1
mirror of https://github.com/jedisct1/libsodium.git synced 2024-12-19 18:15:18 -07:00

Remove X25519-donna

This commit is contained in:
Frank Denis 2017-11-06 11:03:18 +01:00
parent cdfd98e908
commit 7eacdc6ff0
6 changed files with 7 additions and 402 deletions

View File

@ -55,6 +55,8 @@ libsodium_la_SOURCES = \
crypto_pwhash/argon2/pwhash_argon2id.c \
crypto_pwhash/crypto_pwhash.c \
crypto_scalarmult/crypto_scalarmult.c \
crypto_scalarmult/curve25519/ref10/x25519_ref10.c \
crypto_scalarmult/curve25519/ref10/x25519_ref10.h \
crypto_scalarmult/curve25519/scalarmult_curve25519.c \
crypto_scalarmult/curve25519/scalarmult_curve25519.h \
crypto_secretbox/crypto_secretbox.c \
@ -110,16 +112,12 @@ if HAVE_TI_MODE
libsodium_la_SOURCES += \
crypto_core/curve25519/ref10/fe_51/base.h \
crypto_core/curve25519/ref10/fe_51/base2.h \
crypto_core/curve25519/ref10/fe_51/fe.h \
crypto_scalarmult/curve25519/donna_c64/curve25519_donna_c64.c \
crypto_scalarmult/curve25519/donna_c64/curve25519_donna_c64.h
crypto_core/curve25519/ref10/fe_51/fe.h
else
libsodium_la_SOURCES += \
crypto_core/curve25519/ref10/fe_25_5/base.h \
crypto_core/curve25519/ref10/fe_25_5/base2.h \
crypto_core/curve25519/ref10/fe_25_5/fe.h \
crypto_scalarmult/curve25519/ref10/x25519_ref10.c \
crypto_scalarmult/curve25519/ref10/x25519_ref10.h
crypto_core/curve25519/ref10/fe_25_5/fe.h
endif
if HAVE_AMD64_ASM

