mirror of
https://github.com/jedisct1/libsodium.git
synced 2024-12-23 20:15:19 -07:00
Initial import of scrypt
This commit is contained in:
parent
d6e655ad97
commit
4be77b901e
5
AUTHORS
5
AUTHORS
@ -99,3 +99,8 @@ Christian Winnerlein
|
||||
crypto_onetimeauth/poly1305/donna
|
||||
---------------------------------
|
||||
Andrew "floodyberry" M.
|
||||
|
||||
crypto_pwhash/scryptxsalsa208sha256
|
||||
--------------------------------
|
||||
Colin Percival
|
||||
Alexander Peslyak
|
||||
|
@ -269,6 +269,8 @@ AC_CHECK_HEADERS([wmmintrin.h], [], [], [
|
||||
#pragma GCC target("aes")
|
||||
])
|
||||
|
||||
AC_CHECK_HEADERS([sys/mman.h])
|
||||
|
||||
AC_MSG_CHECKING(for access to floating-point rounding mode)
|
||||
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
|
||||
#include <fenv.h>
|
||||
|
@ -62,6 +62,14 @@ libsodium_la_SOURCES = \
|
||||
crypto_onetimeauth/poly1305/donna/portable-jane.h \
|
||||
crypto_onetimeauth/poly1305/donna/auth_poly1305_donna.c \
|
||||
crypto_onetimeauth/poly1305/donna/verify_poly1305_donna.c \
|
||||
crypto_pwhash/scryptxsalsa208sha256/crypto_scrypt-common.c \
|
||||
crypto_pwhash/scryptxsalsa208sha256/crypto_scrypt.h \
|
||||
crypto_pwhash/scryptxsalsa208sha256/scrypt_platform.c \
|
||||
crypto_pwhash/scryptxsalsa208sha256/sha256.c \
|
||||
crypto_pwhash/scryptxsalsa208sha256/sha256.h \
|
||||
crypto_pwhash/scryptxsalsa208sha256/sysendian.h \
|
||||
crypto_pwhash/scryptxsalsa208sha256/nosse/pwhash_scryptxsalsa208sha256.c \
|
||||
crypto_pwhash/scryptxsalsa208sha256/sse/pwhash_scryptxsalsa208sha256.c \
|
||||
crypto_scalarmult/crypto_scalarmult.c \
|
||||
crypto_scalarmult/curve25519/scalarmult_curve25519_api.c \
|
||||
crypto_secretbox/crypto_secretbox.c \
|
||||
|
@ -0,0 +1,254 @@
|
||||
/*-
|
||||
* Copyright 2013 Alexander Peslyak
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "crypto_scrypt.h"
|
||||
|
||||
#define escrypt_kdf escrypt_kdf_nosse
|
||||
|
||||
#define BYTES2CHARS(bytes) \
|
||||
((((bytes) * 8) + 5) / 6)
|
||||
|
||||
#define HASH_SIZE 32 /* bytes */
|
||||
#define HASH_LEN BYTES2CHARS(HASH_SIZE) /* base-64 chars */
|
||||
|
||||
static const char * const itoa64 =
|
||||
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
||||
|
||||
static uint8_t * encode64_uint32(uint8_t * dst, size_t dstlen,
|
||||
uint32_t src, uint32_t srcbits)
|
||||
{
|
||||
uint32_t bit;
|
||||
|
||||
for (bit = 0; bit < srcbits; bit += 6) {
|
||||
if (dstlen < 1)
|
||||
return NULL;
|
||||
*dst++ = itoa64[src & 0x3f];
|
||||
dstlen--;
|
||||
src >>= 6;
|
||||
}
|
||||
|
||||
return dst;
|
||||
}
|
||||
|
||||
static uint8_t * encode64(uint8_t * dst, size_t dstlen,
|
||||
const uint8_t * src, size_t srclen)
|
||||
{
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < srclen; ) {
|
||||
uint8_t * dnext;
|
||||
uint32_t value = 0, bits = 0;
|
||||
do {
|
||||
value |= (uint32_t)src[i++] << bits;
|
||||
bits += 8;
|
||||
} while (bits < 24 && i < srclen);
|
||||
dnext = encode64_uint32(dst, dstlen, value, bits);
|
||||
if (!dnext)
|
||||
return NULL;
|
||||
dstlen -= dnext - dst;
|
||||
dst = dnext;
|
||||
}
|
||||
|
||||
return dst;
|
||||
}
|
||||
|
||||
static int decode64_one(uint32_t * dst, uint8_t src)
|
||||
{
|
||||
const char * ptr = strchr(itoa64, src);
|
||||
if (ptr) {
|
||||
*dst = ptr - itoa64;
|
||||
return 0;
|
||||
}
|
||||
*dst = 0;
|
||||
return -1;
|
||||
}
|
||||
|
||||
static const uint8_t * decode64_uint32(uint32_t * dst, uint32_t dstbits,
|
||||
const uint8_t * src)
|
||||
{
|
||||
uint32_t bit;
|
||||
uint32_t value;
|
||||
|
||||
value = 0;
|
||||
for (bit = 0; bit < dstbits; bit += 6) {
|
||||
uint32_t one;
|
||||
if (decode64_one(&one, *src)) {
|
||||
*dst = 0;
|
||||
return NULL;
|
||||
}
|
||||
src++;
|
||||
value |= one << bit;
|
||||
}
|
||||
|
||||
*dst = value;
|
||||
return src;
|
||||
}
|
||||
|
||||
uint8_t *
|
||||
escrypt_r(escrypt_local_t * local,
|
||||
const uint8_t * passwd, size_t passwdlen,
|
||||
const uint8_t * setting,
|
||||
uint8_t * buf, size_t buflen)
|
||||
{
|
||||
uint8_t hash[HASH_SIZE];
|
||||
const uint8_t * src, * salt;
|
||||
uint8_t * dst;
|
||||
size_t prefixlen, saltlen, need;
|
||||
uint64_t N;
|
||||
uint32_t r, p;
|
||||
|
||||
if (setting[0] != '$' || setting[1] != '7' || setting[2] != '$')
|
||||
return NULL;
|
||||
src = setting + 3;
|
||||
|
||||
{
|
||||
uint32_t N_log2;
|
||||
if (decode64_one(&N_log2, *src))
|
||||
return NULL;
|
||||
src++;
|
||||
N = (uint64_t)1 << N_log2;
|
||||
}
|
||||
|
||||
src = decode64_uint32(&r, 30, src);
|
||||
if (!src)
|
||||
return NULL;
|
||||
|
||||
src = decode64_uint32(&p, 30, src);
|
||||
if (!src)
|
||||
return NULL;
|
||||
|
||||
prefixlen = src - setting;
|
||||
|
||||
salt = src;
|
||||
src = (uint8_t *)strrchr((char *)salt, '$');
|
||||
if (src)
|
||||
saltlen = src - salt;
|
||||
else
|
||||
saltlen = strlen((char *)salt);
|
||||
|
||||
need = prefixlen + saltlen + 1 + HASH_LEN + 1;
|
||||
if (need > buflen || need < saltlen)
|
||||
return NULL;
|
||||
|
||||
if (escrypt_kdf(local, passwd, passwdlen, salt, saltlen,
|
||||
N, r, p, hash, sizeof(hash)))
|
||||
return NULL;
|
||||
|
||||
dst = buf;
|
||||
memcpy(dst, setting, prefixlen + saltlen);
|
||||
dst += prefixlen + saltlen;
|
||||
*dst++ = '$';
|
||||
|
||||
dst = encode64(dst, buflen - (dst - buf), hash, sizeof(hash));
|
||||
/* Could zeroize hash[] here, but escrypt_kdf() doesn't zeroize its
|
||||
* memory allocations yet anyway. */
|
||||
if (!dst || dst >= buf + buflen) /* Can't happen */
|
||||
return NULL;
|
||||
|
||||
*dst = 0; /* NUL termination */
|
||||
|
||||
return buf;
|
||||
}
|
||||
|
||||
uint8_t *
|
||||
escrypt(const uint8_t * passwd, const uint8_t * setting)
|
||||
{
|
||||
static uint8_t buf[4 + 1 + 5 + 5 + BYTES2CHARS(32) + 1 + HASH_LEN + 1];
|
||||
escrypt_local_t local;
|
||||
uint8_t * retval;
|
||||
|
||||
if (escrypt_init_local(&local))
|
||||
return NULL;
|
||||
retval = escrypt_r(&local,
|
||||
passwd, strlen((char *)passwd), setting, buf, sizeof(buf));
|
||||
if (escrypt_free_local(&local))
|
||||
return NULL;
|
||||
return retval;
|
||||
}
|
||||
|
||||
uint8_t *
|
||||
escrypt_gensalt_r(uint32_t N_log2, uint32_t r, uint32_t p,
|
||||
const uint8_t * src, size_t srclen,
|
||||
uint8_t * buf, size_t buflen)
|
||||
{
|
||||
uint8_t * dst;
|
||||
size_t prefixlen = 3 + 1 + 5 + 5;
|
||||
size_t saltlen = BYTES2CHARS(srclen);
|
||||
size_t need;
|
||||
|
||||
need = prefixlen + saltlen + 1;
|
||||
if (need > buflen || need < saltlen || saltlen < srclen)
|
||||
return NULL;
|
||||
|
||||
if (N_log2 > 63 || ((uint64_t)r * (uint64_t)p >= (1U << 30)))
|
||||
return NULL;
|
||||
|
||||
dst = buf;
|
||||
*dst++ = '$';
|
||||
*dst++ = '7';
|
||||
*dst++ = '$';
|
||||
|
||||
*dst++ = itoa64[N_log2];
|
||||
|
||||
dst = encode64_uint32(dst, buflen - (dst - buf), r, 30);
