syncthing/lib/db/set.go

399 lines
11 KiB
Go
Raw Normal View History

2014-11-16 13:13:20 -07:00
// Copyright (C) 2014 The Syncthing Authors.
2014-09-29 12:43:32 -07:00
//
2015-03-07 13:36:35 -07:00
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this file,
// You can obtain one at https://mozilla.org/MPL/2.0/.
2014-06-01 13:50:14 -07:00
// Package db provides a set type to track local/remote files with newness
// checks. We must do a certain amount of normalization in here. We will get
// fed paths with either native or wire-format separators and encodings
// depending on who calls us. We transform paths to wire-format (NFC and
// slashes) on the way to the database, and transform to native format
// (varying separator and encoding) on the way back out.
package db
import (
2015-10-20 06:58:18 -07:00
stdsync "sync"
"sync/atomic"
2015-10-20 06:58:18 -07:00
"github.com/syncthing/syncthing/lib/fs"
2015-08-06 02:29:25 -07:00
"github.com/syncthing/syncthing/lib/osutil"
2015-09-22 10:38:46 -07:00
"github.com/syncthing/syncthing/lib/protocol"
2015-08-06 02:29:25 -07:00
"github.com/syncthing/syncthing/lib/sync"
)
2015-01-12 06:52:24 -07:00
type FileSet struct {
sequence int64 // Our local sequence number
folder string
fs fs.Filesystem
db *Instance
blockmap *BlockMap
localSize sizeTracker
globalSize sizeTracker
remoteSequence map[protocol.DeviceID]int64 // Highest seen sequence numbers for other devices
updateMutex sync.Mutex // protects remoteSequence and database updates
}
// FileIntf is the set of methods implemented by both protocol.FileInfo and
// FileInfoTruncated.
type FileIntf interface {
FileSize() int64
FileName() string
IsDeleted() bool
IsInvalid() bool
IsDirectory() bool
IsSymlink() bool
HasPermissionBits() bool
}
// The Iterator is called with either a protocol.FileInfo or a
// FileInfoTruncated (depending on the method) and returns true to
// continue iteration, false to stop.
type Iterator func(f FileIntf) bool
type Counts struct {
Files int
Directories int
Symlinks int
Deleted int
Bytes int64
}
2015-10-20 06:58:18 -07:00
type sizeTracker struct {
Counts
mut stdsync.Mutex
2015-10-20 06:58:18 -07:00
}
func (s *sizeTracker) addFile(f FileIntf) {
if f.IsInvalid() {
return
}
2015-10-21 00:10:26 -07:00
2015-10-20 06:58:18 -07:00
s.mut.Lock()
switch {
case f.IsDeleted():
s.Deleted++
case f.IsDirectory() && !f.IsSymlink():
s.Directories++
case f.IsSymlink():
s.Symlinks++
default:
s.Files++
2015-10-20 06:58:18 -07:00
}
s.Bytes += f.FileSize()
2015-10-20 06:58:18 -07:00
s.mut.Unlock()
}
func (s *sizeTracker) removeFile(f FileIntf) {
if f.IsInvalid() {
return
}
2015-10-21 00:10:26 -07:00
2015-10-20 06:58:18 -07:00
s.mut.Lock()
switch {
case f.IsDeleted():
s.Deleted--
case f.IsDirectory() && !f.IsSymlink():
s.Directories--
case f.IsSymlink():
s.Symlinks--
default:
s.Files--
2015-10-20 06:58:18 -07:00
}
s.Bytes -= f.FileSize()
if s.Deleted < 0 || s.Files < 0 || s.Directories < 0 || s.Symlinks < 0 {
2015-10-21 00:10:26 -07:00
panic("bug: removed more than added")
}
2015-10-20 06:58:18 -07:00
s.mut.Unlock()
}
func (s *sizeTracker) reset() {
s.mut.Lock()
defer s.mut.Unlock()
s.Counts = Counts{}
}
func (s *sizeTracker) Size() Counts {
2015-10-20 06:58:18 -07:00
s.mut.Lock()
defer s.mut.Unlock()
return s.Counts
2015-10-20 06:58:18 -07:00
}
func NewFileSet(folder string, fs fs.Filesystem, db *Instance) *FileSet {
2015-01-12 06:52:24 -07:00
var s = FileSet{
remoteSequence: make(map[protocol.DeviceID]int64),