View File

@ -1,370 +0,0 @@
/* Copyright 2008, Google Inc.
* All rights reserved.
*
* Code released into the public domain.
*
* curve25519-donna: Curve25519 elliptic curve, public key function
*
* http://code.google.com/p/curve25519-donna/
*
* Adam Langley <agl@imperialviolet.org>
* Parts optimised by floodyberry
* Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
*
* More information about curve25519 can be found here
* http://cr.yp.to/ecdh.html
*
* djb's sample implementation of curve25519 is written in a special assembly
* language called qhasm and uses the floating point registers.
*
* This is, almost, a clean room reimplementation from the curve25519 paper. It
* uses many of the tricks described therein. Only the crecip function is taken
* from the sample implementation.
*/
#include <stdint.h>
#include <string.h>
#ifdef HAVE_TI_MODE
#include "../scalarmult_curve25519.h"
#include "curve25519_donna_c64.h"
#include "private/curve25519_ref10.h"
#include "private/common.h"
#include "utils.h"
/* Sum two numbers: output += in */
static inline void
fe_add_self(fe output, const fe in)
{
output[0] += in[0];
output[1] += in[1];
output[2] += in[2];
output[3] += in[3];
output[4] += in[4];
}
/* Find the difference of two numbers: output = in - output
* (note the order of the arguments!)
*
* Assumes that out[i] < 2**52
* On return, out[i] < 2**55
*/
static inline void
fe_sub_backwards(fe out, const fe in)
{
/* 152 is 19 << 3 */
static const uint64_t two54m152 = (((uint64_t) 1) << 54) - 152;
static const uint64_t two54m8 = (((uint64_t) 1) << 54) - 8;
out[0] = in[0] + two54m152 - out[0];
out[1] = in[1] + two54m8 - out[1];
out[2] = in[2] + two54m8 - out[2];
out[3] = in[3] + two54m8 - out[3];
out[4] = in[4] + two54m8 - out[4];
}
/* Multiply two numbers: output = in2 * in
*
* output must be distinct to both inputs. The inputs are reduced coefficient
* form, the output is not.
*
* Assumes that in[i] < 2**55 and likewise for in2.
* On return, output[i] < 2**52
*/
static inline void
fe_mul_restrict(fe output, const fe in2, const fe in)
{
const uint64_t mask = 0x7ffffffffffffULL;
uint128_t t[5];
uint64_t r0, r1, r2, r3, r4, s0, s1, s2, s3, s4, c;
r0 = in[0];
r1 = in[1];
r2 = in[2];
r3 = in[3];
r4 = in[4];
s0 = in2[0];
s1 = in2[1];
s2 = in2[2];
s3 = in2[3];
s4 = in2[4];
t[0] = ((uint128_t) r0) * s0;
t[1] = ((uint128_t) r0) * s1 + ((uint128_t) r1) * s0;
t[2] = ((uint128_t) r0) * s2 + ((uint128_t) r2) * s0 + ((uint128_t) r1) * s1;
t[3] = ((uint128_t) r0) * s3 + ((uint128_t) r3) * s0 + ((uint128_t) r1) * s2
+ ((uint128_t) r2) * s1;
t[4] = ((uint128_t) r0) * s4 + ((uint128_t) r4) * s0 + ((uint128_t) r3) * s1
+ ((uint128_t) r1) * s3 + ((uint128_t) r2) * s2;
r4 *= 19ULL;
r1 *= 19ULL;
r2 *= 19ULL;
r3 *= 19ULL;
t[0] += ((uint128_t) r4) * s1 + ((uint128_t) r1) * s4 + ((uint128_t) r2) * s3
+ ((uint128_t) r3) * s2;
t[1] += ((uint128_t) r4) * s2 + ((uint128_t) r2) * s4 + ((uint128_t) r3) * s3;
t[2] += ((uint128_t) r4) * s3 + ((uint128_t) r3) * s4;
t[3] += ((uint128_t) r4) * s4;
r0 = (uint64_t) t[0] & mask;
c = (uint64_t) (t[0] >> 51);
t[1] += c;
r1 = (uint64_t) t[1] & mask;
c = (uint64_t) (t[1] >> 51);
t[2] += c;
r2 = (uint64_t) t[2] & mask;
c = (uint64_t) (t[2] >> 51);
t[3] += c;
r3 = (uint64_t) t[3] & mask;
c = (uint64_t) (t[3] >> 51);
t[4] += c;
r4 = (uint64_t) t[4] & mask;
c = (uint64_t) (t[4] >> 51);
r0 += c * 19ULL;
c = r0 >> 51;
r0 = r0 & mask;
r1 += c;
c = r1 >> 51;
r1 = r1 & mask;
r2 += c;
output[0] = r0;
output[1] = r1;
output[2] = r2;
output[3] = r3;
output[4] = r4;
}
static inline void
fe_square_times(fe output, const fe in, uint64_t count)
{
const uint64_t mask = 0x7ffffffffffffULL;
uint128_t t[5];
uint64_t r0, r1, r2, r3, r4, c;
uint64_t d0, d1, d2, d4, d419;
r0 = in[0];
r1 = in[1];
r2 = in[2];
r3 = in[3];
r4 = in[4];
do {
d0 = r0 * 2;
d1 = r1 * 2;
d2 = r2 * 2 * 19ULL;
d419 = r4 * 19ULL;
d4 = d419 * 2;
t[0] = ((uint128_t) r0) * r0 + ((uint128_t) d4) * r1
+ (((uint128_t) d2) * (r3));
t[1] = ((uint128_t) d0) * r1 + ((uint128_t) d4) * r2
+ (((uint128_t) r3) * (r3 * 19ULL));
t[2] = ((uint128_t) d0) * r2 + ((uint128_t) r1) * r1
+ (((uint128_t) d4) * (r3));
t[3] = ((uint128_t) d0) * r3 + ((uint128_t) d1) * r2
+ (((uint128_t) r4) * (d419));
t[4] = ((uint128_t) d0) * r4 + ((uint128_t) d1) * r3
+ (((uint128_t) r2) * (r2));
r0 = (uint64_t) t[0] & mask;
c = (uint64_t) (t[0] >> 51);
t[1] += c;
r1 = (uint64_t) t[1] & mask;
c = (uint64_t) (t[1] >> 51);
t[2] += c;
r2 = (uint64_t) t[2] & mask;
c = (uint64_t) (t[2] >> 51);
t[3] += c;
r3 = (uint64_t) t[3] & mask;
c = (uint64_t) (t[3] >> 51);
t[4] += c;
r4 = (uint64_t) t[4] & mask;
c = (uint64_t) (t[4] >> 51);