|
||||
if (!dst) /* Can't happen */
|
||||
return NULL;
|
||||
|
||||
dst = encode64_uint32(dst, buflen - (dst - buf), p, 30);
|
||||
if (!dst) /* Can't happen */
|
||||
return NULL;
|
||||
|
||||
dst = encode64(dst, buflen - (dst - buf), src, srclen);
|
||||
if (!dst || dst >= buf + buflen) /* Can't happen */
|
||||
return NULL;
|
||||
|
||||
*dst = 0; /* NUL termination */
|
||||
|
||||
return buf;
|
||||
}
|
||||
|
||||
uint8_t *
|
||||
escrypt_gensalt(uint32_t N_log2, uint32_t r, uint32_t p,
|
||||
const uint8_t * src, size_t srclen)
|
||||
{
|
||||
static uint8_t buf[4 + 1 + 5 + 5 + BYTES2CHARS(32) + 1];
|
||||
return escrypt_gensalt_r(N_log2, r, p, src, srclen,
|
||||
buf, sizeof(buf));
|
||||
}
|
||||
|
||||
int
|
||||
crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
|
||||
const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
|
||||
uint8_t * buf, size_t buflen)
|
||||
{
|
||||
escrypt_local_t local;
|
||||
int retval;
|
||||
|
||||
if (escrypt_init_local(&local))
|
||||
return -1;
|
||||
retval = escrypt_kdf(&local,
|
||||
passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen);
|
||||
if (escrypt_free_local(&local))
|
||||
return -1;
|
||||
return retval;
|
||||
}
|
@ -0,0 +1,91 @@
|
||||
/*-
|
||||
* Copyright 2009 Colin Percival
|
||||
* Copyright 2013 Alexander Peslyak
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* This file was originally written by Colin Percival as part of the Tarsnap
|
||||
* online backup system.
|
||||
*/
|
||||
#ifndef _CRYPTO_SCRYPT_H_
|
||||
#define _CRYPTO_SCRYPT_H_
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
/**
|
||||
* crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
|
||||
* Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
|
||||
* p, buflen) and write the result into buf. The parameters r, p, and buflen
|
||||
* must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
|
||||
* must be a power of 2 greater than 1.
|
||||
*
|
||||
* Return 0 on success; or -1 on error.
|
||||
*/
|
||||
extern int crypto_scrypt(const uint8_t * __passwd, size_t __passwdlen,
|
||||
const uint8_t * __salt, size_t __saltlen,
|
||||
uint64_t __N, uint32_t __r, uint32_t __p,
|
||||
uint8_t * __buf, size_t __buflen);
|
||||
|
||||
typedef struct {
|
||||
void * base, * aligned;
|
||||
size_t size;
|
||||
} escrypt_region_t;
|
||||
|
||||
typedef escrypt_region_t escrypt_local_t;
|
||||
|
||||
extern int escrypt_init_local(escrypt_local_t * __local);
|
||||
|
||||
extern int escrypt_free_local(escrypt_local_t * __local);
|
||||
|
||||
extern void *alloc_region(escrypt_region_t * region, size_t size);
|
||||
extern int free_region(escrypt_region_t * region);
|
||||
|
||||
extern int escrypt_kdf_nosse(escrypt_local_t * __local,
|
||||
const uint8_t * __passwd, size_t __passwdlen,
|
||||
const uint8_t * __salt, size_t __saltlen,
|
||||
uint64_t __N, uint32_t __r, uint32_t __p,
|
||||
uint8_t * __buf, size_t __buflen);
|
||||
|
||||
extern int escrypt_kdf_sse(escrypt_local_t * __local,
|
||||
const uint8_t * __passwd, size_t __passwdlen,
|
||||
const uint8_t * __salt, size_t __saltlen,
|
||||
uint64_t __N, uint32_t __r, uint32_t __p,
|
||||
uint8_t * __buf, size_t __buflen);
|
||||
|
||||
extern uint8_t * escrypt_r(escrypt_local_t * __local,
|
||||
const uint8_t * __passwd, size_t __passwdlen,
|
||||
const uint8_t * __setting,
|
||||
uint8_t * __buf, size_t __buflen);
|
||||
|
||||
extern uint8_t * escrypt(const uint8_t * __passwd, const uint8_t * __setting);
|
||||
|
||||
extern uint8_t * escrypt_gensalt_r(
|
||||
uint32_t __N_log2, uint32_t __r, uint32_t __p,
|
||||
const uint8_t * __src, size_t __srclen,
|
||||
uint8_t * __buf, size_t __buflen);
|
||||
|
||||
extern uint8_t * escrypt_gensalt(
|
||||
uint32_t __N_log2, uint32_t __r, uint32_t __p,
|
||||
const uint8_t * __src, size_t __srclen);
|
||||
|
||||
#endif /* !_CRYPTO_SCRYPT_H_ */
|
@ -0,0 +1,298 @@
|
||||
/*-
|
||||
* Copyright 2009 Colin Percival
|
||||
* Copyright 2013 Alexander Peslyak
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* This file was originally written by Colin Percival as part of the Tarsnap
|
||||
* online backup system.
|
||||
*/
|
||||
|
||||
#include <errno.h>
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "../sha256.h"
|
||||
#include "../sysendian.h"
|
||||
#include "../crypto_scrypt.h"
|
||||
|
||||
static inline void
|
||||
blkcpy(void * dest, const void * src, size_t len)
|
||||
{
|
||||
size_t * D = (size_t *) dest;
|
||||
const size_t * S = (const size_t *) src;
|
||||
size_t L = len / sizeof(size_t);
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < L; i++)
|
||||
D[i] = S[i];
|
||||
}
|
||||
|
||||
static inline void
|
||||
blkxor(void * dest, const void * src, size_t len)
|
||||
{
|
||||
size_t * D = (size_t *) dest;
|
||||
const size_t * S = (const size_t *) src;
|
||||
size_t L = len / sizeof(size_t);
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < L; i++)
|
||||
D[i] ^= S[i];
|
||||
}
|
||||
|
||||
/**
|
||||
* salsa20_8(B):
|
||||
* Apply the salsa20/8 core to the provided block.
|
||||
*/
|
||||
static void
|
||||
salsa20_8(uint32_t B[16])
|
||||
{
|
||||
uint32_t x[16];
|
||||
size_t i;
|
||||
|
||||
blkcpy(x, B, 64);
|
||||
for (i = 0; i < 8; i += 2) {
|
||||
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
|
||||
/* Operate on columns. */
|
||||
x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9);
|
||||
x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18);
|
||||
|
||||
x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9);
|
||||
x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18);
|
||||
|
||||
x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9);
|
||||
x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18);
|
||||
|
||||
x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9);
|
||||
x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18);
|
||||
|
||||
/* Operate on rows. */
|
||||
x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9);
|
||||
x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18);
|
||||
|
||||
x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9);
|
||||
x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18);
|
||||
|
||||
x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9);
|
||||
x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18);
|
||||
|
||||
x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9);
|
||||
x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18);
|
||||
#undef R
|
||||
}
|
||||
for (i = 0; i < 16; i++)
|
||||
B[i] += x[i];
|
||||
}
|
||||
|
||||
/**
|
||||
* blockmix_salsa8(Bin, Bout, X, r):
|
||||
* Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
|
||||
* bytes in length; the output Bout must also be the same size. The
|
||||
* temporary space X must be 64 bytes.
