-V MSRs accessed via rdmsrl()/wrmsrl(). This is not consistent with the TLFS doc, where HV_REGISTER_ is *only* used for used for VP register names used by the get/set register hypercalls. To fix this inconsistency and prevent future confusion, change the arch-generic aliases used by callers of hv_set/get_register() to have the prefix HV_MSR_ instead of HV_REGISTER_. Use the prefix HV_X64_MSR_ for the x86-only Hyper-V MSRs. On x86, the generic HV_MSR_'s point to the corresponding HV_X64_MSR_. Move the arm64 HV_REGISTER_* defines to the asm-generic hyperv-tlfs.h, since these are not specific to arm64. On arm64, the generic HV_MSR_'s point to the corresponding HV_REGISTER_. While at it, rename hv_get/set_registers() and related functions to hv_get/set_msr(), hv_get/set_nested_msr(), etc. These are only used for Hyper-V MSRs and this naming makes that clear. Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com> Reviewed-by: Wei Liu <wei.liu@kernel.org> Reviewed-by: Michael Kelley <mhklinux@outlook.com> Link: https://lore.kernel.org/r/1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com>
2024-02-20 07:55:33 -07:00
if (hv_is_synic_msr(reg) && ms_hyperv.paravisor_present)
hv_ivm_msr_read(reg, &value);
else
rdmsrl(reg, value);
return value;
}
hyperv-tlfs: Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_* The HV_REGISTER_ are used as arguments to hv_set/get_register(), which delegate to arch-specific mechanisms for getting/setting synthetic Hyper-V MSRs. On arm64, HV_REGISTER_ defines are synthetic VP registers accessed via the get/set vp registers hypercalls. The naming matches the TLFS document, although these register names are not specific to arm64. However, on x86 the prefix HV_REGISTER_ indicates Hyper-V MSRs accessed via rdmsrl()/wrmsrl(). This is not consistent with the TLFS doc, where HV_REGISTER_ is *only* used for used for VP register names used by the get/set register hypercalls. To fix this inconsistency and prevent future confusion, change the arch-generic aliases used by callers of hv_set/get_register() to have the prefix HV_MSR_ instead of HV_REGISTER_. Use the prefix HV_X64_MSR_ for the x86-only Hyper-V MSRs. On x86, the generic HV_MSR_'s point to the corresponding HV_X64_MSR_. Move the arm64 HV_REGISTER_* defines to the asm-generic hyperv-tlfs.h, since these are not specific to arm64. On arm64, the generic HV_MSR_'s point to the corresponding HV_REGISTER_. While at it, rename hv_get/set_registers() and related functions to hv_get/set_msr(), hv_get/set_nested_msr(), etc. These are only used for Hyper-V MSRs and this naming makes that clear. Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com> Reviewed-by: Wei Liu <wei.liu@kernel.org> Reviewed-by: Michael Kelley <mhklinux@outlook.com> Link: https://lore.kernel.org/r/1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com>
2024-02-20 07:55:33 -07:00
EXPORT_SYMBOL_GPL(hv_get_non_nested_msr);
hyperv-tlfs: Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_* The HV_REGISTER_ are used as arguments to hv_set/get_register(), which delegate to arch-specific mechanisms for getting/setting synthetic Hyper-V MSRs. On arm64, HV_REGISTER_ defines are synthetic VP registers accessed via the get/set vp registers hypercalls. The naming matches the TLFS document, although these register names are not specific to arm64. However, on x86 the prefix HV_REGISTER_ indicates Hyper-V MSRs accessed via rdmsrl()/wrmsrl(). This is not consistent with the TLFS doc, where HV_REGISTER_ is *only* used for used for VP register names used by the get/set register hypercalls. To fix this inconsistency and prevent future confusion, change the arch-generic aliases used by callers of hv_set/get_register() to have the prefix HV_MSR_ instead of HV_REGISTER_. Use the prefix HV_X64_MSR_ for the x86-only Hyper-V MSRs. On x86, the generic HV_MSR_'s point to the corresponding HV_X64_MSR_. Move the arm64 HV_REGISTER_* defines to the asm-generic hyperv-tlfs.h, since these are not specific to arm64. On arm64, the generic HV_MSR_'s point to the corresponding HV_REGISTER_. While at it, rename hv_get/set_registers() and related functions to hv_get/set_msr(), hv_get/set_nested_msr(), etc. These are only used for Hyper-V MSRs and this naming makes that clear. Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com> Reviewed-by: Wei Liu <wei.liu@kernel.org> Reviewed-by: Michael Kelley <mhklinux@outlook.com> Link: https://lore.kernel.org/r/1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com>
2024-02-20 07:55:33 -07:00
void hv_set_non_nested_msr(unsigned int reg, u64 value)
{
hyperv-tlfs: Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_* The HV_REGISTER_ are used as arguments to hv_set/get_register(), which delegate to arch-specific mechanisms for getting/setting synthetic Hyper-V MSRs. On arm64, HV_REGISTER_ defines are synthetic VP registers accessed via the get/set vp registers hypercalls. The naming matches the TLFS document, although these register names are not specific to arm64. However, on x86 the prefix HV_REGISTER_ indicates Hyper-V MSRs accessed via rdmsrl()/wrmsrl(). This is not consistent with the TLFS doc, where HV_REGISTER_ is *only* used for used for VP register names used by the get/set register hypercalls. To fix this inconsistency and prevent future confusion, change the arch-generic aliases used by callers of hv_set/get_register() to have the prefix HV_MSR_ instead of HV_REGISTER_. Use the prefix HV_X64_MSR_ for the x86-only Hyper-V MSRs. On x86, the generic HV_MSR_'s point to the corresponding HV_X64_MSR_. Move the arm64 HV_REGISTER_* defines to the asm-generic hyperv-tlfs.h, since these are not specific to arm64. On arm64, the generic HV_MSR_'s point to the corresponding HV_REGISTER_. While at it, rename hv_get/set_registers() and related functions to hv_get/set_msr(), hv_get/set_nested_msr(), etc. These are only used for Hyper-V MSRs and this naming makes that clear. Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com> Reviewed-by: Wei Liu <wei.liu@kernel.org> Reviewed-by: Michael Kelley <mhklinux@outlook.com> Link: https://lore.kernel.org/r/1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com>
2024-02-20 07:55:33 -07:00
if (hv_is_synic_msr(reg) && ms_hyperv.paravisor_present) {
hv_ivm_msr_write(reg, value);
/* Write proxy bit via wrmsl instruction */
hyperv-tlfs: Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_* The HV_REGISTER_ are used as arguments to hv_set/get_register(), which delegate to arch-specific mechanisms for getting/setting synthetic Hyper-V MSRs. On arm64, HV_REGISTER_ defines are synthetic VP registers accessed via the get/set vp registers hypercalls. The naming matches the TLFS document, although these register names are not specific to arm64. However, on x86 the prefix HV_REGISTER_ indicates Hyper-V MSRs accessed via rdmsrl()/wrmsrl(). This is not consistent with the TLFS doc, where HV_REGISTER_ is *only* used for used for VP register names used by the get/set register hypercalls. To fix this inconsistency and prevent future confusion, change the arch-generic aliases used by callers of hv_set/get_register() to have the prefix HV_MSR_ instead of HV_REGISTER_. Use the prefix HV_X64_MSR_ for the x86-only Hyper-V MSRs. On x86, the generic HV_MSR_'s point to the corresponding HV_X64_MSR_. Move the arm64 HV_REGISTER_* defines to the asm-generic hyperv-tlfs.h, since these are not specific to arm64. On arm64, the generic HV_MSR_'s point to the corresponding HV_REGISTER_. While at it, rename hv_get/set_registers() and related functions to hv_get/set_msr(), hv_get/set_nested_msr(), etc. These are only used for Hyper-V MSRs and this naming makes that clear. Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com> Reviewed-by: Wei Liu <wei.liu@kernel.org> Reviewed-by: Michael Kelley <mhklinux@outlook.com> Link: https://lore.kernel.org/r/1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com>
2024-02-20 07:55:33 -07:00
if (hv_is_sint_msr(reg))
wrmsrl(reg, value | 1 << 20);
} else {
wrmsrl(reg, value);
}
}
hyperv-tlfs: Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_* The HV_REGISTER_ are used as arguments to hv_set/get_register(), which delegate to arch-specific mechanisms for getting/setting synthetic Hyper-V MSRs. On arm64, HV_REGISTER_ defines are synthetic VP registers accessed via the get/set vp registers hypercalls. The naming matches the TLFS document, although these register names are not specific to arm64. However, on x86 the prefix HV_REGISTER_ indicates Hyper-V MSRs accessed via rdmsrl()/wrmsrl(). This is not consistent with the TLFS doc, where HV_REGISTER_ is *only* used for used for VP register names used by the get/set register hypercalls. To fix this inconsistency and prevent future confusion, change the arch-generic aliases used by callers of hv_set/get_register() to have the prefix HV_MSR_ instead of HV_REGISTER_. Use the prefix HV_X64_MSR_ for the x86-only Hyper-V MSRs. On x86, the generic HV_MSR_'s point to the corresponding HV_X64_MSR_. Move the arm64 HV_REGISTER_* defines to the asm-generic hyperv-tlfs.h, since these are not specific to arm64. On arm64, the generic HV_MSR_'s point to the corresponding HV_REGISTER_. While at it, rename hv_get/set_registers() and related functions to hv_get/set_msr(), hv_get/set_nested_msr(), etc. These are only used for Hyper-V MSRs and this naming makes that clear. Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com> Reviewed-by: Wei Liu <wei.liu@kernel.org> Reviewed-by: Michael Kelley <mhklinux@outlook.com> Link: https://lore.kernel.org/r/1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com>
2024-02-20 07:55:33 -07:00
EXPORT_SYMBOL_GPL(hv_set_non_nested_msr);