folder: folder,
fs: fs,
db: db,
blockmap: NewBlockMap(db, db.folderIdx.ID([]byte(folder))),
updateMutex: sync.NewMutex(),
}
s.db.checkGlobals([]byte(folder), &s.globalSize)
var deviceID protocol.DeviceID
s.db.withAllFolderTruncated([]byte(folder), func(device []byte, f FileInfoTruncated) bool {
copy(deviceID[:], device)
2015-10-20 06:58:18 -07:00
if deviceID == protocol.LocalDeviceID {
if f.Sequence > s.sequence {
s.sequence = f.Sequence
}
2015-10-21 00:10:26 -07:00
s.localSize.addFile(f)
} else if f.Sequence > s.remoteSequence[deviceID] {
s.remoteSequence[deviceID] = f.Sequence
2015-10-20 06:58:18 -07:00
}
return true
})
l.Debugf("loaded sequence for %q: %#v", folder, s.sequence)
2014-07-06 05:46:48 -07:00
return &s
}
func (s *FileSet) Drop(device protocol.DeviceID) {
l.Debugf("%s Drop(%v)", s.folder, device)
s.updateMutex.Lock()
defer s.updateMutex.Unlock()
s.db.dropDeviceFolder(device[:], []byte(s.folder), &s.globalSize)
2014-10-07 14:15:01 -07:00
if device == protocol.LocalDeviceID {
s.blockmap.Drop()
s.localSize.reset()
// We deliberately do not reset s.sequence here. Dropping all files
// for the local device ID only happens in testing - which expects
// the sequence to be retained, like an old Replace() of all files
// would do. However, if we ever did it "in production" we would
// anyway want to retain the sequence for delta indexes to be happy.
} else {
// Here, on the other hand, we want to make sure that any file
// announced from the remote is newer than our current sequence
// number.
s.remoteSequence[device] = 0
2014-10-07 14:15:01 -07:00
}
}
2015-01-12 06:52:24 -07:00
func (s *FileSet) Update(device protocol.DeviceID, fs []protocol.FileInfo) {
Implement facility based logger, debugging via REST API This implements a new debug/trace infrastructure based on a slightly hacked up logger. Instead of the traditional "if debug { ... }" I've rewritten the logger to have no-op Debugln and Debugf, unless debugging has been enabled for a given "facility". The "facility" is just a string, typically a package name. This will be slightly slower than before; but not that much as it's mostly a function call that returns immediately. For the cases where it matters (the Debugln takes a hex.Dump() of something for example, and it's not in a very occasional "if err != nil" branch) there is an l.ShouldDebug(facility) that is fast enough to be used like the old "if debug". The point of all this is that we can now toggle debugging for the various packages on and off at runtime. There's a new method /rest/system/debug that can be POSTed a set of facilities to enable and disable debug for, or GET from to get a list of facilities with descriptions and their current debug status. Similarly a /rest/system/log?since=... can grab the latest log entries, up to 250 of them (hardcoded constant in main.go) plus the initial few. Not implemented in this commit (but planned) is a simple debug GUI available on /debug that shows the current log in an easily pasteable format and has checkboxes to enable the various debug facilities. The debug instructions to a user then becomes "visit this URL, check these boxes, reproduce your problem, copy and paste the log". The actual log viewer on the hypothetical /debug URL can poll regularly for new log entries and this bypass the 250 line limit. The existing STTRACE=foo variable is still obeyed and just sets the start state of the system.