|
||||
*/
|
||||
static void
|
||||
blockmix_salsa8(const uint32_t * Bin, uint32_t * Bout, uint32_t * X, size_t r)
|
||||
{
|
||||
size_t i;
|
||||
|
||||
/* 1: X <-- B_{2r - 1} */
|
||||
blkcpy(X, &Bin[(2 * r - 1) * 16], 64);
|
||||
|
||||
/* 2: for i = 0 to 2r - 1 do */
|
||||
for (i = 0; i < 2 * r; i += 2) {
|
||||
/* 3: X <-- H(X \xor B_i) */
|
||||
blkxor(X, &Bin[i * 16], 64);
|
||||
salsa20_8(X);
|
||||
|
||||
/* 4: Y_i <-- X */
|
||||
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
|
||||
blkcpy(&Bout[i * 8], X, 64);
|
||||
|
||||
/* 3: X <-- H(X \xor B_i) */
|
||||
blkxor(X, &Bin[i * 16 + 16], 64);
|
||||
salsa20_8(X);
|
||||
|
||||
/* 4: Y_i <-- X */
|
||||
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
|
||||
blkcpy(&Bout[i * 8 + r * 16], X, 64);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* integerify(B, r):
|
||||
* Return the result of parsing B_{2r-1} as a little-endian integer.
|
||||
*/
|
||||
static inline uint64_t
|
||||
integerify(const void * B, size_t r)
|
||||
{
|
||||
const uint32_t * X = (const uint32_t *)((uintptr_t)(B) + (2 * r - 1) * 64);
|
||||
|
||||
return (((uint64_t)(X[1]) << 32) + X[0]);
|
||||
}
|
||||
|
||||
/**
|
||||
* smix(B, r, N, V, XY):
|
||||
* Compute B = SMix_r(B, N). The input B must be 128r bytes in length;
|
||||
* the temporary storage V must be 128rN bytes in length; the temporary
|
||||
* storage XY must be 256r + 64 bytes in length. The value N must be a
|
||||
* power of 2 greater than 1. The arrays B, V, and XY must be aligned to a
|
||||
* multiple of 64 bytes.
|
||||
*/
|
||||
static void
|
||||
smix(uint8_t * B, size_t r, uint64_t N, uint32_t * V, uint32_t * XY)
|
||||
{
|
||||
uint32_t * X = XY;
|
||||
uint32_t * Y = &XY[32 * r];
|
||||
uint32_t * Z = &XY[64 * r];
|
||||
uint64_t i;
|
||||
uint64_t j;
|
||||
size_t k;
|
||||
|
||||
/* 1: X <-- B */
|
||||
for (k = 0; k < 32 * r; k++)
|
||||
X[k] = le32dec(&B[4 * k]);
|
||||
|
||||
/* 2: for i = 0 to N - 1 do */
|
||||
for (i = 0; i < N; i += 2) {
|
||||
/* 3: V_i <-- X */
|
||||
blkcpy(&V[i * (32 * r)], X, 128 * r);
|
||||
|
||||
/* 4: X <-- H(X) */
|
||||
blockmix_salsa8(X, Y, Z, r);
|
||||
|
||||
/* 3: V_i <-- X */
|
||||
blkcpy(&V[(i + 1) * (32 * r)], Y, 128 * r);
|
||||
|
||||
/* 4: X <-- H(X) */
|
||||
blockmix_salsa8(Y, X, Z, r);
|
||||
}
|
||||
|
||||
/* 6: for i = 0 to N - 1 do */
|
||||
for (i = 0; i < N; i += 2) {
|
||||
/* 7: j <-- Integerify(X) mod N */
|
||||
j = integerify(X, r) & (N - 1);
|
||||
|
||||
/* 8: X <-- H(X \xor V_j) */
|
||||
blkxor(X, &V[j * (32 * r)], 128 * r);
|
||||
blockmix_salsa8(X, Y, Z, r);
|
||||
|
||||
/* 7: j <-- Integerify(X) mod N */
|
||||
j = integerify(Y, r) & (N - 1);
|
||||
|
||||
/* 8: X <-- H(X \xor V_j) */
|
||||
blkxor(Y, &V[j * (32 * r)], 128 * r);
|
||||
blockmix_salsa8(Y, X, Z, r);
|
||||
}
|
||||
|
||||
/* 10: B' <-- X */
|
||||
for (k = 0; k < 32 * r; k++)
|
||||
le32enc(&B[4 * k], X[k]);
|
||||
}
|
||||
|
||||
/**
|
||||
* escrypt_kdf(local, passwd, passwdlen, salt, saltlen,
|
||||
* N, r, p, buf, buflen):
|
||||
* Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
|
||||
* p, buflen) and write the result into buf. The parameters r, p, and buflen
|
||||
* must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
|
||||
* must be a power of 2 greater than 1.
|
||||
*
|
||||
* Return 0 on success; or -1 on error.
|
||||
*/
|
||||
int
|
||||
escrypt_kdf_nosse(escrypt_local_t * local,
|
||||
const uint8_t * passwd, size_t passwdlen,
|
||||
const uint8_t * salt, size_t saltlen,
|
||||
uint64_t N, uint32_t _r, uint32_t _p,
|
||||
uint8_t * buf, size_t buflen)
|
||||
{
|
||||
size_t B_size, V_size, XY_size, need;
|
||||
uint8_t * B;
|
||||
uint32_t * V, * XY;
|
||||
size_t r = _r, p = _p;
|
||||
uint32_t i;
|
||||
|
||||
/* Sanity-check parameters. */
|
||||
#if SIZE_MAX > UINT32_MAX
|
||||
if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
|
||||
errno = EFBIG;
|
||||
return -1;
|
||||
}
|
||||
#endif
|
||||
if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
|
||||
errno = EFBIG;
|
||||
return -1;
|
||||
}
|
||||
if (((N & (N - 1)) != 0) || (N < 2)) {
|
||||
errno = EINVAL;
|
||||
return -1;
|
||||
}
|
||||
if ((r > SIZE_MAX / 128 / p) ||
|
||||
#if SIZE_MAX / 256 <= UINT32_MAX
|
||||
(r > SIZE_MAX / 256) ||
|
||||
#endif
|
||||
(N > SIZE_MAX / 128 / r)) {
|
||||
errno = ENOMEM;
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Allocate memory. */
|
||||
B_size = (size_t)128 * r * p;
|
||||
V_size = (size_t)128 * r * N;
|
||||
need = B_size + V_size;
|
||||
if (need < V_size) {
|
||||
errno = ENOMEM;
|
||||
return -1;
|
||||
}
|
||||
XY_size = (size_t)256 * r;
|
||||
need += XY_size;
|
||||
if (need < XY_size) {
|
||||
errno = ENOMEM;
|
||||
return -1;
|
||||
}
|
||||
if (local->size < need) {
|
||||
if (free_region(local))
|
||||
return -1;
|
||||
if (!alloc_region(local, need))
|
||||
return -1;
|
||||
}
|
||||
B = (uint8_t *)local->aligned;
|
||||
V = (uint32_t *)((uint8_t *)B + B_size);
|
||||
XY = (uint32_t *)((uint8_t *)V + V_size);
|
||||
|
||||
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
|
||||
PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, B_size);
|
||||
|
||||
/* 2: for i = 0 to p - 1 do */
|
||||
for (i = 0; i < p; i++) {
|
||||
/* 3: B_i <-- MF(B_i, N) */
|
||||
smix(&B[(size_t)128 * i * r], r, N, V, XY);
|
||||
}
|
||||
|
||||
/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
|
||||
PBKDF2_SHA256(passwd, passwdlen, B, B_size, 1, buf, buflen);
|
||||
|
||||
/* Success! */
|
||||
return 0;
|
||||
}
|
@ -0,0 +1,94 @@
|
||||
/*-
|
||||
* Copyright 2013 Alexander Peslyak
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_SYS_MMAN_H
|
||||
# include <sys/mman.h>
|
||||
#endif
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "crypto_scrypt.h"
|
||||
|
||||
void *
|
||||
alloc_region(escrypt_region_t * region, size_t size)
|
||||
{
|
||||
uint8_t * base, * aligned;
|
||||
#ifdef MAP_ANON
|
||||
if ((base = (uint8_t *) mmap(NULL, size, PROT_READ | PROT_WRITE,
|
||||
#ifdef MAP_NOCORE
|
||||
MAP_ANON | MAP_PRIVATE | MAP_NOCORE,
|
||||
#else
|
||||
MAP_ANON | MAP_PRIVATE,
|
||||
#endif
|
||||
-1, 0)) == MAP_FAILED)
|
||||
base = NULL;
|
||||
aligned = base;
|
||||
#elif defined(HAVE_POSIX_MEMALIGN)
|
||||
if ((errno = posix_memalign((void **) &base, 64, size)) != 0)
|
||||
base = NULL;
|
||||
aligned = base;
|
||||
#else
|
||||
base = aligned = NULL;
|
||||
if (size + 63 < size)
|
||||
errno = ENOMEM;
|
||||
else if ((base = (uint8_t *) malloc(size + 63)) != NULL) {
|
||||
aligned = base + 63;
|
||||
aligned -= (uintptr_t)aligned & 63;
|
||||
}
|
||||
#endif
|
||||
region->base = base;
|
||||
region->aligned = aligned;
|
||||
region->size = base ? size : 0;
|
||||
return aligned;
|
||||
}
|
||||
|
||||
static inline void
|
||||
init_region(escrypt_region_t * region)
|
||||
{
|
||||
region->base = region->aligned = NULL;
|
||||
region->size = 0;
|
||||
}
|
||||
|
||||
int
|
||||
free_region(escrypt_region_t * region)
|
||||
{
|
||||
if (region->base) {
|
||||
#ifdef MAP_ANON
|
||||
if (munmap(region->base, region->size))
|
||||
return -1;
|
||||
#else
|
||||
free(region->base);
|
||||
#endif
|
||||
}
|
||||
init_region(region);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int
|
||||
escrypt_init_local(escrypt_local_t * local)
|
||||
{
|
||||
init_region(local);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int
|
||||
escrypt_free_local(escrypt_local_t * local)
|
||||
{
|
||||
return free_region(local);
|
||||
}
|
411
src/libsodium/crypto_pwhash/scryptxsalsa208sha256/sha256.c
Normal file
411
src/libsodium/crypto_pwhash/scryptxsalsa208sha256/sha256.c
Normal file
@ -0,0 +1,411 @@
|
||||
/*-
|
||||
* Copyright 2005,2007,2009 Colin Percival
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/types.h>
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "sysendian.h"
|
||||
|
||||
#include "sha256.h"
|
||||
|
||||
/*
|
||||
* Encode a length len/4 vector of (uint32_t) into a length len vector of
|
||||
* (unsigned char) in big-endian form. Assumes len is a multiple of 4.