hyperv-tlfs: Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_* The HV_REGISTER_ are used as arguments to hv_set/get_register(), which delegate to arch-specific mechanisms for getting/setting synthetic Hyper-V MSRs. On arm64, HV_REGISTER_ defines are synthetic VP registers accessed via the get/set vp registers hypercalls. The naming matches the TLFS document, although these register names are not specific to arm64. However, on x86 the prefix HV_REGISTER_ indicates Hyper-V MSRs accessed via rdmsrl()/wrmsrl(). This is not consistent with the TLFS doc, where HV_REGISTER_ is *only* used for used for VP register names used by the get/set register hypercalls. To fix this inconsistency and prevent future confusion, change the arch-generic aliases used by callers of hv_set/get_register() to have the prefix HV_MSR_ instead of HV_REGISTER_. Use the prefix HV_X64_MSR_ for the x86-only Hyper-V MSRs. On x86, the generic HV_MSR_'s point to the corresponding HV_X64_MSR_. Move the arm64 HV_REGISTER_* defines to the asm-generic hyperv-tlfs.h, since these are not specific to arm64. On arm64, the generic HV_MSR_'s point to the corresponding HV_REGISTER_. While at it, rename hv_get/set_registers() and related functions to hv_get/set_msr(), hv_get/set_nested_msr(), etc. These are only used for Hyper-V MSRs and this naming makes that clear. Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com> Reviewed-by: Wei Liu <wei.liu@kernel.org> Reviewed-by: Michael Kelley <mhklinux@outlook.com> Link: https://lore.kernel.org/r/1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com>
2024-02-20 07:55:33 -07:00
u64 hv_get_msr(unsigned int reg)
{
if (hv_nested)
hyperv-tlfs: Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_* The HV_REGISTER_ are used as arguments to hv_set/get_register(), which delegate to arch-specific mechanisms for getting/setting synthetic Hyper-V MSRs. On arm64, HV_REGISTER_ defines are synthetic VP registers accessed via the get/set vp registers hypercalls. The naming matches the TLFS document, although these register names are not specific to arm64. However, on x86 the prefix HV_REGISTER_ indicates Hyper-V MSRs accessed via rdmsrl()/wrmsrl(). This is not consistent with the TLFS doc, where HV_REGISTER_ is *only* used for used for VP register names used by the get/set register hypercalls. To fix this inconsistency and prevent future confusion, change the arch-generic aliases used by callers of hv_set/get_register() to have the prefix HV_MSR_ instead of HV_REGISTER_. Use the prefix HV_X64_MSR_ for the x86-only Hyper-V MSRs. On x86, the generic HV_MSR_'s point to the corresponding HV_X64_MSR_. Move the arm64 HV_REGISTER_* defines to the asm-generic hyperv-tlfs.h, since these are not specific to arm64. On arm64, the generic HV_MSR_'s point to the corresponding HV_REGISTER_. While at it, rename hv_get/set_registers() and related functions to hv_get/set_msr(), hv_get/set_nested_msr(), etc. These are only used for Hyper-V MSRs and this naming makes that clear. Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com> Reviewed-by: Wei Liu <wei.liu@kernel.org> Reviewed-by: Michael Kelley <mhklinux@outlook.com> Link: https://lore.kernel.org/r/1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com>
2024-02-20 07:55:33 -07:00
reg = hv_get_nested_msr(reg);
hyperv-tlfs: Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_* The HV_REGISTER_ are used as arguments to hv_set/get_register(), which delegate to arch-specific mechanisms for getting/setting synthetic Hyper-V MSRs. On arm64, HV_REGISTER_ defines are synthetic VP registers accessed via the get/set vp registers hypercalls. The naming matches the TLFS document, although these register names are not specific to arm64. However, on x86 the prefix HV_REGISTER_ indicates Hyper-V MSRs accessed via rdmsrl()/wrmsrl(). This is not consistent with the TLFS doc, where HV_REGISTER_ is *only* used for used for VP register names used by the get/set register hypercalls. To fix this inconsistency and prevent future confusion, change the arch-generic aliases used by callers of hv_set/get_register() to have the prefix HV_MSR_ instead of HV_REGISTER_. Use the prefix HV_X64_MSR_ for the x86-only Hyper-V MSRs. On x86, the generic HV_MSR_'s point to the corresponding HV_X64_MSR_. Move the arm64 HV_REGISTER_* defines to the asm-generic hyperv-tlfs.h, since these are not specific to arm64. On arm64, the generic HV_MSR_'s point to the corresponding HV_REGISTER_. While at it, rename hv_get/set_registers() and related functions to hv_get/set_msr(), hv_get/set_nested_msr(), etc. These are only used for Hyper-V MSRs and this naming makes that clear. Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com> Reviewed-by: Wei Liu <wei.liu@kernel.org> Reviewed-by: Michael Kelley <mhklinux@outlook.com> Link: https://lore.kernel.org/r/1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com>
2024-02-20 07:55:33 -07:00
return hv_get_non_nested_msr(reg);
}
hyperv-tlfs: Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_* The HV_REGISTER_ are used as arguments to hv_set/get_register(), which delegate to arch-specific mechanisms for getting/setting synthetic Hyper-V MSRs. On arm64, HV_REGISTER_ defines are synthetic VP registers accessed via the get/set vp registers hypercalls. The naming matches the TLFS document, although these register names are not specific to arm64. However, on x86 the prefix HV_REGISTER_ indicates Hyper-V MSRs accessed via rdmsrl()/wrmsrl(). This is not consistent with the TLFS doc, where HV_REGISTER_ is *only* used for used for VP register names used by the get/set register hypercalls. To fix this inconsistency and prevent future confusion, change the arch-generic aliases used by callers of hv_set/get_register() to have the prefix HV_MSR_ instead of HV_REGISTER_. Use the prefix HV_X64_MSR_ for the x86-only Hyper-V MSRs. On x86, the generic HV_MSR_'s point to the corresponding HV_X64_MSR_. Move the arm64 HV_REGISTER_* defines to the asm-generic hyperv-tlfs.h, since these are not specific to arm64. On arm64, the generic HV_MSR_'s point to the corresponding HV_REGISTER_. While at it, rename hv_get/set_registers() and related functions to hv_get/set_msr(), hv_get/set_nested_msr(), etc. These are only used for Hyper-V MSRs and this naming makes that clear. Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com> Reviewed-by: Wei Liu <wei.liu@kernel.org> Reviewed-by: Michael Kelley <mhklinux@outlook.com> Link: https://lore.kernel.org/r/1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com>
2024-02-20 07:55:33 -07:00
EXPORT_SYMBOL_GPL(hv_get_msr);
hyperv-tlfs: Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_* The HV_REGISTER_ are used as arguments to hv_set/get_register(), which delegate to arch-specific mechanisms for getting/setting synthetic Hyper-V MSRs. On arm64, HV_REGISTER_ defines are synthetic VP registers accessed via the get/set vp registers hypercalls. The naming matches the TLFS document, although these register names are not specific to arm64. However, on x86 the prefix HV_REGISTER_ indicates Hyper-V MSRs accessed via rdmsrl()/wrmsrl(). This is not consistent with the TLFS doc, where HV_REGISTER_ is *only* used for used for VP register names used by the get/set register hypercalls. To fix this inconsistency and prevent future confusion, change the arch-generic aliases used by callers of hv_set/get_register() to have the prefix HV_MSR_ instead of HV_REGISTER_. Use the prefix HV_X64_MSR_ for the x86-only Hyper-V MSRs. On x86, the generic HV_MSR_'s point to the corresponding HV_X64_MSR_. Move the arm64 HV_REGISTER_* defines to the asm-generic hyperv-tlfs.h, since these are not specific to arm64. On arm64, the generic HV_MSR_'s point to the corresponding HV_REGISTER_. While at it, rename hv_get/set_registers() and related functions to hv_get/set_msr(), hv_get/set_nested_msr(), etc. These are only used for Hyper-V MSRs and this naming makes that clear. Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com> Reviewed-by: Wei Liu <wei.liu@kernel.org> Reviewed-by: Michael Kelley <mhklinux@outlook.com> Link: https://lore.kernel.org/r/1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com>
2024-02-20 07:55:33 -07:00
void hv_set_msr(unsigned int reg, u64 value)
{
if (hv_nested)
hyperv-tlfs: Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_* The HV_REGISTER_ are used as arguments to hv_set/get_register(), which delegate to arch-specific mechanisms for getting/setting synthetic Hyper-V MSRs. On arm64, HV_REGISTER_ defines are synthetic VP registers accessed via the get/set vp registers hypercalls. The naming matches the TLFS document, although these register names are not specific to arm64. However, on x86 the prefix HV_REGISTER_ indicates Hyper-V MSRs accessed via rdmsrl()/wrmsrl(). This is not consistent with the TLFS doc, where HV_REGISTER_ is *only* used for used for VP register names used by the get/set register hypercalls. To fix this inconsistency and prevent future confusion, change the arch-generic aliases used by callers of hv_set/get_register() to have the prefix HV_MSR_ instead of HV_REGISTER_. Use the prefix HV_X64_MSR_ for the x86-only Hyper-V MSRs. On x86, the generic HV_MSR_'s point to the corresponding HV_X64_MSR_. Move the arm64 HV_REGISTER_* defines to the asm-generic hyperv-tlfs.h, since these are not specific to arm64. On arm64, the generic HV_MSR_'s point to the corresponding HV_REGISTER_. While at it, rename hv_get/set_registers() and related functions to hv_get/set_msr(), hv_get/set_nested_msr(), etc. These are only used for Hyper-V MSRs and this naming makes that clear. Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com> Reviewed-by: Wei Liu <wei.liu@kernel.org> Reviewed-by: Michael Kelley <mhklinux@outlook.com> Link: https://lore.kernel.org/r/1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com>
2024-02-20 07:55:33 -07:00
reg = hv_get_nested_msr(reg);
