syncthing/lib/tlsutil/tlsutil.go

253 lines
7.6 KiB
Go

// Copyright (C) 2014 The Syncthing Authors.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this file,
// You can obtain one at https://mozilla.org/MPL/2.0/.
package tlsutil
import (
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rsa"
"crypto/tls"
"crypto/x509"
"crypto/x509/pkix"
"encoding/pem"
"errors"
"fmt"
"math/big"
"net"
"os"
"time"
"github.com/syncthing/syncthing/lib/rand"
)
var (
ErrIdentificationFailed = errors.New("failed to identify socket type")
// The list of cipher suites we will use / suggest for TLS 1.2 connections.
cipherSuites = []uint16{
// Suites that are good and fast on hardware *without* AES-NI.
tls.TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
tls.TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
// Suites that are good and fast on hardware with AES-NI. These are
// reordered from the Go default to put the 256 bit ciphers above the
// 128 bit ones - because that looks cooler, even though there is
// probably no relevant difference in strength yet.
tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
// The rest of the suites, minus DES stuff.
tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,
tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
tls.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
tls.TLS_RSA_WITH_AES_128_GCM_SHA256,
tls.TLS_RSA_WITH_AES_256_GCM_SHA384,
tls.TLS_RSA_WITH_AES_128_CBC_SHA256,
tls.TLS_RSA_WITH_AES_128_CBC_SHA,
tls.TLS_RSA_WITH_AES_256_CBC_SHA,
}
)
// SecureDefault returns a tls.Config with reasonable, secure defaults set.
// This variant allows only TLS 1.3.
func SecureDefaultTLS13() *tls.Config {
return &tls.Config{
// TLS 1.3 is the minimum we accept
MinVersion: tls.VersionTLS13,
ClientSessionCache: tls.NewLRUClientSessionCache(0),
}
}
// SecureDefaultWithTLS12 returns a tls.Config with reasonable, secure
// defaults set. This variant allows TLS 1.2.
func SecureDefaultWithTLS12() *tls.Config {
// paranoia
cs := make([]uint16, len(cipherSuites))
copy(cs, cipherSuites)
return &tls.Config{
// TLS 1.2 is the minimum we accept
MinVersion: tls.VersionTLS12,
// The cipher suite lists built above. These are ignored in TLS 1.3.
CipherSuites: cs,
// We've put some thought into this choice and would like it to
// matter.
PreferServerCipherSuites: true,
ClientSessionCache: tls.NewLRUClientSessionCache(0),
}
}
// generateCertificate generates a PEM formatted key pair and self-signed certificate in memory.
func generateCertificate(commonName string, lifetimeDays int) (*pem.Block, *pem.Block, error) {
priv, err := ecdsa.GenerateKey(elliptic.P384(), rand.Reader)
if err != nil {
return nil, nil, fmt.Errorf("generate key: %w", err)
}
notBefore := time.Now().Truncate(24 * time.Hour)
notAfter := notBefore.Add(time.Duration(lifetimeDays*24) * time.Hour)
// NOTE: update lib/api.shouldRegenerateCertificate() appropriately if
// you add or change attributes in here, especially DNSNames or
// IPAddresses.
template := x509.Certificate{
SerialNumber: new(big.Int).SetUint64(rand.Uint64()),
Subject: pkix.Name{
CommonName: commonName,
Organization: []string{"Syncthing"},
OrganizationalUnit: []string{"Automatically Generated"},
},
DNSNames: []string{commonName},
NotBefore: notBefore,
NotAfter: notAfter,
SignatureAlgorithm: x509.ECDSAWithSHA256,
KeyUsage: x509.KeyUsageKeyEncipherment | x509.KeyUsageDigitalSignature,
ExtKeyUsage: []x509.ExtKeyUsage{x509.ExtKeyUsageServerAuth, x509.ExtKeyUsageClientAuth},
BasicConstraintsValid: true,
}
derBytes, err := x509.CreateCertificate(rand.Reader, &template, &template, priv.Public(), priv)
if err != nil {
return nil, nil, fmt.Errorf("create cert: %w", err)
}
certBlock := &pem.Block{Type: "CERTIFICATE", Bytes: derBytes}
keyBlock, err := pemBlockForKey(priv)
if err != nil {
return nil, nil, fmt.Errorf("save key: %w", err)
}
return certBlock, keyBlock, nil
}
// NewCertificate generates and returns a new TLS certificate, saved to the given PEM files.