|
||||
*/
|
||||
static void
|
||||
be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
|
||||
{
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < len / 4; i++)
|
||||
be32enc(dst + i * 4, src[i]);
|
||||
}
|
||||
|
||||
/*
|
||||
* Decode a big-endian length len vector of (unsigned char) into a length
|
||||
* len/4 vector of (uint32_t). Assumes len is a multiple of 4.
|
||||
*/
|
||||
static void
|
||||
be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
|
||||
{
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < len / 4; i++)
|
||||
dst[i] = be32dec(src + i * 4);
|
||||
}
|
||||
|
||||
/* Elementary functions used by SHA256 */
|
||||
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
|
||||
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
|
||||
#define SHR(x, n) (x >> n)
|
||||
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
|
||||
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
|
||||
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
|
||||
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
|
||||
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
|
||||
|
||||
/* SHA256 round function */
|
||||
#define RND(a, b, c, d, e, f, g, h, k) \
|
||||
t0 = h + S1(e) + Ch(e, f, g) + k; \
|
||||
t1 = S0(a) + Maj(a, b, c); \
|
||||
d += t0; \
|
||||
h = t0 + t1;
|
||||
|
||||
/* Adjusted round function for rotating state */
|
||||
#define RNDr(S, W, i, k) \
|
||||
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
|
||||
S[(66 - i) % 8], S[(67 - i) % 8], \
|
||||
S[(68 - i) % 8], S[(69 - i) % 8], \
|
||||
S[(70 - i) % 8], S[(71 - i) % 8], \
|
||||
W[i] + k)
|
||||
|
||||
/*
|
||||
* SHA256 block compression function. The 256-bit state is transformed via
|
||||
* the 512-bit input block to produce a new state.
|
||||
*/
|
||||
static void
|
||||
SHA256_Transform(uint32_t * state, const unsigned char block[64])
|
||||
{
|
||||
uint32_t W[64];
|
||||
uint32_t S[8];
|
||||
uint32_t t0, t1;
|
||||
int i;
|
||||
|
||||
/* 1. Prepare message schedule W. */
|
||||
be32dec_vect(W, block, 64);
|
||||
for (i = 16; i < 64; i++)
|
||||
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
|
||||
|
||||
/* 2. Initialize working variables. */
|
||||
memcpy(S, state, 32);
|
||||
|
||||
/* 3. Mix. */
|
||||
RNDr(S, W, 0, 0x428a2f98);
|
||||
RNDr(S, W, 1, 0x71374491);
|
||||
RNDr(S, W, 2, 0xb5c0fbcf);
|
||||
RNDr(S, W, 3, 0xe9b5dba5);
|
||||
RNDr(S, W, 4, 0x3956c25b);
|
||||
RNDr(S, W, 5, 0x59f111f1);
|
||||
RNDr(S, W, 6, 0x923f82a4);
|
||||
RNDr(S, W, 7, 0xab1c5ed5);
|
||||
RNDr(S, W, 8, 0xd807aa98);
|
||||
RNDr(S, W, 9, 0x12835b01);
|
||||
RNDr(S, W, 10, 0x243185be);
|
||||
RNDr(S, W, 11, 0x550c7dc3);
|
||||
RNDr(S, W, 12, 0x72be5d74);
|
||||
RNDr(S, W, 13, 0x80deb1fe);
|
||||
RNDr(S, W, 14, 0x9bdc06a7);
|
||||
RNDr(S, W, 15, 0xc19bf174);
|
||||
RNDr(S, W, 16, 0xe49b69c1);
|
||||
RNDr(S, W, 17, 0xefbe4786);
|
||||
RNDr(S, W, 18, 0x0fc19dc6);
|
||||
RNDr(S, W, 19, 0x240ca1cc);
|
||||
RNDr(S, W, 20, 0x2de92c6f);
|
||||
RNDr(S, W, 21, 0x4a7484aa);
|
||||
RNDr(S, W, 22, 0x5cb0a9dc);
|
||||
RNDr(S, W, 23, 0x76f988da);
|
||||
RNDr(S, W, 24, 0x983e5152);
|
||||
RNDr(S, W, 25, 0xa831c66d);
|
||||
RNDr(S, W, 26, 0xb00327c8);
|
||||
RNDr(S, W, 27, 0xbf597fc7);
|
||||
RNDr(S, W, 28, 0xc6e00bf3);
|
||||
RNDr(S, W, 29, 0xd5a79147);
|
||||
RNDr(S, W, 30, 0x06ca6351);
|
||||
RNDr(S, W, 31, 0x14292967);
|
||||
RNDr(S, W, 32, 0x27b70a85);
|
||||
RNDr(S, W, 33, 0x2e1b2138);
|
||||
RNDr(S, W, 34, 0x4d2c6dfc);
|
||||
RNDr(S, W, 35, 0x53380d13);
|
||||
RNDr(S, W, 36, 0x650a7354);
|
||||
RNDr(S, W, 37, 0x766a0abb);
|
||||
RNDr(S, W, 38, 0x81c2c92e);
|
||||
RNDr(S, W, 39, 0x92722c85);
|
||||
RNDr(S, W, 40, 0xa2bfe8a1);
|
||||
RNDr(S, W, 41, 0xa81a664b);
|
||||
RNDr(S, W, 42, 0xc24b8b70);
|
||||
RNDr(S, W, 43, 0xc76c51a3);
|
||||
RNDr(S, W, 44, 0xd192e819);
|
||||
RNDr(S, W, 45, 0xd6990624);
|
||||
RNDr(S, W, 46, 0xf40e3585);
|
||||
RNDr(S, W, 47, 0x106aa070);
|
||||
RNDr(S, W, 48, 0x19a4c116);
|
||||
RNDr(S, W, 49, 0x1e376c08);
|
||||
RNDr(S, W, 50, 0x2748774c);
|
||||
RNDr(S, W, 51, 0x34b0bcb5);
|
||||
RNDr(S, W, 52, 0x391c0cb3);
|
||||
RNDr(S, W, 53, 0x4ed8aa4a);
|
||||
RNDr(S, W, 54, 0x5b9cca4f);
|
||||
RNDr(S, W, 55, 0x682e6ff3);
|
||||
RNDr(S, W, 56, 0x748f82ee);
|
||||
RNDr(S, W, 57, 0x78a5636f);
|
||||
RNDr(S, W, 58, 0x84c87814);
|
||||
RNDr(S, W, 59, 0x8cc70208);
|
||||
RNDr(S, W, 60, 0x90befffa);
|
||||
RNDr(S, W, 61, 0xa4506ceb);
|
||||
RNDr(S, W, 62, 0xbef9a3f7);
|
||||
RNDr(S, W, 63, 0xc67178f2);
|
||||
|
||||
/* 4. Mix local working variables into global state */
|
||||
for (i = 0; i < 8; i++)
|
||||
state[i] += S[i];
|
||||
|
||||
/* Clean the stack. */
|
||||
memset(W, 0, 256);
|
||||
memset(S, 0, 32);
|
||||
t0 = t1 = 0;
|
||||
}
|
||||
|
||||
static unsigned char PAD[64] = {
|
||||
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||||
};
|
||||
|
||||
/* Add padding and terminating bit-count. */
|
||||
static void
|
||||
SHA256_Pad(SHA256_CTX * ctx)
|
||||
{
|
||||
unsigned char len[8];
|
||||
uint32_t r, plen;
|
||||
|
||||
/*
|
||||
* Convert length to a vector of bytes -- we do this now rather
|
||||
* than later because the length will change after we pad.