hyperv-tlfs: Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_* The HV_REGISTER_ are used as arguments to hv_set/get_register(), which delegate to arch-specific mechanisms for getting/setting synthetic Hyper-V MSRs. On arm64, HV_REGISTER_ defines are synthetic VP registers accessed via the get/set vp registers hypercalls. The naming matches the TLFS document, although these register names are not specific to arm64. However, on x86 the prefix HV_REGISTER_ indicates Hyper-V MSRs accessed via rdmsrl()/wrmsrl(). This is not consistent with the TLFS doc, where HV_REGISTER_ is *only* used for used for VP register names used by the get/set register hypercalls. To fix this inconsistency and prevent future confusion, change the arch-generic aliases used by callers of hv_set/get_register() to have the prefix HV_MSR_ instead of HV_REGISTER_. Use the prefix HV_X64_MSR_ for the x86-only Hyper-V MSRs. On x86, the generic HV_MSR_'s point to the corresponding HV_X64_MSR_. Move the arm64 HV_REGISTER_* defines to the asm-generic hyperv-tlfs.h, since these are not specific to arm64. On arm64, the generic HV_MSR_'s point to the corresponding HV_REGISTER_. While at it, rename hv_get/set_registers() and related functions to hv_get/set_msr(), hv_get/set_nested_msr(), etc. These are only used for Hyper-V MSRs and this naming makes that clear. Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com> Reviewed-by: Wei Liu <wei.liu@kernel.org> Reviewed-by: Michael Kelley <mhklinux@outlook.com> Link: https://lore.kernel.org/r/1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com>
2024-02-20 07:55:33 -07:00
hv_set_non_nested_msr(reg, value);
}
hyperv-tlfs: Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_* The HV_REGISTER_ are used as arguments to hv_set/get_register(), which delegate to arch-specific mechanisms for getting/setting synthetic Hyper-V MSRs. On arm64, HV_REGISTER_ defines are synthetic VP registers accessed via the get/set vp registers hypercalls. The naming matches the TLFS document, although these register names are not specific to arm64. However, on x86 the prefix HV_REGISTER_ indicates Hyper-V MSRs accessed via rdmsrl()/wrmsrl(). This is not consistent with the TLFS doc, where HV_REGISTER_ is *only* used for used for VP register names used by the get/set register hypercalls. To fix this inconsistency and prevent future confusion, change the arch-generic aliases used by callers of hv_set/get_register() to have the prefix HV_MSR_ instead of HV_REGISTER_. Use the prefix HV_X64_MSR_ for the x86-only Hyper-V MSRs. On x86, the generic HV_MSR_'s point to the corresponding HV_X64_MSR_. Move the arm64 HV_REGISTER_* defines to the asm-generic hyperv-tlfs.h, since these are not specific to arm64. On arm64, the generic HV_MSR_'s point to the corresponding HV_REGISTER_. While at it, rename hv_get/set_registers() and related functions to hv_get/set_msr(), hv_get/set_nested_msr(), etc. These are only used for Hyper-V MSRs and this naming makes that clear. Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com> Reviewed-by: Wei Liu <wei.liu@kernel.org> Reviewed-by: Michael Kelley <mhklinux@outlook.com> Link: https://lore.kernel.org/r/1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com>
2024-02-20 07:55:33 -07:00
EXPORT_SYMBOL_GPL(hv_set_msr);
static void (*vmbus_handler)(void);
static void (*hv_stimer0_handler)(void);
static void (*hv_kexec_handler)(void);
static void (*hv_crash_handler)(struct pt_regs *regs);
DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_callback)
{
struct pt_regs *old_regs = set_irq_regs(regs);
inc_irq_stat(irq_hv_callback_count);
if (vmbus_handler)
vmbus_handler();
if (ms_hyperv.hints & HV_DEPRECATING_AEOI_RECOMMENDED)
apic_eoi();
set_irq_regs(old_regs);
}
void hv_setup_vmbus_handler(void (*handler)(void))
{
vmbus_handler = handler;
}
void hv_remove_vmbus_handler(void)
{
/* We have no way to deallocate the interrupt gate */
vmbus_handler = NULL;
}
/*
* Routines to do per-architecture handling of stimer0
* interrupts when in Direct Mode
*/
DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_stimer0)
{
struct pt_regs *old_regs = set_irq_regs(regs);
inc_irq_stat(hyperv_stimer0_count);
if (hv_stimer0_handler)
hv_stimer0_handler();
add_interrupt_randomness(HYPERV_STIMER0_VECTOR);
apic_eoi();
set_irq_regs(old_regs);
}
/* For x86/x64, override weak placeholders in hyperv_timer.c */
void hv_setup_stimer0_handler(void (*handler)(void))
{
hv_stimer0_handler = handler;
}
void hv_remove_stimer0_handler(void)
{
/* We have no way to deallocate the interrupt gate */
hv_stimer0_handler = NULL;
}
void hv_setup_kexec_handler(void (*handler)(void))
{
hv_kexec_handler = handler;
}
void hv_remove_kexec_handler(void)
{
hv_kexec_handler = NULL;
}
void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs))
{
hv_crash_handler = handler;
}
void hv_remove_crash_handler(void)
{
hv_crash_handler = NULL;
}
#ifdef CONFIG_KEXEC_CORE
static void hv_machine_shutdown(void)
{
if (kexec_in_progress && hv_kexec_handler)
hv_kexec_handler();
/*
* Call hv_cpu_die() on all the CPUs, otherwise later the hypervisor
* corrupts the old VP Assist Pages and can crash the kexec kernel.
*/
x86/hyperv: fix kexec crash due to VP assist page corruption commit 9636be85cc5b ("x86/hyperv: Fix hyperv_pcpu_input_arg handling when CPUs go online/offline") introduces a new cpuhp state for hyperv initialization. cpuhp_setup_state() returns the state number if state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN and 0 for all other states. For the hyperv case, since a new cpuhp state was introduced it would return 0. However, in hv_machine_shutdown(), the cpuhp_remove_state() call is conditioned upon "hyperv_init_cpuhp > 0". This will never be true and so hv_cpu_die() won't be called on all CPUs. This means the VP assist page won't be reset. When the kexec kernel tries to setup the VP assist page again, the hypervisor corrupts the memory region of the old VP assist page causing a panic in case the kexec kernel is using that memory elsewhere. This was originally fixed in commit dfe94d4086e4 ("x86/hyperv: Fix kexec panic/hang issues"). Get rid of hyperv_init_cpuhp entirely since we are no longer using a dynamic cpuhp state and use CPUHP_AP_HYPERV_ONLINE directly with cpuhp_remove_state(). Cc: stable@vger.kernel.org Fixes: 9636be85cc5b ("x86/hyperv: Fix hyperv_pcpu_input_arg handling when CPUs go online/offline") Signed-off-by: Anirudh Rayabharam (Microsoft) <anirudh@anirudhrb.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Michael Kelley <mhklinux@outlook.com> Link: https://lore.kernel.org/r/20240828112158.3538342-1-anirudh@anirudhrb.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <20240828112158.3538342-1-anirudh@anirudhrb.com>
2024-08-28 04:21:56 -07:00
if (kexec_in_progress)
cpuhp_remove_state(CPUHP_AP_HYPERV_ONLINE);
/* The function calls stop_other_cpus(). */
native_machine_shutdown();
/* Disable the hypercall page when there is only 1 active CPU. */
if (kexec_in_progress)
hyperv_cleanup();
}
#endif /* CONFIG_KEXEC_CORE */
#ifdef CONFIG_CRASH_DUMP
static void hv_machine_crash_shutdown(struct pt_regs *regs)
{
if (hv_crash_handler)
hv_crash_handler(regs);
/* The function calls crash_smp_send_stop(). */
native_machine_crash_shutdown(regs);
/* Disable the hypercall page when there is only 1 active CPU. */
hyperv_cleanup();
}
#endif /* CONFIG_CRASH_DUMP */
#endif /* CONFIG_HYPERV */
static uint32_t __init ms_hyperv_platform(void)
{
u32 eax;
u32 hyp_signature[3];
if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
return 0;
cpuid(HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS,
&eax, &hyp_signature[0], &hyp_signature[1], &hyp_signature[2]);
if (eax < HYPERV_CPUID_MIN || eax > HYPERV_CPUID_MAX ||
memcmp("Microsoft Hv", hyp_signature, 12))
return 0;
/* HYPERCALL and VP_INDEX MSRs are mandatory for all features. */
eax = cpuid_eax(HYPERV_CPUID_FEATURES);
if (!(eax & HV_MSR_HYPERCALL_AVAILABLE)) {
pr_warn("x86/hyperv: HYPERCALL MSR not available.\n");
return 0;
}
if (!(eax & HV_MSR_VP_INDEX_AVAILABLE)) {
pr_warn("x86/hyperv: VP_INDEX MSR not available.\n");
return 0;
}
return HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
}
x86/hyperv: Handle unknown NMIs on one CPU when unknown_nmi_panic There is a feature in Hyper-V ('Debug-VM --InjectNonMaskableInterrupt') which injects NMI to the guest. We may want to crash the guest and do kdump on this NMI by enabling unknown_nmi_panic. To make kdump succeed we need to allow the kdump kernel to re-establish VMBus connection so it will see VMBus devices (storage, network,..). To properly unload VMBus making it possible to start over during kdump we need to do the following: - Send an 'unload' message to the hypervisor. This can be done on any CPU so we do this the crashing CPU. - Receive the 'unload finished' reply message. WS2012R2 delivers this message to the CPU which was used to establish VMBus connection during module load and this CPU may differ from the CPU sending 'unload'. Receiving a VMBus message means the following: - There is a per-CPU slot in memory for one message. This slot can in theory be accessed by any CPU. - We get an interrupt on the CPU when a message was placed into the slot. - When we read the message we need to clear the slot and signal the fact to the hypervisor. In case there are more messages to this CPU pending the hypervisor will deliver the next message. The signaling is done by writing to an MSR so this can only be done on the appropriate CPU. To avoid doing cross-CPU work on crash we have vmbus_wait_for_unload() function which checks message slots for all CPUs in a loop waiting for the 'unload finished' messages. However, there is an issue which arises when these conditions are met: - We're crashing on a CPU which is different from the one which was used to initially contact the hypervisor. - The CPU which was used for the initial contact is blocked with interrupts disabled and there is a message pending in the message slot. In this case we won't be able to read the 'unload finished' message on the crashing CPU. This is reproducible when we receive unknown NMIs on all CPUs simultaneously: the first CPU entering panic() will proceed to crash and all other CPUs will stop themselves with interrupts disabled. The suggested solution is to handle unknown NMIs for Hyper-V guests on the first CPU which gets them only. This will allow us to rely on VMBus interrupt handler being able to receive the 'unload finish' message in case it is delivered to a different CPU. The issue is not reproducible on WS2016 as Debug-VM delivers NMI to the boot CPU only, WS2012R2 and earlier Hyper-V versions are affected. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Acked-by: K. Y. Srinivasan <kys@microsoft.com> Cc: devel@linuxdriverproject.org Cc: Haiyang Zhang <haiyangz@microsoft.com> Link: http://lkml.kernel.org/r/20161202100720.28121-1-vkuznets@redhat.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-12-02 03:07:20 -07:00