2015-10-03 08:25:21 -07:00
l.Debugf("%s Update(%v, [%d])", s.folder, device, len(fs))
normalizeFilenames(fs)
s.updateMutex.Lock()
defer s.updateMutex.Unlock()
s.updateLocked(device, fs)
}
func (s *FileSet) updateLocked(device protocol.DeviceID, fs []protocol.FileInfo) {
// names must be normalized and the lock held
if device == protocol.LocalDeviceID {
discards := make([]protocol.FileInfo, 0, len(fs))
updates := make([]protocol.FileInfo, 0, len(fs))
// db.UpdateFiles will sort unchanged files out -> save one db lookup
// filter slice according to https://github.com/golang/go/wiki/SliceTricks#filtering-without-allocating
oldFs := fs
fs = fs[:0]
for _, nf := range oldFs {
ef, ok := s.db.getFile([]byte(s.folder), device[:], []byte(nf.Name))
if ok && ef.Version.Equal(nf.Version) && ef.Invalid == nf.Invalid {
continue
}
nf.Sequence = atomic.AddInt64(&s.sequence, 1)
fs = append(fs, nf)
if ok {
discards = append(discards, ef)
}
updates = append(updates, nf)
}
s.blockmap.Discard(discards)
s.blockmap.Update(updates)
} else {
s.remoteSequence[device] = maxSequence(fs)
}
s.db.updateFiles([]byte(s.folder), device[:], fs, &s.localSize, &s.globalSize)
}
2015-01-12 06:52:24 -07:00
func (s *FileSet) WithNeed(device protocol.DeviceID, fn Iterator) {
Implement facility based logger, debugging via REST API This implements a new debug/trace infrastructure based on a slightly hacked up logger. Instead of the traditional "if debug { ... }" I've rewritten the logger to have no-op Debugln and Debugf, unless debugging has been enabled for a given "facility". The "facility" is just a string, typically a package name. This will be slightly slower than before; but not that much as it's mostly a function call that returns immediately. For the cases where it matters (the Debugln takes a hex.Dump() of something for example, and it's not in a very occasional "if err != nil" branch) there is an l.ShouldDebug(facility) that is fast enough to be used like the old "if debug". The point of all this is that we can now toggle debugging for the various packages on and off at runtime. There's a new method /rest/system/debug that can be POSTed a set of facilities to enable and disable debug for, or GET from to get a list of facilities with descriptions and their current debug status. Similarly a /rest/system/log?since=... can grab the latest log entries, up to 250 of them (hardcoded constant in main.go) plus the initial few. Not implemented in this commit (but planned) is a simple debug GUI available on /debug that shows the current log in an easily pasteable format and has checkboxes to enable the various debug facilities. The debug instructions to a user then becomes "visit this URL, check these boxes, reproduce your problem, copy and paste the log". The actual log viewer on the hypothetical /debug URL can poll regularly for new log entries and this bypass the 250 line limit. The existing STTRACE=foo variable is still obeyed and just sets the start state of the system.
2015-10-03 08:25:21 -07:00
l.Debugf("%s WithNeed(%v)", s.folder, device)
s.db.withNeed([]byte(s.folder), device[:], false, false, nativeFileIterator(fn))
}
2015-01-12 06:52:24 -07:00
func (s *FileSet) WithNeedTruncated(device protocol.DeviceID, fn Iterator) {
Implement facility based logger, debugging via REST API This implements a new debug/trace infrastructure based on a slightly hacked up logger. Instead of the traditional "if debug { ... }" I've rewritten the logger to have no-op Debugln and Debugf, unless debugging has been enabled for a given "facility". The "facility" is just a string, typically a package name. This will be slightly slower than before; but not that much as it's mostly a function call that returns immediately. For the cases where it matters (the Debugln takes a hex.Dump() of something for example, and it's not in a very occasional "if err != nil" branch) there is an l.ShouldDebug(facility) that is fast enough to be used like the old "if debug". The point of all this is that we can now toggle debugging for the various packages on and off at runtime. There's a new method /rest/system/debug that can be POSTed a set of facilities to enable and disable debug for, or GET from to get a list of facilities with descriptions and their current debug status. Similarly a /rest/system/log?since=... can grab the latest log entries, up to 250 of them (hardcoded constant in main.go) plus the initial few. Not implemented in this commit (but planned) is a simple debug GUI available on /debug that shows the current log in an easily pasteable format and has checkboxes to enable the various debug facilities. The debug instructions to a user then becomes "visit this URL, check these boxes, reproduce your problem, copy and paste the log". The actual log viewer on the hypothetical /debug URL can poll regularly for new log entries and this bypass the 250 line limit. The existing STTRACE=foo variable is still obeyed and just sets the start state of the system.