|
||||
*/
|
||||
be32enc_vect(len, ctx->count, 8);
|
||||
|
||||
/* Add 1--64 bytes so that the resulting length is 56 mod 64 */
|
||||
r = (ctx->count[1] >> 3) & 0x3f;
|
||||
plen = (r < 56) ? (56 - r) : (120 - r);
|
||||
_SHA256_Update(ctx, PAD, (size_t)plen);
|
||||
|
||||
/* Add the terminating bit-count */
|
||||
_SHA256_Update(ctx, len, 8);
|
||||
}
|
||||
|
||||
/* SHA-256 initialization. Begins a SHA-256 operation. */
|
||||
void
|
||||
_SHA256_Init(SHA256_CTX * ctx)
|
||||
{
|
||||
|
||||
/* Zero bits processed so far */
|
||||
ctx->count[0] = ctx->count[1] = 0;
|
||||
|
||||
/* Magic initialization constants */
|
||||
ctx->state[0] = 0x6A09E667;
|
||||
ctx->state[1] = 0xBB67AE85;
|
||||
ctx->state[2] = 0x3C6EF372;
|
||||
ctx->state[3] = 0xA54FF53A;
|
||||
ctx->state[4] = 0x510E527F;
|
||||
ctx->state[5] = 0x9B05688C;
|
||||
ctx->state[6] = 0x1F83D9AB;
|
||||
ctx->state[7] = 0x5BE0CD19;
|
||||
}
|
||||
|
||||
/* Add bytes into the hash */
|
||||
void
|
||||
_SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len)
|
||||
{
|
||||
uint32_t bitlen[2];
|
||||
uint32_t r;
|
||||
const unsigned char *src = (const unsigned char *) in;
|
||||
|
||||
/* Number of bytes left in the buffer from previous updates */
|
||||
r = (ctx->count[1] >> 3) & 0x3f;
|
||||
|
||||
/* Convert the length into a number of bits */
|
||||
bitlen[1] = ((uint32_t)len) << 3;
|
||||
bitlen[0] = (uint32_t)(len >> 29);
|
||||
|
||||
/* Update number of bits */
|
||||
if ((ctx->count[1] += bitlen[1]) < bitlen[1])
|
||||
ctx->count[0]++;
|
||||
ctx->count[0] += bitlen[0];
|
||||
|
||||
/* Handle the case where we don't need to perform any transforms */
|
||||
if (len < 64 - r) {
|
||||
memcpy(&ctx->buf[r], src, len);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Finish the current block */
|
||||
memcpy(&ctx->buf[r], src, 64 - r);
|
||||
SHA256_Transform(ctx->state, ctx->buf);
|
||||
src += 64 - r;
|
||||
len -= 64 - r;
|
||||
|
||||
/* Perform complete blocks */
|
||||
while (len >= 64) {
|
||||
SHA256_Transform(ctx->state, src);
|
||||
src += 64;
|
||||
len -= 64;
|
||||
}
|
||||
|
||||
/* Copy left over data into buffer */
|
||||
memcpy(ctx->buf, src, len);
|
||||
}
|
||||
|
||||
/*
|
||||
* SHA-256 finalization. Pads the input data, exports the hash value,
|
||||
* and clears the context state.
|
||||
*/
|
||||
void
|
||||
_SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx)
|
||||
{
|
||||
|
||||
/* Add padding */
|
||||
SHA256_Pad(ctx);
|
||||
|
||||
/* Write the hash */
|
||||
be32enc_vect(digest, ctx->state, 32);
|
||||
|
||||
/* Clear the context state */
|
||||
memset((void *)ctx, 0, sizeof(*ctx));
|
||||
}
|
||||
|
||||
/* Initialize an HMAC-SHA256 operation with the given key. */
|
||||
void
|
||||
HMAC__SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen)
|
||||
{
|
||||
unsigned char pad[64];
|
||||
unsigned char khash[32];
|
||||
const unsigned char * K = (const unsigned char *) _K;
|
||||
size_t i;
|
||||
|
||||
/* If Klen > 64, the key is really SHA256(K). */
|
||||
if (Klen > 64) {
|
||||
_SHA256_Init(&ctx->ictx);
|
||||
_SHA256_Update(&ctx->ictx, K, Klen);
|
||||
_SHA256_Final(khash, &ctx->ictx);
|
||||
K = khash;
|
||||
Klen = 32;
|
||||
}
|
||||
|
||||
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
|
||||
_SHA256_Init(&ctx->ictx);
|
||||
memset(pad, 0x36, 64);
|
||||
for (i = 0; i < Klen; i++)
|
||||
pad[i] ^= K[i];
|
||||
_SHA256_Update(&ctx->ictx, pad, 64);
|
||||
|
||||
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
|
||||
_SHA256_Init(&ctx->octx);
|
||||
memset(pad, 0x5c, 64);
|
||||
for (i = 0; i < Klen; i++)
|
||||
pad[i] ^= K[i];
|
||||
_SHA256_Update(&ctx->octx, pad, 64);
|
||||
|
||||
/* Clean the stack. */
|
||||
memset(khash, 0, 32);
|
||||
}
|
||||
|
||||
/* Add bytes to the HMAC-SHA256 operation. */
|
||||
void
|
||||
HMAC__SHA256_Update(HMAC_SHA256_CTX * ctx, const void *in, size_t len)
|
||||
{
|
||||
|
||||
/* Feed data to the inner SHA256 operation. */
|
||||
_SHA256_Update(&ctx->ictx, in, len);
|
||||
}
|
||||
|
||||
/* Finish an HMAC-SHA256 operation. */
|
||||
void
|
||||
HMAC__SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx)
|
||||
{
|
||||
unsigned char ihash[32];
|
||||
|
||||
/* Finish the inner SHA256 operation. */
|
||||
_SHA256_Final(ihash, &ctx->ictx);
|
||||
|
||||
/* Feed the inner hash to the outer SHA256 operation. */
|
||||
_SHA256_Update(&ctx->octx, ihash, 32);
|
||||
|
||||
/* Finish the outer SHA256 operation. */
|
||||
_SHA256_Final(digest, &ctx->octx);
|
||||
|
||||
/* Clean the stack. */
|
||||
memset(ihash, 0, 32);
|
||||
}
|
||||
|
||||
/**
|
||||
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
|
||||
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
|
||||
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
|
||||
*/
|
||||
void
|
||||
PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
|
||||
size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
|
||||
{
|
||||
HMAC_SHA256_CTX PShctx, hctx;
|
||||
size_t i;
|
||||
uint8_t ivec[4];
|
||||
uint8_t U[32];
|
||||
uint8_t T[32];
|
||||
uint64_t j;
|
||||
int k;
|
||||
size_t clen;
|
||||
|
||||
/* Compute HMAC state after processing P and S. */
|
||||