#ifdef CONFIG_X86_LOCAL_APIC
/*
* Prior to WS2016 Debug-VM sends NMIs to all CPUs which makes
* it difficult to process CHANNELMSG_UNLOAD in case of crash. Handle
x86/hyperv: Handle unknown NMIs on one CPU when unknown_nmi_panic There is a feature in Hyper-V ('Debug-VM --InjectNonMaskableInterrupt') which injects NMI to the guest. We may want to crash the guest and do kdump on this NMI by enabling unknown_nmi_panic. To make kdump succeed we need to allow the kdump kernel to re-establish VMBus connection so it will see VMBus devices (storage, network,..). To properly unload VMBus making it possible to start over during kdump we need to do the following: - Send an 'unload' message to the hypervisor. This can be done on any CPU so we do this the crashing CPU. - Receive the 'unload finished' reply message. WS2012R2 delivers this message to the CPU which was used to establish VMBus connection during module load and this CPU may differ from the CPU sending 'unload'. Receiving a VMBus message means the following: - There is a per-CPU slot in memory for one message. This slot can in theory be accessed by any CPU. - We get an interrupt on the CPU when a message was placed into the slot. - When we read the message we need to clear the slot and signal the fact to the hypervisor. In case there are more messages to this CPU pending the hypervisor will deliver the next message. The signaling is done by writing to an MSR so this can only be done on the appropriate CPU. To avoid doing cross-CPU work on crash we have vmbus_wait_for_unload() function which checks message slots for all CPUs in a loop waiting for the 'unload finished' messages. However, there is an issue which arises when these conditions are met: - We're crashing on a CPU which is different from the one which was used to initially contact the hypervisor. - The CPU which was used for the initial contact is blocked with interrupts disabled and there is a message pending in the message slot. In this case we won't be able to read the 'unload finished' message on the crashing CPU. This is reproducible when we receive unknown NMIs on all CPUs simultaneously: the first CPU entering panic() will proceed to crash and all other CPUs will stop themselves with interrupts disabled. The suggested solution is to handle unknown NMIs for Hyper-V guests on the first CPU which gets them only. This will allow us to rely on VMBus interrupt handler being able to receive the 'unload finish' message in case it is delivered to a different CPU. The issue is not reproducible on WS2016 as Debug-VM delivers NMI to the boot CPU only, WS2012R2 and earlier Hyper-V versions are affected. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Acked-by: K. Y. Srinivasan <kys@microsoft.com> Cc: devel@linuxdriverproject.org Cc: Haiyang Zhang <haiyangz@microsoft.com> Link: http://lkml.kernel.org/r/20161202100720.28121-1-vkuznets@redhat.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-12-02 03:07:20 -07:00
* unknown NMI on the first CPU which gets it.
*/
static int hv_nmi_unknown(unsigned int val, struct pt_regs *regs)
{
static atomic_t nmi_cpu = ATOMIC_INIT(-1);
unsigned int old_cpu, this_cpu;
x86/hyperv: Handle unknown NMIs on one CPU when unknown_nmi_panic There is a feature in Hyper-V ('Debug-VM --InjectNonMaskableInterrupt') which injects NMI to the guest. We may want to crash the guest and do kdump on this NMI by enabling unknown_nmi_panic. To make kdump succeed we need to allow the kdump kernel to re-establish VMBus connection so it will see VMBus devices (storage, network,..). To properly unload VMBus making it possible to start over during kdump we need to do the following: - Send an 'unload' message to the hypervisor. This can be done on any CPU so we do this the crashing CPU. - Receive the 'unload finished' reply message. WS2012R2 delivers this message to the CPU which was used to establish VMBus connection during module load and this CPU may differ from the CPU sending 'unload'. Receiving a VMBus message means the following: - There is a per-CPU slot in memory for one message. This slot can in theory be accessed by any CPU. - We get an interrupt on the CPU when a message was placed into the slot. - When we read the message we need to clear the slot and signal the fact to the hypervisor. In case there are more messages to this CPU pending the hypervisor will deliver the next message. The signaling is done by writing to an MSR so this can only be done on the appropriate CPU. To avoid doing cross-CPU work on crash we have vmbus_wait_for_unload() function which checks message slots for all CPUs in a loop waiting for the 'unload finished' messages. However, there is an issue which arises when these conditions are met: - We're crashing on a CPU which is different from the one which was used to initially contact the hypervisor. - The CPU which was used for the initial contact is blocked with interrupts disabled and there is a message pending in the message slot. In this case we won't be able to read the 'unload finished' message on the crashing CPU. This is reproducible when we receive unknown NMIs on all CPUs simultaneously: the first CPU entering panic() will proceed to crash and all other CPUs will stop themselves with interrupts disabled. The suggested solution is to handle unknown NMIs for Hyper-V guests on the first CPU which gets them only. This will allow us to rely on VMBus interrupt handler being able to receive the 'unload finish' message in case it is delivered to a different CPU. The issue is not reproducible on WS2016 as Debug-VM delivers NMI to the boot CPU only, WS2012R2 and earlier Hyper-V versions are affected. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Acked-by: K. Y. Srinivasan <kys@microsoft.com> Cc: devel@linuxdriverproject.org Cc: Haiyang Zhang <haiyangz@microsoft.com> Link: http://lkml.kernel.org/r/20161202100720.28121-1-vkuznets@redhat.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-12-02 03:07:20 -07:00
if (!unknown_nmi_panic)
return NMI_DONE;
old_cpu = -1;
this_cpu = raw_smp_processor_id();
if (!atomic_try_cmpxchg(&nmi_cpu, &old_cpu, this_cpu))
x86/hyperv: Handle unknown NMIs on one CPU when unknown_nmi_panic There is a feature in Hyper-V ('Debug-VM --InjectNonMaskableInterrupt') which injects NMI to the guest. We may want to crash the guest and do kdump on this NMI by enabling unknown_nmi_panic. To make kdump succeed we need to allow the kdump kernel to re-establish VMBus connection so it will see VMBus devices (storage, network,..). To properly unload VMBus making it possible to start over during kdump we need to do the following: - Send an 'unload' message to the hypervisor. This can be done on any CPU so we do this the crashing CPU. - Receive the 'unload finished' reply message. WS2012R2 delivers this message to the CPU which was used to establish VMBus connection during module load and this CPU may differ from the CPU sending 'unload'. Receiving a VMBus message means the following: - There is a per-CPU slot in memory for one message. This slot can in theory be accessed by any CPU. - We get an interrupt on the CPU when a message was placed into the slot. - When we read the message we need to clear the slot and signal the fact to the hypervisor. In case there are more messages to this CPU pending the hypervisor will deliver the next message. The signaling is done by writing to an MSR so this can only be done on the appropriate CPU. To avoid doing cross-CPU work on crash we have vmbus_wait_for_unload() function which checks message slots for all CPUs in a loop waiting for the 'unload finished' messages. However, there is an issue which arises when these conditions are met: - We're crashing on a CPU which is different from the one which was used to initially contact the hypervisor. - The CPU which was used for the initial contact is blocked with interrupts disabled and there is a message pending in the message slot. In this case we won't be able to read the 'unload finished' message on the crashing CPU. This is reproducible when we receive unknown NMIs on all CPUs simultaneously: the first CPU entering panic() will proceed to crash and all other CPUs will stop themselves with interrupts disabled. The suggested solution is to handle unknown NMIs for Hyper-V guests on the first CPU which gets them only. This will allow us to rely on VMBus interrupt handler being able to receive the 'unload finish' message in case it is delivered to a different CPU. The issue is not reproducible on WS2016 as Debug-VM delivers NMI to the boot CPU only, WS2012R2 and earlier Hyper-V versions are affected. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Acked-by: K. Y. Srinivasan <kys@microsoft.com> Cc: devel@linuxdriverproject.org Cc: Haiyang Zhang <haiyangz@microsoft.com> Link: http://lkml.kernel.org/r/20161202100720.28121-1-vkuznets@redhat.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-12-02 03:07:20 -07:00
return NMI_HANDLED;
return NMI_DONE;
}
#endif
static unsigned long hv_get_tsc_khz(void)
{
unsigned long freq;
rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
return freq / 1000;
}
#if defined(CONFIG_SMP) && IS_ENABLED(CONFIG_HYPERV)
static void __init hv_smp_prepare_boot_cpu(void)
{
native_smp_prepare_boot_cpu();
#if defined(CONFIG_X86_64) && defined(CONFIG_PARAVIRT_SPINLOCKS)
hv_init_spinlocks();
#endif
}
static void __init hv_smp_prepare_cpus(unsigned int max_cpus)
{
#ifdef CONFIG_X86_64
int i;
int ret;
#endif
native_smp_prepare_cpus(max_cpus);
/*
* Override wakeup_secondary_cpu_64 callback for SEV-SNP
* enlightened guest.