func NewCertificate(certFile, keyFile string, commonName string, lifetimeDays int) (tls.Certificate, error) {
certBlock, keyBlock, err := generateCertificate(commonName, lifetimeDays)
if err != nil {
return tls.Certificate{}, err
}
certOut, err := os.Create(certFile)
if err != nil {
return tls.Certificate{}, fmt.Errorf("save cert: %w", err)
}
if err = pem.Encode(certOut, certBlock); err != nil {
return tls.Certificate{}, fmt.Errorf("save cert: %w", err)
}
if err = certOut.Close(); err != nil {
return tls.Certificate{}, fmt.Errorf("save cert: %w", err)
}
keyOut, err := os.OpenFile(keyFile, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0o600)
if err != nil {
return tls.Certificate{}, fmt.Errorf("save key: %w", err)
}
if err = pem.Encode(keyOut, keyBlock); err != nil {
return tls.Certificate{}, fmt.Errorf("save key: %w", err)
}
if err = keyOut.Close(); err != nil {
return tls.Certificate{}, fmt.Errorf("save key: %w", err)
}
return tls.X509KeyPair(pem.EncodeToMemory(certBlock), pem.EncodeToMemory(keyBlock))
}
// NewCertificateInMemory generates and returns a new TLS certificate, kept only in memory.
func NewCertificateInMemory(commonName string, lifetimeDays int) (tls.Certificate, error) {
certBlock, keyBlock, err := generateCertificate(commonName, lifetimeDays)
if err != nil {
return tls.Certificate{}, err
}
return tls.X509KeyPair(pem.EncodeToMemory(certBlock), pem.EncodeToMemory(keyBlock))
}
type DowngradingListener struct {
net.Listener
TLSConfig *tls.Config
}
func (l *DowngradingListener) Accept() (net.Conn, error) {
conn, isTLS, err := l.AcceptNoWrapTLS()
// We failed to identify the socket type, pretend that everything is fine,
// and pass it to the underlying handler, and let them deal with it.
if err == ErrIdentificationFailed {
return conn, nil
}
if err != nil {
return conn, err
}
if isTLS {
return tls.Server(conn, l.TLSConfig), nil
}
return conn, nil
}
func (l *DowngradingListener) AcceptNoWrapTLS() (net.Conn, bool, error) {
conn, err := l.Listener.Accept()
if err != nil {
return nil, false, err
}
union := &UnionedConnection{Conn: conn}
conn.SetReadDeadline(time.Now().Add(1 * time.Second))
n, err := conn.Read(union.first[:])
conn.SetReadDeadline(time.Time{})
if err != nil || n == 0 {
// We hit a read error here, but the Accept() call succeeded so we must not return an error.
// We return the connection as is with a special error which handles this
// special case in Accept().
return conn, false, ErrIdentificationFailed
}
return union, union.first[0] == 0x16, nil
}
type UnionedConnection struct {
first [1]byte
firstDone bool
net.Conn
}
func (c *UnionedConnection) Read(b []byte) (n int, err error) {
if !c.firstDone {
if len(b) == 0 {
// this probably doesn't happen, but handle it anyway
return 0, nil
}
b[0] = c.first[0]
c.firstDone = true
return 1, nil
}
return c.Conn.Read(b)
}
func pemBlockForKey(priv interface{}) (*pem.Block, error) {
switch k := priv.(type) {
case *rsa.PrivateKey:
return &pem.Block{Type: "RSA PRIVATE KEY", Bytes: x509.MarshalPKCS1PrivateKey(k)}, nil
case *ecdsa.PrivateKey:
b, err := x509.MarshalECPrivateKey(k)
if err != nil {
return nil, err
}
return &pem.Block{Type: "EC PRIVATE KEY", Bytes: b}, nil
default:
return nil, errors.New("unknown key type")
}
}