HMAC__SHA256_Init(&PShctx, passwd, passwdlen);
|
||||
HMAC__SHA256_Update(&PShctx, salt, saltlen);
|
||||
|
||||
/* Iterate through the blocks. */
|
||||
for (i = 0; i * 32 < dkLen; i++) {
|
||||
/* Generate INT(i + 1). */
|
||||
be32enc(ivec, (uint32_t)(i + 1));
|
||||
|
||||
/* Compute U_1 = PRF(P, S || INT(i)). */
|
||||
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
|
||||
HMAC__SHA256_Update(&hctx, ivec, 4);
|
||||
HMAC__SHA256_Final(U, &hctx);
|
||||
|
||||
/* T_i = U_1 ... */
|
||||
memcpy(T, U, 32);
|
||||
|
||||
for (j = 2; j <= c; j++) {
|
||||
/* Compute U_j. */
|
||||
HMAC__SHA256_Init(&hctx, passwd, passwdlen);
|
||||
HMAC__SHA256_Update(&hctx, U, 32);
|
||||
HMAC__SHA256_Final(U, &hctx);
|
||||
|
||||
/* ... xor U_j ... */
|
||||
for (k = 0; k < 32; k++)
|
||||
T[k] ^= U[k];
|
||||
}
|
||||
|
||||
/* Copy as many bytes as necessary into buf. */
|
||||
clen = dkLen - i * 32;
|
||||
if (clen > 32)
|
||||
clen = 32;
|
||||
memcpy(&buf[i * 32], T, clen);
|
||||
}
|
||||
|
||||
/* Clean PShctx, since we never called _Final on it. */
|
||||
memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX));
|
||||
}
|
62
src/libsodium/crypto_pwhash/scryptxsalsa208sha256/sha256.h
Normal file
62
src/libsodium/crypto_pwhash/scryptxsalsa208sha256/sha256.h
Normal file
@ -0,0 +1,62 @@
|
||||
/*-
|
||||
* Copyright 2005,2007,2009 Colin Percival
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* $FreeBSD: src/lib/libmd/sha256.h,v 1.2 2006/01/17 15:35:56 phk Exp $
|
||||
*/
|
||||
|
||||
#ifndef _SHA256_H_
|
||||
#define _SHA256_H_
|
||||
|
||||
#include <sys/types.h>
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
typedef struct SHA256Context {
|
||||
uint32_t state[8];
|
||||
uint32_t count[2];
|
||||
unsigned char buf[64];
|
||||
} SHA256_CTX;
|
||||
|
||||
typedef struct HMAC_SHA256Context {
|
||||
SHA256_CTX ictx;
|
||||
SHA256_CTX octx;
|
||||
} HMAC_SHA256_CTX;
|
||||
|
||||
void _SHA256_Init(SHA256_CTX *);
|
||||
void _SHA256_Update(SHA256_CTX *, const void *, size_t);
|
||||
void _SHA256_Final(unsigned char [32], SHA256_CTX *);
|
||||
void HMAC__SHA256_Init(HMAC_SHA256_CTX *, const void *, size_t);
|
||||
void HMAC__SHA256_Update(HMAC_SHA256_CTX *, const void *, size_t);
|
||||
void HMAC__SHA256_Final(unsigned char [32], HMAC_SHA256_CTX *);
|
||||
|
||||
/**
|
||||
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
|
||||
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
|
||||
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
|
||||
*/
|
||||
void PBKDF2_SHA256(const uint8_t *, size_t, const uint8_t *, size_t,
|
||||
uint64_t, uint8_t *, size_t);
|
||||
|
||||
#endif /* !_SHA256_H_ */
|
@ -0,0 +1,381 @@
|
||||
/*-
|
||||
* Copyright 2009 Colin Percival
|
||||
* Copyright 2012,2013 Alexander Peslyak
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* This file was originally written by Colin Percival as part of the Tarsnap
|
||||
* online backup system.
|
||||
*/
|
||||
|
||||
#include <emmintrin.h>
|
||||
#if defined(__XOP__) && defined(DISABLED)
|
||||
#include <x86intrin.h>
|
||||
#endif
|
||||
|
||||
#include <errno.h>
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "../sha256.h"
|
||||
#include "../sysendian.h"
|
||||
#include "../crypto_scrypt.h"
|
||||
|
||||
#if defined(__XOP__) && defined(DISABLED)
|
||||
#define ARX(out, in1, in2, s) \
|
||||
out = _mm_xor_si128(out, _mm_roti_epi32(_mm_add_epi32(in1, in2), s));
|
||||
#else
|
||||
#define ARX(out, in1, in2, s) \
|
||||
{ \
|
||||
__m128i T = _mm_add_epi32(in1, in2); \
|
||||
out = _mm_xor_si128(out, _mm_slli_epi32(T, s)); \
|
||||
out = _mm_xor_si128(out, _mm_srli_epi32(T, 32-s)); \
|
||||
}
|
||||
#endif
|
||||
|
||||
#define SALSA20_2ROUNDS \
|
||||
/* Operate on "columns". */ \
|
||||
ARX(X1, X0, X3, 7) \
|
||||
ARX(X2, X1, X0, 9) \
|
||||
ARX(X3, X2, X1, 13) \
|
||||
ARX(X0, X3, X2, 18) \
|
||||
\
|
||||
/* Rearrange data. */ \
|
||||
X1 = _mm_shuffle_epi32(X1, 0x93); \
|
||||
X2 = _mm_shuffle_epi32(X2, 0x4E); \
|
||||
X3 = _mm_shuffle_epi32(X3, 0x39); \
|
||||
\
|
||||
/* Operate on "rows". */ \
|
||||
ARX(X3, X0, X1, 7) \
|
||||
ARX(X2, X3, X0, 9) \
|
||||
ARX(X1, X2, X3, 13) \
|
||||
ARX(X0, X1, X2, 18) \
|
||||
\
|
||||
/* Rearrange data. */ \
|
||||
X1 = _mm_shuffle_epi32(X1, 0x39); \
|
||||
X2 = _mm_shuffle_epi32(X2, 0x4E); \
|
||||
X3 = _mm_shuffle_epi32(X3, 0x93);
|
||||
|
||||
/**
|
||||
* Apply the salsa20/8 core to the block provided in (X0 ... X3) ^ (Z0 ... Z3).
|
||||
*/
|
||||
#define SALSA20_8_XOR(in, out) \
|
||||
{ \
|
||||
__m128i Y0 = X0 = _mm_xor_si128(X0, (in)[0]); \
|
||||
__m128i Y1 = X1 = _mm_xor_si128(X1, (in)[1]); \
|
||||
__m128i Y2 = X2 = _mm_xor_si128(X2, (in)[2]); \
|
||||
__m128i Y3 = X3 = _mm_xor_si128(X3, (in)[3]); \
|
||||
SALSA20_2ROUNDS \
|
||||
SALSA20_2ROUNDS \
|
||||
SALSA20_2ROUNDS \
|
||||
SALSA20_2ROUNDS \
|
||||
(out)[0] = X0 = _mm_add_epi32(X0, Y0); \
|
||||
(out)[1] = X1 = _mm_add_epi32(X1, Y1); \
|
||||
(out)[2] = X2 = _mm_add_epi32(X2, Y2); \
|
||||
(out)[3] = X3 = _mm_add_epi32(X3, Y3); \
|
||||
}
|
||||
|
||||
/**
|
||||
* blockmix_salsa8(Bin, Bout, r):
|
||||
* Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
|
||||
* bytes in length; the output Bout must also be the same size.