*/
if (!ms_hyperv.paravisor_present && hv_isolation_type_snp()) {
apic->wakeup_secondary_cpu_64 = hv_snp_boot_ap;
return;
}
#ifdef CONFIG_X86_64
for_each_present_cpu(i) {
if (i == 0)
continue;
ret = hv_call_add_logical_proc(numa_cpu_node(i), i, cpu_physical_id(i));
BUG_ON(ret);
}
for_each_present_cpu(i) {
if (i == 0)
continue;
ret = hv_call_create_vp(numa_cpu_node(i), hv_current_partition_id, i, i);
BUG_ON(ret);
}
#endif
}
#endif
/*
* When a fully enlightened TDX VM runs on Hyper-V, the firmware sets the
* HW_REDUCED flag: refer to acpi_tb_create_local_fadt(). Consequently ttyS0
* interrupts can't work because request_irq() -> ... -> irq_to_desc() returns
* NULL for ttyS0. This happens because mp_config_acpi_legacy_irqs() sees a
* nr_legacy_irqs() of 0, so it doesn't initialize the array 'mp_irqs[]', and
* later setup_IO_APIC_irqs() -> find_irq_entry() fails to find the legacy irqs
* from the array and hence doesn't create the necessary irq description info.
*
* Clone arch/x86/kernel/acpi/boot.c: acpi_generic_reduced_hw_init() here,
* except don't change 'legacy_pic', which keeps its default value
* 'default_legacy_pic'. This way, mp_config_acpi_legacy_irqs() sees a non-zero
* nr_legacy_irqs() and eventually serial console interrupts works properly.
*/
static void __init reduced_hw_init(void)
{
x86_init.timers.timer_init = x86_init_noop;
x86_init.irqs.pre_vector_init = x86_init_noop;
}
int hv_get_hypervisor_version(union hv_hypervisor_version_info *info)
{
unsigned int hv_max_functions;
hv_max_functions = cpuid_eax(HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS);
if (hv_max_functions < HYPERV_CPUID_VERSION) {
pr_err("%s: Could not detect Hyper-V version\n", __func__);
return -ENODEV;
}
cpuid(HYPERV_CPUID_VERSION, &info->eax, &info->ebx, &info->ecx, &info->edx);
return 0;
}
static void __init ms_hyperv_init_platform(void)
{
int hv_max_functions_eax;
#ifdef CONFIG_PARAVIRT
pv_info.name = "Hyper-V";
#endif
/*
* Extract the features and hints
*/
ms_hyperv.features = cpuid_eax(HYPERV_CPUID_FEATURES);
ms_hyperv.priv_high = cpuid_ebx(HYPERV_CPUID_FEATURES);
ms_hyperv.misc_features = cpuid_edx(HYPERV_CPUID_FEATURES);
ms_hyperv.hints = cpuid_eax(HYPERV_CPUID_ENLIGHTMENT_INFO);
hv_max_functions_eax = cpuid_eax(HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS);
pr_info("Hyper-V: privilege flags low 0x%x, high 0x%x, hints 0x%x, misc 0x%x\n",
ms_hyperv.features, ms_hyperv.priv_high, ms_hyperv.hints,
ms_hyperv.misc_features);
ms_hyperv.max_vp_index = cpuid_eax(HYPERV_CPUID_IMPLEMENT_LIMITS);
ms_hyperv.max_lp_index = cpuid_ebx(HYPERV_CPUID_IMPLEMENT_LIMITS);
pr_debug("Hyper-V: max %u virtual processors, %u logical processors\n",
ms_hyperv.max_vp_index, ms_hyperv.max_lp_index);
/*
* Check CPU management privilege.
*
* To mirror what Windows does we should extract CPU management
* features and use the ReservedIdentityBit to detect if Linux is the
* root partition. But that requires negotiating CPU management
* interface (a process to be finalized). For now, use the privilege
* flag as the indicator for running as root.
*
* Hyper-V should never specify running as root and as a Confidential
* VM. But to protect against a compromised/malicious Hyper-V trying
* to exploit root behavior to expose Confidential VM memory, ignore
* the root partition setting if also a Confidential VM.
*/
if ((ms_hyperv.priv_high & HV_CPU_MANAGEMENT) &&
!(ms_hyperv.priv_high & HV_ISOLATION)) {
hv_root_partition = true;
pr_info("Hyper-V: running as root partition\n");
}
if (ms_hyperv.hints & HV_X64_HYPERV_NESTED) {
hv_nested = true;
pr_info("Hyper-V: running on a nested hypervisor\n");
}
if (ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS &&
ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE) {
x86_platform.calibrate_tsc = hv_get_tsc_khz;
x86_platform.calibrate_cpu = hv_get_tsc_khz;
setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
}
if (ms_hyperv.priv_high & HV_ISOLATION) {
ms_hyperv.isolation_config_a = cpuid_eax(HYPERV_CPUID_ISOLATION_CONFIG);
ms_hyperv.isolation_config_b = cpuid_ebx(HYPERV_CPUID_ISOLATION_CONFIG);
x86/hyperv: Change vTOM handling to use standard coco mechanisms Hyper-V guests on AMD SEV-SNP hardware have the option of using the "virtual Top Of Memory" (vTOM) feature specified by the SEV-SNP architecture. With vTOM, shared vs. private memory accesses are controlled by splitting the guest physical address space into two halves. vTOM is the dividing line where the uppermost bit of the physical address space is set; e.g., with 47 bits of guest physical address space, vTOM is 0x400000000000 (bit 46 is set). Guest physical memory is accessible at two parallel physical addresses -- one below vTOM and one above vTOM. Accesses below vTOM are private (encrypted) while accesses above vTOM are shared (decrypted). In this sense, vTOM is like the GPA.SHARED bit in Intel TDX. Support for Hyper-V guests using vTOM was added to the Linux kernel in two patch sets[1][2]. This support treats the vTOM bit as part of the physical address. For accessing shared (decrypted) memory, these patch sets create a second kernel virtual mapping that maps to physical addresses above vTOM. A better approach is to treat the vTOM bit as a protection flag, not as part of the physical address. This new approach is like the approach for the GPA.SHARED bit in Intel TDX. Rather than creating a second kernel virtual mapping, the existing mapping is updated using recently added coco mechanisms. When memory is changed between private and shared using set_memory_decrypted() and set_memory_encrypted(), the PTEs for the existing kernel mapping are changed to add or remove the vTOM bit in the guest physical address, just as with TDX. The hypercalls to change the memory status on the host side are made using the existing callback mechanism. Everything just works, with a minor tweak to map the IO-APIC to use private accesses. To accomplish the switch in approach, the following must be done: * Update Hyper-V initialization to set the cc_mask based on vTOM and do other coco initialization. * Update physical_mask so the vTOM bit is no longer treated as part of the physical address * Remove CC_VENDOR_HYPERV and merge the associated vTOM functionality under CC_VENDOR_AMD. Update cc_mkenc() and cc_mkdec() to set/clear the vTOM bit as a protection flag. * Code already exists to make hypercalls to inform Hyper-V about pages changing between shared and private. Update this code to run as a callback from __set_memory_enc_pgtable(). * Remove the Hyper-V special case from __set_memory_enc_dec() * Remove the Hyper-V specific call to swiotlb_update_mem_attributes() since mem_encrypt_init() will now do it. * Add a Hyper-V specific implementation of the is_private_mmio() callback that returns true for the IO-APIC and vTPM MMIO addresses [1] https://lore.kernel.org/all/20211025122116.264793-1-ltykernel@gmail.com/ [2] https://lore.kernel.org/all/20211213071407.314309-1-ltykernel@gmail.com/ [ bp: Touchups. ] Signed-off-by: Michael Kelley <mikelley@microsoft.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/1679838727-87310-7-git-send-email-mikelley@microsoft.com
2023-03-26 06:52:01 -07:00
if (ms_hyperv.shared_gpa_boundary_active)
ms_hyperv.shared_gpa_boundary =
BIT_ULL(ms_hyperv.shared_gpa_boundary_bits);
x86/hyperv: Introduce a global variable hyperv_paravisor_present The new variable hyperv_paravisor_present is set only when the VM is a SNP/TDX VM with the paravisor running: see ms_hyperv_init_platform(). We introduce hyperv_paravisor_present because we can not use ms_hyperv.paravisor_present in arch/x86/include/asm/mshyperv.h: struct ms_hyperv_info is defined in include/asm-generic/mshyperv.h, which is included at the end of arch/x86/include/asm/mshyperv.h, but at the beginning of arch/x86/include/asm/mshyperv.h, we would already need to use struct ms_hyperv_info in hv_do_hypercall(). We use hyperv_paravisor_present only in include/asm-generic/mshyperv.h, and use ms_hyperv.paravisor_present elsewhere. In the future, we'll introduce a hypercall function structure for different VM types, and at boot time, the right function pointers would be written into the structure so that runtime testing of TDX vs. SNP vs. normal will be avoided and hyperv_paravisor_present will no longer be needed. Call hv_vtom_init() when it's a VBS VM or when ms_hyperv.paravisor_present is true, i.e. the VM is a SNP VM or TDX VM with the paravisor. Enhance hv_vtom_init() for a TDX VM with the paravisor. In hv_common_cpu_init(), don't decrypt the hyperv_pcpu_input_arg for a TDX VM with the paravisor, just like we don't decrypt the page for a SNP VM with the paravisor. Signed-off-by: Dexuan Cui <decui@microsoft.com> Reviewed-by: Tianyu Lan <tiala@microsoft.com> Reviewed-by: Michael Kelley <mikelley@microsoft.com> Signed-off-by: Wei Liu <wei.liu@kernel.org> Link: https://lore.kernel.org/r/20230824080712.30327-7-decui@microsoft.com
2023-08-24 01:07:08 -07:00
hyperv_paravisor_present = !!ms_hyperv.paravisor_present;
pr_info("Hyper-V: Isolation Config: Group A 0x%x, Group B 0x%x\n",
ms_hyperv.isolation_config_a, ms_hyperv.isolation_config_b);
if (hv_get_isolation_type() == HV_ISOLATION_TYPE_SNP) {
static_branch_enable(&isolation_type_snp);
} else if (hv_get_isolation_type() == HV_ISOLATION_TYPE_TDX) {
static_branch_enable(&isolation_type_tdx);
/* A TDX VM must use x2APIC and doesn't use lazy EOI. */
ms_hyperv.hints &= ~HV_X64_APIC_ACCESS_RECOMMENDED;
if (!ms_hyperv.paravisor_present) {
/*
* Mark the Hyper-V TSC page feature as disabled
* in a TDX VM without paravisor so that the
* Invariant TSC, which is a better clocksource
* anyway, is used instead.