r0 += c * 19ULL;
c = r0 >> 51;
r0 = r0 & mask;
r1 += c;
c = r1 >> 51;
r1 = r1 & mask;
r2 += c;
} while (--count);
output[0] = r0;
output[1] = r1;
output[2] = r2;
output[3] = r3;
output[4] = r4;
}
/* Input: Q, Q', Q-Q'
* Output: 2Q, Q+Q'
*
* x2 z2: long form
* x3 z3: long form
* x z: short form, destroyed
* xprime zprime: short form, destroyed
* qmqp: short form, preserved
*/
static void
fe_mont_y(fe x2, fe z2, /* output 2Q */
fe x3, fe z3, /* output Q + Q' */
fe x, fe z, /* input Q */
fe xprime, fe zprime, /* input Q' */
const fe qmqp /* input Q - Q' */)
{
fe origx, origxprime, zzz, xx, zz, xxprime, zzprime, zzzprime;
memcpy(origx, x, 5 * sizeof(uint64_t));
fe_add_self(x, z);
fe_sub_backwards(z, origx); /* does x - z */
memcpy(origxprime, xprime, sizeof(uint64_t) * 5);
fe_add_self(xprime, zprime);
fe_sub_backwards(zprime, origxprime);
fe_mul_restrict(xxprime, xprime, z);
fe_mul_restrict(zzprime, x, zprime);
memcpy(origxprime, xxprime, sizeof(uint64_t) * 5);
fe_add_self(xxprime, zzprime);
fe_sub_backwards(zzprime, origxprime);
fe_square_times(x3, xxprime, 1);
fe_square_times(zzzprime, zzprime, 1);
fe_mul_restrict(z3, zzzprime, qmqp);
fe_square_times(xx, x, 1);
fe_square_times(zz, z, 1);
fe_mul_restrict(x2, xx, zz);
fe_sub_backwards(zz, xx); /* does zz = xx - zz */
fe_scalar_product(zzz, zz, 121665);
fe_add_self(zzz, xx);
fe_mul_restrict(z2, zz, zzz);
}
/* Calculates nQ where Q is the x-coordinate of a point on the curve
*
* resultx/resultz: the x coordinate of the resulting curve point (short form)
* n: a little endian, 32-byte number
* q: a point of the curve (short form)
*/
static void
cmult(fe resultx, fe resultz, const uint8_t *n, const fe q)
{
fe a = { 0 }, b = { 1 }, c = { 1 }, d = { 0 };
uint64_t *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
fe e = { 0 }, f = { 1 }, g = { 0 }, h = { 1 };
uint64_t *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
unsigned i, j;
memcpy(nqpqx, q, sizeof(uint64_t) * 5);
for (i = 0; i < 32; ++i) {
uint8_t byte = n[31 - i];
for (j = 0; j < 8; ++j) {
const unsigned int bit = byte >> 7;
fe_cswap(nqx, nqpqx, bit);
fe_cswap(nqz, nqpqz, bit);
fe_mont_y(nqx2, nqz2, nqpqx2, nqpqz2, nqx, nqz, nqpqx, nqpqz, q);
fe_cswap(nqx2, nqpqx2, bit);
fe_cswap(nqz2, nqpqz2, bit);
t = nqx;
nqx = nqx2;
nqx2 = t;
t = nqz;
nqz = nqz2;
nqz2 = t;
t = nqpqx;
nqpqx = nqpqx2;
nqpqx2 = t;
t = nqpqz;
nqpqz = nqpqz2;
nqpqz2 = t;
byte <<= 1;
}
}
memcpy(resultx, nqx, sizeof(uint64_t) * 5);
memcpy(resultz, nqz, sizeof(uint64_t) * 5);
}
/* -----------------------------------------------------------------------------
Shamelessly copied from djb's code, tightened a little
-----------------------------------------------------------------------------
*/
static void
crecip(fe out, const fe z)
{
fe a, t0, b, c;
/* 2 */ fe_square_times(a, z, 1); /* a = 2 */
/* 8 */ fe_square_times(t0, a, 2);
/* 9 */ fe_mul_restrict(b, t0, z); /* b = 9 */
/* 11 */ fe_mul_restrict(a, b, a); /* a = 11 */
/* 22 */ fe_square_times(t0, a, 1);
/* 2^5 - 2^0 = 31 */ fe_mul_restrict(b, t0, b);
/* 2^10 - 2^5 */ fe_square_times(t0, b, 5);
/* 2^10 - 2^0 */ fe_mul_restrict(b, t0, b);
/* 2^20 - 2^10 */ fe_square_times(t0, b, 10);
/* 2^20 - 2^0 */ fe_mul_restrict(c, t0, b);
/* 2^40 - 2^20 */ fe_square_times(t0, c, 20);
/* 2^40 - 2^0 */ fe_mul_restrict(t0, t0, c);
/* 2^50 - 2^10 */ fe_square_times(t0, t0, 10);
/* 2^50 - 2^0 */ fe_mul_restrict(b, t0, b);
/* 2^100 - 2^50 */ fe_square_times(t0, b, 50);
/* 2^100 - 2^0 */ fe_mul_restrict(c, t0, b);
/* 2^200 - 2^100 */ fe_square_times(t0, c, 100);
/* 2^200 - 2^0 */ fe_mul_restrict(t0, t0, c);
/* 2^250 - 2^50 */ fe_square_times(t0, t0, 50);
/* 2^250 - 2^0 */ fe_mul_restrict(t0, t0, b);
/* 2^255 - 2^5 */ fe_square_times(t0, t0, 5);
/* 2^255 - 21 */ fe_mul_restrict(out, t0, a);
}
static int
crypto_scalarmult_curve25519_donna_c64(unsigned char *q,
const unsigned char *n,
const unsigned char *p)
{
fe bp, x, z, zmone;
unsigned char *t = q;
int i;
for (i = 0; i < 32; ++i) {
t[i] = n[i];
}
t[0] &= 248;
t[31] &= 127;
t[31] |= 64;
fe_frombytes(bp, p);
cmult(x, z, t, bp);
crecip(zmone, z);
fe_mul_restrict(z, x, zmone);
fe_tobytes(q, z);
return 0;
}
static int
crypto_scalarmult_curve25519_donna_c64_base(unsigned char *q,
const unsigned char *n)
{
static const unsigned char basepoint[32] = { 9 };
return crypto_scalarmult_curve25519_donna_c64(q, n, basepoint);
}
struct crypto_scalarmult_curve25519_implementation
crypto_scalarmult_curve25519_donna_c64_implementation = {
SODIUM_C99(.mult =) crypto_scalarmult_curve25519_donna_c64,
SODIUM_C99(.mult_base =) crypto_scalarmult_curve25519_donna_c64_base
};
#endif