|
||||
*/
|
||||
static inline void
|
||||
blockmix_salsa8(const __m128i * Bin, __m128i * Bout, size_t r)
|
||||
{
|
||||
__m128i X0, X1, X2, X3;
|
||||
size_t i;
|
||||
|
||||
/* 1: X <-- B_{2r - 1} */
|
||||
X0 = Bin[8 * r - 4];
|
||||
X1 = Bin[8 * r - 3];
|
||||
X2 = Bin[8 * r - 2];
|
||||
X3 = Bin[8 * r - 1];
|
||||
|
||||
/* 3: X <-- H(X \xor B_i) */
|
||||
/* 4: Y_i <-- X */
|
||||
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
|
||||
SALSA20_8_XOR(Bin, Bout)
|
||||
|
||||
/* 2: for i = 0 to 2r - 1 do */
|
||||
r--;
|
||||
for (i = 0; i < r;) {
|
||||
/* 3: X <-- H(X \xor B_i) */
|
||||
/* 4: Y_i <-- X */
|
||||
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
|
||||
SALSA20_8_XOR(&Bin[i * 8 + 4], &Bout[(r + i) * 4 + 4])
|
||||
|
||||
i++;
|
||||
|
||||
/* 3: X <-- H(X \xor B_i) */
|
||||
/* 4: Y_i <-- X */
|
||||
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
|
||||
SALSA20_8_XOR(&Bin[i * 8], &Bout[i * 4])
|
||||
}
|
||||
|
||||
/* 3: X <-- H(X \xor B_i) */
|
||||
/* 4: Y_i <-- X */
|
||||
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
|
||||
SALSA20_8_XOR(&Bin[i * 8 + 4], &Bout[(r + i) * 4 + 4])
|
||||
}
|
||||
|
||||
#define XOR4(in) \
|
||||
X0 = _mm_xor_si128(X0, (in)[0]); \
|
||||
X1 = _mm_xor_si128(X1, (in)[1]); \
|
||||
X2 = _mm_xor_si128(X2, (in)[2]); \
|
||||
X3 = _mm_xor_si128(X3, (in)[3]);
|
||||
|
||||
#define XOR4_2(in1, in2) \
|
||||
X0 = _mm_xor_si128((in1)[0], (in2)[0]); \
|
||||
X1 = _mm_xor_si128((in1)[1], (in2)[1]); \
|
||||
X2 = _mm_xor_si128((in1)[2], (in2)[2]); \
|
||||
X3 = _mm_xor_si128((in1)[3], (in2)[3]);
|
||||
|
||||
static inline uint32_t
|
||||
blockmix_salsa8_xor(const __m128i * Bin1, const __m128i * Bin2, __m128i * Bout,
|
||||
size_t r)
|
||||
{
|
||||
__m128i X0, X1, X2, X3;
|
||||
size_t i;
|
||||
|
||||
/* 1: X <-- B_{2r - 1} */
|
||||
XOR4_2(&Bin1[8 * r - 4], &Bin2[8 * r - 4])
|
||||
|
||||
/* 3: X <-- H(X \xor B_i) */
|
||||
/* 4: Y_i <-- X */
|
||||
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
|
||||
XOR4(Bin1)
|
||||
SALSA20_8_XOR(Bin2, Bout)
|
||||
|
||||
/* 2: for i = 0 to 2r - 1 do */
|
||||
r--;
|
||||
for (i = 0; i < r;) {
|
||||
/* 3: X <-- H(X \xor B_i) */
|
||||
/* 4: Y_i <-- X */
|
||||
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
|
||||
XOR4(&Bin1[i * 8 + 4])
|
||||
SALSA20_8_XOR(&Bin2[i * 8 + 4], &Bout[(r + i) * 4 + 4])
|
||||
|
||||
i++;
|
||||
|
||||
/* 3: X <-- H(X \xor B_i) */
|
||||
/* 4: Y_i <-- X */
|
||||
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
|
||||
XOR4(&Bin1[i * 8])
|
||||
SALSA20_8_XOR(&Bin2[i * 8], &Bout[i * 4])
|
||||
}
|
||||
|
||||
/* 3: X <-- H(X \xor B_i) */
|
||||
/* 4: Y_i <-- X */
|
||||
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
|
||||
XOR4(&Bin1[i * 8 + 4])
|
||||
SALSA20_8_XOR(&Bin2[i * 8 + 4], &Bout[(r + i) * 4 + 4])
|
||||
|
||||
return _mm_cvtsi128_si32(X0);
|
||||
}
|
||||
|
||||
#undef ARX
|
||||
#undef SALSA20_2ROUNDS
|
||||
#undef SALSA20_8_XOR
|
||||
#undef XOR4
|
||||
#undef XOR4_2
|
||||
|
||||
/**
|
||||
* integerify(B, r):
|
||||
* Return the result of parsing B_{2r-1} as a little-endian integer.
|
||||
*/
|
||||
static inline uint32_t
|
||||
integerify(const void * B, size_t r)
|
||||
{
|
||||
return *(const uint32_t *)((uintptr_t)(B) + (2 * r - 1) * 64);
|
||||
}
|
||||
|
||||
/**
|
||||
* smix(B, r, N, V, XY):
|
||||
* Compute B = SMix_r(B, N). The input B must be 128r bytes in length;
|
||||
* the temporary storage V must be 128rN bytes in length; the temporary
|
||||
* storage XY must be 256r + 64 bytes in length. The value N must be a
|
||||
* power of 2 greater than 1. The arrays B, V, and XY must be aligned to a
|
||||
* multiple of 64 bytes.
|
||||
*/
|
||||
static void
|
||||
smix(uint8_t * B, size_t r, uint32_t N, void * V, void * XY)
|
||||
{
|
||||
size_t s = 128 * r;
|
||||
__m128i * X = (__m128i *) V, * Y;
|
||||
uint32_t * X32 = (uint32_t *) V;
|
||||
uint32_t i, j;
|
||||
size_t k;
|
||||
|
||||
/* 1: X <-- B */
|
||||
/* 3: V_i <-- X */
|
||||
for (k = 0; k < 2 * r; k++) {
|
||||
for (i = 0; i < 16; i++) {
|
||||
X32[k * 16 + i] =
|
||||
le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]);
|
||||
}
|
||||
}
|
||||
|
||||
/* 2: for i = 0 to N - 1 do */
|
||||
for (i = 1; i < N - 1; i += 2) {
|
||||
/* 4: X <-- H(X) */
|
||||
/* 3: V_i <-- X */
|
||||
Y = (__m128i *)((uintptr_t)(V) + i * s);
|
||||
blockmix_salsa8(X, Y, r);
|
||||
|
||||
/* 4: X <-- H(X) */
|
||||
/* 3: V_i <-- X */
|
||||
X = (__m128i *)((uintptr_t)(V) + (i + 1) * s);
|
||||
blockmix_salsa8(Y, X, r);
|
||||
}
|
||||
|
||||
/* 4: X <-- H(X) */
|
||||
/* 3: V_i <-- X */
|
||||
Y = (__m128i *)((uintptr_t)(V) + i * s);
|
||||
blockmix_salsa8(X, Y, r);
|
||||
|
||||
/* 4: X <-- H(X) */
|
||||
/* 3: V_i <-- X */
|
||||
X = (__m128i *) XY;
|
||||
blockmix_salsa8(Y, X, r);
|
||||
|
||||
X32 = (uint32_t *) XY;
|
||||
Y = (__m128i *)((uintptr_t)(XY) + s);
|
||||
|
||||
/* 7: j <-- Integerify(X) mod N */
|
||||
j = integerify(X, r) & (N - 1);
|
||||
|
||||
/* 6: for i = 0 to N - 1 do */
|
||||
for (i = 0; i < N; i += 2) {
|
||||
__m128i * V_j = (__m128i *)((uintptr_t)(V) + j * s);
|
||||
|
||||
/* 8: X <-- H(X \xor V_j) */
|
||||
/* 7: j <-- Integerify(X) mod N */
|
||||
j = blockmix_salsa8_xor(X, V_j, Y, r) & (N - 1);
|
||||
V_j = (__m128i *)((uintptr_t)(V) + j * s);
|
||||
|
||||
/* 8: X <-- H(X \xor V_j) */
|
||||
/* 7: j <-- Integerify(X) mod N */
|
||||
j = blockmix_salsa8_xor(Y, V_j, X, r) & (N - 1);
|
||||
}
|
||||
|
||||
/* 10: B' <-- X */
|
||||
for (k = 0; k < 2 * r; k++) {
|
||||
for (i = 0; i < 16; i++) {
|
||||
le32enc(&B[(k * 16 + (i * 5 % 16)) * 4],
|
||||
X32[k * 16 + i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* escrypt_kdf(local, passwd, passwdlen, salt, saltlen,
|
||||
* N, r, p, buf, buflen):
|
||||
* Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
|
||||
* p, buflen) and write the result into buf. The parameters r, p, and buflen
|
||||
* must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
|
||||
* must be a power of 2 greater than 1.
|
||||
*
|
||||
* Return 0 on success; or -1 on error.