*/
ms_hyperv.features &= ~HV_MSR_REFERENCE_TSC_AVAILABLE;
/*
* The Invariant TSC is expected to be available
* in a TDX VM without paravisor, but if not,
* print a warning message. The slower Hyper-V MSR-based
* Ref Counter should end up being the clocksource.
*/
if (!(ms_hyperv.features & HV_ACCESS_TSC_INVARIANT))
pr_warn("Hyper-V: Invariant TSC is unavailable\n");
/* HV_MSR_CRASH_CTL is unsupported. */
ms_hyperv.misc_features &= ~HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
/* Don't trust Hyper-V's TLB-flushing hypercalls. */
ms_hyperv.hints &= ~HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
x86_init.acpi.reduced_hw_early_init = reduced_hw_init;
}
}
}
if (hv_max_functions_eax >= HYPERV_CPUID_NESTED_FEATURES) {
ms_hyperv.nested_features =
cpuid_eax(HYPERV_CPUID_NESTED_FEATURES);
pr_info("Hyper-V: Nested features: 0x%x\n",
ms_hyperv.nested_features);
}
#ifdef CONFIG_X86_LOCAL_APIC
if (ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS &&
ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE) {
/*
* Get the APIC frequency.
*/
u64 hv_lapic_frequency;
rdmsrl(HV_X64_MSR_APIC_FREQUENCY, hv_lapic_frequency);
hv_lapic_frequency = div_u64(hv_lapic_frequency, HZ);
lapic_timer_period = hv_lapic_frequency;
pr_info("Hyper-V: LAPIC Timer Frequency: %#x\n",
lapic_timer_period);
}
x86/hyperv: Handle unknown NMIs on one CPU when unknown_nmi_panic There is a feature in Hyper-V ('Debug-VM --InjectNonMaskableInterrupt') which injects NMI to the guest. We may want to crash the guest and do kdump on this NMI by enabling unknown_nmi_panic. To make kdump succeed we need to allow the kdump kernel to re-establish VMBus connection so it will see VMBus devices (storage, network,..). To properly unload VMBus making it possible to start over during kdump we need to do the following: - Send an 'unload' message to the hypervisor. This can be done on any CPU so we do this the crashing CPU. - Receive the 'unload finished' reply message. WS2012R2 delivers this message to the CPU which was used to establish VMBus connection during module load and this CPU may differ from the CPU sending 'unload'. Receiving a VMBus message means the following: - There is a per-CPU slot in memory for one message. This slot can in theory be accessed by any CPU. - We get an interrupt on the CPU when a message was placed into the slot. - When we read the message we need to clear the slot and signal the fact to the hypervisor. In case there are more messages to this CPU pending the hypervisor will deliver the next message. The signaling is done by writing to an MSR so this can only be done on the appropriate CPU. To avoid doing cross-CPU work on crash we have vmbus_wait_for_unload() function which checks message slots for all CPUs in a loop waiting for the 'unload finished' messages. However, there is an issue which arises when these conditions are met: - We're crashing on a CPU which is different from the one which was used to initially contact the hypervisor. - The CPU which was used for the initial contact is blocked with interrupts disabled and there is a message pending in the message slot. In this case we won't be able to read the 'unload finished' message on the crashing CPU. This is reproducible when we receive unknown NMIs on all CPUs simultaneously: the first CPU entering panic() will proceed to crash and all other CPUs will stop themselves with interrupts disabled. The suggested solution is to handle unknown NMIs for Hyper-V guests on the first CPU which gets them only. This will allow us to rely on VMBus interrupt handler being able to receive the 'unload finish' message in case it is delivered to a different CPU. The issue is not reproducible on WS2016 as Debug-VM delivers NMI to the boot CPU only, WS2012R2 and earlier Hyper-V versions are affected. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Acked-by: K. Y. Srinivasan <kys@microsoft.com> Cc: devel@linuxdriverproject.org Cc: Haiyang Zhang <haiyangz@microsoft.com> Link: http://lkml.kernel.org/r/20161202100720.28121-1-vkuznets@redhat.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-12-02 03:07:20 -07:00
register_nmi_handler(NMI_UNKNOWN, hv_nmi_unknown, NMI_FLAG_FIRST,
"hv_nmi_unknown");
#endif
#ifdef CONFIG_X86_IO_APIC
no_timer_check = 1;
#endif
#if IS_ENABLED(CONFIG_HYPERV)
#if defined(CONFIG_KEXEC_CORE)
machine_ops.shutdown = hv_machine_shutdown;
#endif
#if defined(CONFIG_CRASH_DUMP)
machine_ops.crash_shutdown = hv_machine_crash_shutdown;
#endif
#endif
if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
/*
* Writing to synthetic MSR 0x40000118 updates/changes the
* guest visible CPUIDs. Setting bit 0 of this MSR enables
* guests to report invariant TSC feature through CPUID
* instruction, CPUID 0x800000007/EDX, bit 8. See code in
* early_init_intel() where this bit is examined. The
* setting of this MSR bit should happen before init_intel()
* is called.
*/
wrmsrl(HV_X64_MSR_TSC_INVARIANT_CONTROL, HV_EXPOSE_INVARIANT_TSC);
setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
}
/*
* Generation 2 instances don't support reading the NMI status from
* 0x61 port.
*/
if (efi_enabled(EFI_BOOT))
x86_platform.get_nmi_reason = hv_get_nmi_reason;
#if IS_ENABLED(CONFIG_HYPERV)
x86/hyperv: Change vTOM handling to use standard coco mechanisms Hyper-V guests on AMD SEV-SNP hardware have the option of using the "virtual Top Of Memory" (vTOM) feature specified by the SEV-SNP architecture. With vTOM, shared vs. private memory accesses are controlled by splitting the guest physical address space into two halves. vTOM is the dividing line where the uppermost bit of the physical address space is set; e.g., with 47 bits of guest physical address space, vTOM is 0x400000000000 (bit 46 is set). Guest physical memory is accessible at two parallel physical addresses -- one below vTOM and one above vTOM. Accesses below vTOM are private (encrypted) while accesses above vTOM are shared (decrypted). In this sense, vTOM is like the GPA.SHARED bit in Intel TDX. Support for Hyper-V guests using vTOM was added to the Linux kernel in two patch sets[1][2]. This support treats the vTOM bit as part of the physical address. For accessing shared (decrypted) memory, these patch sets create a second kernel virtual mapping that maps to physical addresses above vTOM. A better approach is to treat the vTOM bit as a protection flag, not as part of the physical address. This new approach is like the approach for the GPA.SHARED bit in Intel TDX. Rather than creating a second kernel virtual mapping, the existing mapping is updated using recently added coco mechanisms. When memory is changed between private and shared using set_memory_decrypted() and set_memory_encrypted(), the PTEs for the existing kernel mapping are changed to add or remove the vTOM bit in the guest physical address, just as with TDX. The hypercalls to change the memory status on the host side are made using the existing callback mechanism. Everything just works, with a minor tweak to map the IO-APIC to use private accesses. To accomplish the switch in approach, the following must be done: * Update Hyper-V initialization to set the cc_mask based on vTOM and do other coco initialization. * Update physical_mask so the vTOM bit is no longer treated as part of the physical address * Remove CC_VENDOR_HYPERV and merge the associated vTOM functionality under CC_VENDOR_AMD. Update cc_mkenc() and cc_mkdec() to set/clear the vTOM bit as a protection flag. * Code already exists to make hypercalls to inform Hyper-V about pages changing between shared and private. Update this code to run as a callback from __set_memory_enc_pgtable(). * Remove the Hyper-V special case from __set_memory_enc_dec() * Remove the Hyper-V specific call to swiotlb_update_mem_attributes() since mem_encrypt_init() will now do it. * Add a Hyper-V specific implementation of the is_private_mmio() callback that returns true for the IO-APIC and vTPM MMIO addresses [1] https://lore.kernel.org/all/20211025122116.264793-1-ltykernel@gmail.com/ [2] https://lore.kernel.org/all/20211213071407.314309-1-ltykernel@gmail.com/ [ bp: Touchups. ] Signed-off-by: Michael Kelley <mikelley@microsoft.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/1679838727-87310-7-git-send-email-mikelley@microsoft.com
2023-03-26 06:52:01 -07:00
if ((hv_get_isolation_type() == HV_ISOLATION_TYPE_VBS) ||