View File

@ -1,10 +0,0 @@
#ifndef curve25519_donna_c64_H
#define curve25519_donna_c64_H
#include "crypto_scalarmult_curve25519.h"
#include "../scalarmult_curve25519.h"
extern struct crypto_scalarmult_curve25519_implementation
crypto_scalarmult_curve25519_donna_c64_implementation;
#endif

View File

@ -2,8 +2,6 @@
#include <stddef.h>
#include <stdint.h>
#ifndef HAVE_TI_MODE
#include "../scalarmult_curve25519.h"
#include "private/curve25519_ref10.h"
#include "utils.h"
@ -115,5 +113,3 @@ struct crypto_scalarmult_curve25519_implementation
SODIUM_C99(.mult =) crypto_scalarmult_curve25519_ref10,
SODIUM_C99(.mult_base =) crypto_scalarmult_curve25519_ref10_base
};
#endif

View File

@ -5,6 +5,6 @@
#include "../scalarmult_curve25519.h"
extern struct crypto_scalarmult_curve25519_implementation
crypto_scalarmult_curve25519_ref10_implementation;
crypto_scalarmult_curve25519_ref10_implementation;
#endif

View File

@ -7,15 +7,9 @@
#ifdef HAVE_AVX_ASM
# include "sandy2x/curve25519_sandy2x.h"
#endif
#ifdef HAVE_TI_MODE
# include "donna_c64/curve25519_donna_c64.h"
static const crypto_scalarmult_curve25519_implementation *implementation =
&crypto_scalarmult_curve25519_donna_c64_implementation;
#else
# include "ref10/x25519_ref10.h"
#include "ref10/x25519_ref10.h"
static const crypto_scalarmult_curve25519_implementation *implementation =
&crypto_scalarmult_curve25519_ref10_implementation;
#endif
int
crypto_scalarmult_curve25519(unsigned char *q, const unsigned char *n,
@ -54,11 +48,8 @@ crypto_scalarmult_curve25519_scalarbytes(void)
int
_crypto_scalarmult_curve25519_pick_best_implementation(void)
{
#ifdef HAVE_TI_MODE
implementation = &crypto_scalarmult_curve25519_donna_c64_implementation;
#else
implementation = &crypto_scalarmult_curve25519_ref10_implementation;
#endif
#ifdef HAVE_AVX_ASM
if (sodium_runtime_has_avx()) {
implementation = &crypto_scalarmult_curve25519_sandy2x_implementation;