|
||||
*/
|
||||
int
|
||||
escrypt_kdf_sse(escrypt_local_t * local,
|
||||
const uint8_t * passwd, size_t passwdlen,
|
||||
const uint8_t * salt, size_t saltlen,
|
||||
uint64_t N, uint32_t _r, uint32_t _p,
|
||||
uint8_t * buf, size_t buflen)
|
||||
{
|
||||
size_t B_size, V_size, XY_size, need;
|
||||
uint8_t * B;
|
||||
uint32_t * V, * XY;
|
||||
size_t r = _r, p = _p;
|
||||
uint32_t i;
|
||||
|
||||
/* Sanity-check parameters. */
|
||||
#if SIZE_MAX > UINT32_MAX
|
||||
if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
|
||||
errno = EFBIG;
|
||||
return -1;
|
||||
}
|
||||
#endif
|
||||
if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
|
||||
errno = EFBIG;
|
||||
return -1;
|
||||
}
|
||||
if (N > UINT32_MAX) {
|
||||
errno = EFBIG;
|
||||
return -1;
|
||||
}
|
||||
if (((N & (N - 1)) != 0) || (N < 2)) {
|
||||
errno = EINVAL;
|
||||
return -1;
|
||||
}
|
||||
if ((r > SIZE_MAX / 128 / p) ||
|
||||
#if SIZE_MAX / 256 <= UINT32_MAX
|
||||
(r > SIZE_MAX / 256) ||
|
||||
#endif
|
||||
(N > SIZE_MAX / 128 / r)) {
|
||||
errno = ENOMEM;
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Allocate memory. */
|
||||
B_size = (size_t)128 * r * p;
|
||||
V_size = (size_t)128 * r * N;
|
||||
need = B_size + V_size;
|
||||
if (need < V_size) {
|
||||
errno = ENOMEM;
|
||||
return -1;
|
||||
}
|
||||
XY_size = (size_t)256 * r;
|
||||
need += XY_size;
|
||||
if (need < XY_size) {
|
||||
errno = ENOMEM;
|
||||
return -1;
|
||||
}
|
||||
if (local->size < need) {
|
||||
if (free_region(local))
|
||||
return -1;
|
||||
if (!alloc_region(local, need))
|
||||
return -1;
|
||||
}
|
||||
B = (uint8_t *)local->aligned;
|
||||
V = (uint32_t *)((uint8_t *)B + B_size);
|
||||
XY = (uint32_t *)((uint8_t *)V + V_size);
|
||||
|
||||
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
|
||||
PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, B_size);
|
||||
|
||||
/* 2: for i = 0 to p - 1 do */
|
||||
for (i = 0; i < p; i++) {
|
||||
/* 3: B_i <-- MF(B_i, N) */
|
||||
smix(&B[(size_t)128 * i * r], r, N, V, XY);
|
||||
}
|
||||
|
||||
/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
|
||||
PBKDF2_SHA256(passwd, passwdlen, B, B_size, 1, buf, buflen);
|
||||
|
||||
/* Success! */
|
||||
return 0;
|
||||
}
|
146
src/libsodium/crypto_pwhash/scryptxsalsa208sha256/sysendian.h
Normal file
146
src/libsodium/crypto_pwhash/scryptxsalsa208sha256/sysendian.h
Normal file
@ -0,0 +1,146 @@
|
||||
#ifndef _SYSENDIAN_H_
|
||||
#define _SYSENDIAN_H_
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
/* Avoid namespace collisions with BSD <sys/endian.h>. */
|
||||
#define be16dec scrypt_be16dec
|
||||
#define be16enc scrypt_be16enc
|
||||
#define be32dec scrypt_be32dec
|
||||
#define be32enc scrypt_be32enc
|
||||
#define be64dec scrypt_be64dec
|
||||
#define be64enc scrypt_be64enc
|
||||
#define le16dec scrypt_le16dec
|
||||
#define le16enc scrypt_le16enc
|
||||
#define le32dec scrypt_le32dec
|
||||
#define le32enc scrypt_le32enc
|
||||
#define le64dec scrypt_le64dec
|
||||
#define le64enc scrypt_le64enc
|
||||
|
||||
static inline uint16_t
|
||||
be16dec(const void *pp)
|
||||
{
|
||||
const uint8_t *p = (uint8_t const *)pp;
|
||||
|
||||
return ((uint16_t)(p[1]) + ((uint16_t)(p[0]) << 8));
|
||||
}
|
||||
|
||||
static inline void
|
||||
be16enc(void *pp, uint16_t x)
|
||||
{
|
||||
uint8_t * p = (uint8_t *)pp;
|
||||
|
||||
p[1] = x & 0xff;
|
||||
p[0] = (x >> 8) & 0xff;
|
||||
}
|
||||
|
||||
static inline uint32_t
|
||||
be32dec(const void *pp)
|
||||
{
|
||||
const uint8_t *p = (uint8_t const *)pp;
|
||||
|
||||
return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) +
|
||||
((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
|
||||
}
|
||||
|
||||
static inline void
|
||||
be32enc(void *pp, uint32_t x)
|
||||
{
|
||||
uint8_t * p = (uint8_t *)pp;
|
||||
|
||||
p[3] = x & 0xff;
|
||||
p[2] = (x >> 8) & 0xff;
|
||||
p[1] = (x >> 16) & 0xff;
|
||||
p[0] = (x >> 24) & 0xff;
|
||||
}
|
||||
|
||||
static inline uint64_t
|
||||
be64dec(const void *pp)
|
||||
{
|
||||
const uint8_t *p = (uint8_t const *)pp;
|
||||
|
||||
return ((uint64_t)(p[7]) + ((uint64_t)(p[6]) << 8) +
|
||||
((uint64_t)(p[5]) << 16) + ((uint64_t)(p[4]) << 24) +
|
||||
((uint64_t)(p[3]) << 32) + ((uint64_t)(p[2]) << 40) +
|
||||
((uint64_t)(p[1]) << 48) + ((uint64_t)(p[0]) << 56));
|
||||
}
|
||||
|
||||
static inline void
|
||||
be64enc(void *pp, uint64_t x)
|
||||
{
|
||||
uint8_t * p = (uint8_t *)pp;
|
||||
|
||||
p[7] = x & 0xff;
|
||||
p[6] = (x >> 8) & 0xff;
|
||||
p[5] = (x >> 16) & 0xff;
|
||||
p[4] = (x >> 24) & 0xff;
|
||||
p[3] = (x >> 32) & 0xff;
|
||||
p[2] = (x >> 40) & 0xff;
|
||||
p[1] = (x >> 48) & 0xff;
|
||||
p[0] = (x >> 56) & 0xff;
|
||||
}
|
||||
|
||||
static inline uint16_t
|
||||
le16dec(const void *pp)
|
||||
{
|
||||
const uint8_t *p = (uint8_t const *)pp;
|
||||
|
||||
return ((uint16_t)(p[0]) + ((uint16_t)(p[1]) << 8));
|
||||
}
|
||||
|
||||
static inline void
|
||||
le16enc(void *pp, uint16_t x)
|
||||
{
|
||||
uint8_t * p = (uint8_t *)pp;
|
||||
|
||||
p[0] = x & 0xff;
|
||||
p[1] = (x >> 8) & 0xff;
|
||||
}
|
||||
|
||||
static inline uint32_t
|
||||
le32dec(const void *pp)
|
||||
{
|
||||
const uint8_t *p = (uint8_t const *)pp;
|
||||
|
||||
return ((uint32_t)(p[0]) + ((uint32_t)(p[1]) << 8) +
|
||||
((uint32_t)(p[2]) << 16) + ((uint32_t)(p[3]) << 24));
|
||||
}
|
||||
|
||||
static inline void
|
||||
le32enc(void *pp, uint32_t x)
|
||||
{
|
||||
uint8_t * p = (uint8_t *)pp;
|
||||
|
||||
p[0] = x & 0xff;
|
||||
p[1] = (x >> 8) & 0xff;
|
||||
p[2] = (x >> 16) & 0xff;
|
||||
p[3] = (x >> 24) & 0xff;
|
||||
}
|
||||
|
||||
static inline uint64_t
|
||||
le64dec(const void *pp)
|
||||
{
|
||||
const uint8_t *p = (uint8_t const *)pp;
|
||||
|
||||
return ((uint64_t)(p[0]) + ((uint64_t)(p[1]) << 8) +
|
||||
((uint64_t)(p[2]) << 16) + ((uint64_t)(p[3]) << 24) +
|
||||
((uint64_t)(p[4]) << 32) + ((uint64_t)(p[5]) << 40) +
|
||||
((uint64_t)(p[6]) << 48) + ((uint64_t)(p[7]) << 56));
|
||||
}
|
||||
|
||||
static inline void
|
||||
le64enc(void *pp, uint64_t x)
|
||||
{
|
||||
uint8_t * p = (uint8_t *)pp;
|
||||
|
||||
p[0] = x & 0xff;
|
||||
p[1] = (x >> 8) & 0xff;
|
||||
p[2] = (x >> 16) & 0xff;
|
||||
p[3] = (x >> 24) & 0xff;
|
||||
p[4] = (x >> 32) & 0xff;
|
||||
p[5] = (x >> 40) & 0xff;
|
||||
p[6] = (x >> 48) & 0xff;
|
||||
p[7] = (x >> 56) & 0xff;
|
||||
}
|
||||
|
||||
#endif /* !_SYSENDIAN_H_ */
|
Loading…
Reference in New Issue
Block a user