x86/hyperv: Introduce a global variable hyperv_paravisor_present The new variable hyperv_paravisor_present is set only when the VM is a SNP/TDX VM with the paravisor running: see ms_hyperv_init_platform(). We introduce hyperv_paravisor_present because we can not use ms_hyperv.paravisor_present in arch/x86/include/asm/mshyperv.h: struct ms_hyperv_info is defined in include/asm-generic/mshyperv.h, which is included at the end of arch/x86/include/asm/mshyperv.h, but at the beginning of arch/x86/include/asm/mshyperv.h, we would already need to use struct ms_hyperv_info in hv_do_hypercall(). We use hyperv_paravisor_present only in include/asm-generic/mshyperv.h, and use ms_hyperv.paravisor_present elsewhere. In the future, we'll introduce a hypercall function structure for different VM types, and at boot time, the right function pointers would be written into the structure so that runtime testing of TDX vs. SNP vs. normal will be avoided and hyperv_paravisor_present will no longer be needed. Call hv_vtom_init() when it's a VBS VM or when ms_hyperv.paravisor_present is true, i.e. the VM is a SNP VM or TDX VM with the paravisor. Enhance hv_vtom_init() for a TDX VM with the paravisor. In hv_common_cpu_init(), don't decrypt the hyperv_pcpu_input_arg for a TDX VM with the paravisor, just like we don't decrypt the page for a SNP VM with the paravisor. Signed-off-by: Dexuan Cui <decui@microsoft.com> Reviewed-by: Tianyu Lan <tiala@microsoft.com> Reviewed-by: Michael Kelley <mikelley@microsoft.com> Signed-off-by: Wei Liu <wei.liu@kernel.org> Link: https://lore.kernel.org/r/20230824080712.30327-7-decui@microsoft.com
2023-08-24 01:07:08 -07:00
ms_hyperv.paravisor_present)
x86/hyperv: Change vTOM handling to use standard coco mechanisms Hyper-V guests on AMD SEV-SNP hardware have the option of using the "virtual Top Of Memory" (vTOM) feature specified by the SEV-SNP architecture. With vTOM, shared vs. private memory accesses are controlled by splitting the guest physical address space into two halves. vTOM is the dividing line where the uppermost bit of the physical address space is set; e.g., with 47 bits of guest physical address space, vTOM is 0x400000000000 (bit 46 is set). Guest physical memory is accessible at two parallel physical addresses -- one below vTOM and one above vTOM. Accesses below vTOM are private (encrypted) while accesses above vTOM are shared (decrypted). In this sense, vTOM is like the GPA.SHARED bit in Intel TDX. Support for Hyper-V guests using vTOM was added to the Linux kernel in two patch sets[1][2]. This support treats the vTOM bit as part of the physical address. For accessing shared (decrypted) memory, these patch sets create a second kernel virtual mapping that maps to physical addresses above vTOM. A better approach is to treat the vTOM bit as a protection flag, not as part of the physical address. This new approach is like the approach for the GPA.SHARED bit in Intel TDX. Rather than creating a second kernel virtual mapping, the existing mapping is updated using recently added coco mechanisms. When memory is changed between private and shared using set_memory_decrypted() and set_memory_encrypted(), the PTEs for the existing kernel mapping are changed to add or remove the vTOM bit in the guest physical address, just as with TDX. The hypercalls to change the memory status on the host side are made using the existing callback mechanism. Everything just works, with a minor tweak to map the IO-APIC to use private accesses. To accomplish the switch in approach, the following must be done: * Update Hyper-V initialization to set the cc_mask based on vTOM and do other coco initialization. * Update physical_mask so the vTOM bit is no longer treated as part of the physical address * Remove CC_VENDOR_HYPERV and merge the associated vTOM functionality under CC_VENDOR_AMD. Update cc_mkenc() and cc_mkdec() to set/clear the vTOM bit as a protection flag. * Code already exists to make hypercalls to inform Hyper-V about pages changing between shared and private. Update this code to run as a callback from __set_memory_enc_pgtable(). * Remove the Hyper-V special case from __set_memory_enc_dec() * Remove the Hyper-V specific call to swiotlb_update_mem_attributes() since mem_encrypt_init() will now do it. * Add a Hyper-V specific implementation of the is_private_mmio() callback that returns true for the IO-APIC and vTPM MMIO addresses [1] https://lore.kernel.org/all/20211025122116.264793-1-ltykernel@gmail.com/ [2] https://lore.kernel.org/all/20211213071407.314309-1-ltykernel@gmail.com/ [ bp: Touchups. ] Signed-off-by: Michael Kelley <mikelley@microsoft.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/1679838727-87310-7-git-send-email-mikelley@microsoft.com
2023-03-26 06:52:01 -07:00
hv_vtom_init();
/*
* Setup the hook to get control post apic initialization.
*/
x86_platform.apic_post_init = hyperv_init;
2017-08-02 09:09:19 -07:00
hyperv_setup_mmu_ops();
x86/hyperv: Reenlightenment notifications support Hyper-V supports Live Migration notification. This is supposed to be used in conjunction with TSC emulation: when a VM is migrated to a host with different TSC frequency for some short period the host emulates the accesses to TSC and sends an interrupt to notify about the event. When the guest is done updating everything it can disable TSC emulation and everything will start working fast again. These notifications weren't required until now as Hyper-V guests are not supposed to use TSC as a clocksource: in Linux the TSC is even marked as unstable on boot. Guests normally use 'tsc page' clocksource and host updates its values on migrations automatically. Things change when with nested virtualization: even when the PV clocksources (kvm-clock or tsc page) are passed through to the nested guests the TSC frequency and frequency changes need to be know.. Hyper-V Top Level Functional Specification (as of v5.0b) wrongly specifies EAX:BIT(12) of CPUID:0x40000009 as the feature identification bit. The right one to check is EAX:BIT(13) of CPUID:0x40000003. I was assured that the fix in on the way. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: kvm@vger.kernel.org Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: "Michael Kelley (EOSG)" <Michael.H.Kelley@microsoft.com> Cc: Roman Kagan <rkagan@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: devel@linuxdriverproject.org Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Cathy Avery <cavery@redhat.com> Cc: Mohammed Gamal <mmorsy@redhat.com> Link: https://lkml.kernel.org/r/20180124132337.30138-4-vkuznets@redhat.com
2018-01-24 06:23:33 -07:00
/* Install system interrupt handler for hypervisor callback */
sysvec_install(HYPERVISOR_CALLBACK_VECTOR, sysvec_hyperv_callback);
/* Install system interrupt handler for reenlightenment notifications */
if (ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT) {
sysvec_install(HYPERV_REENLIGHTENMENT_VECTOR, sysvec_hyperv_reenlightenment);
}
x86/hyperv: Reenlightenment notifications support Hyper-V supports Live Migration notification. This is supposed to be used in conjunction with TSC emulation: when a VM is migrated to a host with different TSC frequency for some short period the host emulates the accesses to TSC and sends an interrupt to notify about the event. When the guest is done updating everything it can disable TSC emulation and everything will start working fast again. These notifications weren't required until now as Hyper-V guests are not supposed to use TSC as a clocksource: in Linux the TSC is even marked as unstable on boot. Guests normally use 'tsc page' clocksource and host updates its values on migrations automatically. Things change when with nested virtualization: even when the PV clocksources (kvm-clock or tsc page) are passed through to the nested guests the TSC frequency and frequency changes need to be know.. Hyper-V Top Level Functional Specification (as of v5.0b) wrongly specifies EAX:BIT(12) of CPUID:0x40000009 as the feature identification bit. The right one to check is EAX:BIT(13) of CPUID:0x40000003. I was assured that the fix in on the way. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: kvm@vger.kernel.org Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: "Michael Kelley (EOSG)" <Michael.H.Kelley@microsoft.com> Cc: Roman Kagan <rkagan@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: devel@linuxdriverproject.org Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Cathy Avery <cavery@redhat.com> Cc: Mohammed Gamal <mmorsy@redhat.com> Link: https://lkml.kernel.org/r/20180124132337.30138-4-vkuznets@redhat.com
2018-01-24 06:23:33 -07:00
/* Install system interrupt handler for stimer0 */
if (ms_hyperv.misc_features & HV_STIMER_DIRECT_MODE_AVAILABLE) {
sysvec_install(HYPERV_STIMER0_VECTOR, sysvec_hyperv_stimer0);
}
# ifdef CONFIG_SMP
smp_ops.smp_prepare_boot_cpu = hv_smp_prepare_boot_cpu;
if (hv_root_partition ||
(!ms_hyperv.paravisor_present && hv_isolation_type_snp()))
smp_ops.smp_prepare_cpus = hv_smp_prepare_cpus;
# endif
/*
* Hyper-V doesn't provide irq remapping for IO-APIC. To enable x2apic,
* set x2apic destination mode to physical mode when x2apic is available
* and Hyper-V IOMMU driver makes sure cpus assigned with IO-APIC irqs
* have 8-bit APIC id.
*/
# ifdef CONFIG_X86_X2APIC
if (x2apic_supported())
x2apic_phys = 1;
# endif
/* Register Hyper-V specific clocksource */
hv_init_clocksource();
hv_vtl_init_platform();
#endif
/*
* TSC should be marked as unstable only after Hyper-V
* clocksource has been initialized. This ensures that the
* stability of the sched_clock is not altered.
*/
if (!(ms_hyperv.features & HV_ACCESS_TSC_INVARIANT))
mark_tsc_unstable("running on Hyper-V");
hardlockup_detector_disable();
}
x86/hyperv: Enable 15-bit APIC ID if the hypervisor supports it When a Linux VM runs on Hyper-V, if the VM has CPUs with >255 APIC IDs, the CPUs can't be the destination of IOAPIC interrupts, because the IOAPIC RTE's Dest Field has only 8 bits. Currently the hackery driver drivers/iommu/hyperv-iommu.c is used to ensure IOAPIC interrupts are only routed to CPUs that don't have >255 APIC IDs. However, there is an issue with kdump, because the kdump kernel can run on any CPU, and hence IOAPIC interrupts can't work if the kdump kernel run on a CPU with a >255 APIC ID. The kdump issue can be fixed by the Extended Dest ID, which is introduced recently by David Woodhouse (for IOAPIC, see the field virt_destid_8_14 in struct IO_APIC_route_entry). Of course, the Extended Dest ID needs the support of the underlying hypervisor. The latest Hyper-V has added the support recently: with this commit, on such a Hyper-V host, Linux VM does not use hyperv-iommu.c because hyperv_prepare_irq_remapping() returns -ENODEV; instead, Linux kernel's generic support of Extended Dest ID from David is used, meaning that Linux VM is able to support up to 32K CPUs, and IOAPIC interrupts can be routed to all the CPUs. On an old Hyper-V host that doesn't support the Extended Dest ID, nothing changes with this commit: Linux VM is still able to bring up the CPUs with > 255 APIC IDs with the help of hyperv-iommu.c, but IOAPIC interrupts still can not go to such CPUs, and the kdump kernel still can not work properly on such CPUs. [ tglx: Updated comment as suggested by David ] Signed-off-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: David Woodhouse <dwmw@amazon.co.uk> Link: https://lore.kernel.org/r/20201103011136.59108-1-decui@microsoft.com
2020-11-02 18:11:36 -07:00
static bool __init ms_hyperv_x2apic_available(void)
{
return x2apic_supported();
}
/*
* If ms_hyperv_msi_ext_dest_id() returns true, hyperv_prepare_irq_remapping()
* returns -ENODEV and the Hyper-V IOMMU driver is not used; instead, the
* generic support of the 15-bit APIC ID is used: see __irq_msi_compose_msg().
*
* Note: for a VM on Hyper-V, the I/O-APIC is the only device which
* (logically) generates MSIs directly to the system APIC irq domain.
* There is no HPET, and PCI MSI/MSI-X interrupts are remapped by the
* pci-hyperv host bridge.
*
* Note: for a Hyper-V root partition, this will always return false.
* The hypervisor doesn't expose these HYPERV_CPUID_VIRT_STACK_* cpuids by
* default, they are implemented as intercepts by the Windows Hyper-V stack.
* Even a nested root partition (L2 root) will not get them because the
* nested (L1) hypervisor filters them out.
x86/hyperv: Enable 15-bit APIC ID if the hypervisor supports it When a Linux VM runs on Hyper-V, if the VM has CPUs with >255 APIC IDs, the CPUs can't be the destination of IOAPIC interrupts, because the IOAPIC RTE's Dest Field has only 8 bits. Currently the hackery driver drivers/iommu/hyperv-iommu.c is used to ensure IOAPIC interrupts are only routed to CPUs that don't have >255 APIC IDs. However, there is an issue with kdump, because the kdump kernel can run on any CPU, and hence IOAPIC interrupts can't work if the kdump kernel run on a CPU with a >255 APIC ID. The kdump issue can be fixed by the Extended Dest ID, which is introduced recently by David Woodhouse (for IOAPIC, see the field virt_destid_8_14 in struct IO_APIC_route_entry). Of course, the Extended Dest ID needs the support of the underlying hypervisor. The latest Hyper-V has added the support recently: with this commit, on such a Hyper-V host, Linux VM does not use hyperv-iommu.c because hyperv_prepare_irq_remapping() returns -ENODEV; instead, Linux kernel's generic support of Extended Dest ID from David is used, meaning that Linux VM is able to support up to 32K CPUs, and IOAPIC interrupts can be routed to all the CPUs. On an old Hyper-V host that doesn't support the Extended Dest ID, nothing changes with this commit: Linux VM is still able to bring up the CPUs with > 255 APIC IDs with the help of hyperv-iommu.c, but IOAPIC interrupts still can not go to such CPUs, and the kdump kernel still can not work properly on such CPUs. [ tglx: Updated comment as suggested by David ] Signed-off-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: David Woodhouse <dwmw@amazon.co.uk> Link: https://lore.kernel.org/r/20201103011136.59108-1-decui@microsoft.com
2020-11-02 18:11:36 -07:00
*/
static bool __init ms_hyperv_msi_ext_dest_id(void)
{
u32 eax;
eax = cpuid_eax(HYPERV_CPUID_VIRT_STACK_INTERFACE);
if (eax != HYPERV_VS_INTERFACE_EAX_SIGNATURE)
return false;
eax = cpuid_eax(HYPERV_CPUID_VIRT_STACK_PROPERTIES);
return eax & HYPERV_VS_PROPERTIES_EAX_EXTENDED_IOAPIC_RTE;
}
#ifdef CONFIG_AMD_MEM_ENCRYPT
static void hv_sev_es_hcall_prepare(struct ghcb *ghcb, struct pt_regs *regs)
{
/* RAX and CPL are already in the GHCB */
ghcb_set_rcx(ghcb, regs->cx);
ghcb_set_rdx(ghcb, regs->dx);
ghcb_set_r8(ghcb, regs->r8);
}
static bool hv_sev_es_hcall_finish(struct ghcb *ghcb, struct pt_regs *regs)
{
/* No checking of the return state needed */
return true;
}
#endif
const __initconst struct hypervisor_x86 x86_hyper_ms_hyperv = {
.name = "Microsoft Hyper-V",
.detect = ms_hyperv_platform,
.type = X86_HYPER_MS_HYPERV,
x86/hyperv: Enable 15-bit APIC ID if the hypervisor supports it When a Linux VM runs on Hyper-V, if the VM has CPUs with >255 APIC IDs, the CPUs can't be the destination of IOAPIC interrupts, because the IOAPIC RTE's Dest Field has only 8 bits. Currently the hackery driver drivers/iommu/hyperv-iommu.c is used to ensure IOAPIC interrupts are only routed to CPUs that don't have >255 APIC IDs. However, there is an issue with kdump, because the kdump kernel can run on any CPU, and hence IOAPIC interrupts can't work if the kdump kernel run on a CPU with a >255 APIC ID. The kdump issue can be fixed by the Extended Dest ID, which is introduced recently by David Woodhouse (for IOAPIC, see the field virt_destid_8_14 in struct IO_APIC_route_entry). Of course, the Extended Dest ID needs the support of the underlying hypervisor. The latest Hyper-V has added the support recently: with this commit, on such a Hyper-V host, Linux VM does not use hyperv-iommu.c because hyperv_prepare_irq_remapping() returns -ENODEV; instead, Linux kernel's generic support of Extended Dest ID from David is used, meaning that Linux VM is able to support up to 32K CPUs, and IOAPIC interrupts can be routed to all the CPUs. On an old Hyper-V host that doesn't support the Extended Dest ID, nothing changes with this commit: Linux VM is still able to bring up the CPUs with > 255 APIC IDs with the help of hyperv-iommu.c, but IOAPIC interrupts still can not go to such CPUs, and the kdump kernel still can not work properly on such CPUs. [ tglx: Updated comment as suggested by David ] Signed-off-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: David Woodhouse <dwmw@amazon.co.uk> Link: https://lore.kernel.org/r/20201103011136.59108-1-decui@microsoft.com
2020-11-02 18:11:36 -07:00
.init.x2apic_available = ms_hyperv_x2apic_available,
.init.msi_ext_dest_id = ms_hyperv_msi_ext_dest_id,
.init.init_platform = ms_hyperv_init_platform,
x86/hyperv: Use Hyper-V entropy to seed guest random number generator A Hyper-V host provides its guest VMs with entropy in a custom ACPI table named "OEM0". The entropy bits are updated each time Hyper-V boots the VM, and are suitable for seeding the Linux guest random number generator (rng). See a brief description of OEM0 in [1]. Generation 2 VMs on Hyper-V use UEFI to boot. Existing EFI code in Linux seeds the rng with entropy bits from the EFI_RNG_PROTOCOL. Via this path, the rng is seeded very early during boot with good entropy. The ACPI OEM0 table provided in such VMs is an additional source of entropy. Generation 1 VMs on Hyper-V boot from BIOS. For these VMs, Linux doesn't currently get any entropy from the Hyper-V host. While this is not fundamentally broken because Linux can generate its own entropy, using the Hyper-V host provided entropy would get the rng off to a better start and would do so earlier in the boot process. Improve the rng seeding for Generation 1 VMs by having Hyper-V specific code in Linux take advantage of the OEM0 table to seed the rng. For Generation 2 VMs, use the OEM0 table to provide additional entropy beyond the EFI_RNG_PROTOCOL. Because the OEM0 table is custom to Hyper-V, parse it directly in the Hyper-V code in the Linux kernel and use add_bootloader_randomness() to add it to the rng. Once the entropy bits are read from OEM0, zero them out in the table so they don't appear in /sys/firmware/acpi/tables/OEM0 in the running VM. The zero'ing is done out of an abundance of caution to avoid potential security risks to the rng. Also set the OEM0 data length to zero so a kexec or other subsequent use of the table won't try to use the zero'ed bits. [1] https://download.microsoft.com/download/1/c/9/1c9813b8-089c-4fef-b2ad-ad80e79403ba/Whitepaper%20-%20The%20Windows%2010%20random%20number%20generation%20infrastructure.pdf Signed-off-by: Michael Kelley <mhklinux@outlook.com> Reviewed-by: Jason A. Donenfeld <Jason@zx2c4.com> Link: https://lore.kernel.org/r/20240318155408.216851-1-mhklinux@outlook.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <20240318155408.216851-1-mhklinux@outlook.com>
2024-03-18 08:54:08 -07:00
.init.guest_late_init = ms_hyperv_late_init,
#ifdef CONFIG_AMD_MEM_ENCRYPT
.runtime.sev_es_hcall_prepare = hv_sev_es_hcall_prepare,
.runtime.sev_es_hcall_finish = hv_sev_es_hcall_finish,
#endif
};