2015-10-03 08:25:21 -07:00
l.Debugf("%s WithNeedTruncated(%v)", s.folder, device)
s.db.withNeed([]byte(s.folder), device[:], true, false, nativeFileIterator(fn))
}
// WithNeedOrInvalid considers all invalid files as needed, regardless of their version
// (e.g. for pulling when ignore patterns changed)
func (s *FileSet) WithNeedOrInvalid(device protocol.DeviceID, fn Iterator) {
l.Debugf("%s WithNeedExcludingInvalid(%v)", s.folder, device)
s.db.withNeed([]byte(s.folder), device[:], false, true, nativeFileIterator(fn))
}
func (s *FileSet) WithNeedOrInvalidTruncated(device protocol.DeviceID, fn Iterator) {
l.Debugf("%s WithNeedExcludingInvalidTruncated(%v)", s.folder, device)
s.db.withNeed([]byte(s.folder), device[:], true, true, nativeFileIterator(fn))
}
2015-01-12 06:52:24 -07:00
func (s *FileSet) WithHave(device protocol.DeviceID, fn Iterator) {
Implement facility based logger, debugging via REST API This implements a new debug/trace infrastructure based on a slightly hacked up logger. Instead of the traditional "if debug { ... }" I've rewritten the logger to have no-op Debugln and Debugf, unless debugging has been enabled for a given "facility". The "facility" is just a string, typically a package name. This will be slightly slower than before; but not that much as it's mostly a function call that returns immediately. For the cases where it matters (the Debugln takes a hex.Dump() of something for example, and it's not in a very occasional "if err != nil" branch) there is an l.ShouldDebug(facility) that is fast enough to be used like the old "if debug". The point of all this is that we can now toggle debugging for the various packages on and off at runtime. There's a new method /rest/system/debug that can be POSTed a set of facilities to enable and disable debug for, or GET from to get a list of facilities with descriptions and their current debug status. Similarly a /rest/system/log?since=... can grab the latest log entries, up to 250 of them (hardcoded constant in main.go) plus the initial few. Not implemented in this commit (but planned) is a simple debug GUI available on /debug that shows the current log in an easily pasteable format and has checkboxes to enable the various debug facilities. The debug instructions to a user then becomes "visit this URL, check these boxes, reproduce your problem, copy and paste the log". The actual log viewer on the hypothetical /debug URL can poll regularly for new log entries and this bypass the 250 line limit. The existing STTRACE=foo variable is still obeyed and just sets the start state of the system.
2015-10-03 08:25:21 -07:00
l.Debugf("%s WithHave(%v)", s.folder, device)
s.db.withHave([]byte(s.folder), device[:], nil, false, nativeFileIterator(fn))
}
2015-01-12 06:52:24 -07:00
func (s *FileSet) WithHaveTruncated(device protocol.DeviceID, fn Iterator) {
Implement facility based logger, debugging via REST API This implements a new debug/trace infrastructure based on a slightly hacked up logger. Instead of the traditional "if debug { ... }" I've rewritten the logger to have no-op Debugln and Debugf, unless debugging has been enabled for a given "facility". The "facility" is just a string, typically a package name. This will be slightly slower than before; but not that much as it's mostly a function call that returns immediately. For the cases where it matters (the Debugln takes a hex.Dump() of something for example, and it's not in a very occasional "if err != nil" branch) there is an l.ShouldDebug(facility) that is fast enough to be used like the old "if debug". The point of all this is that we can now toggle debugging for the various packages on and off at runtime. There's a new method /rest/system/debug that can be POSTed a set of facilities to enable and disable debug for, or GET from to get a list of facilities with descriptions and their current debug status. Similarly a /rest/system/log?since=... can grab the latest log entries, up to 250 of them (hardcoded constant in main.go) plus the initial few. Not implemented in this commit (but planned) is a simple debug GUI available on /debug that shows the current log in an easily pasteable format and has checkboxes to enable the various debug facilities. The debug instructions to a user then becomes "visit this URL, check these boxes, reproduce your problem, copy and paste the log". The actual log viewer on the hypothetical /debug URL can poll regularly for new log entries and this bypass the 250 line limit. The existing STTRACE=foo variable is still obeyed and just sets the start state of the system.
2015-10-03 08:25:21 -07:00
l.Debugf("%s WithHaveTruncated(%v)", s.folder, device)
s.db.withHave([]byte(s.folder), device[:], nil, true, nativeFileIterator(fn))
}
func (s *FileSet) WithPrefixedHaveTruncated(device protocol.DeviceID, prefix string, fn Iterator) {
l.Debugf("%s WithPrefixedHaveTruncated(%v)", s.folder, device)
s.db.withHave([]byte(s.folder), device[:], []byte(osutil.NormalizedFilename(prefix)), true, nativeFileIterator(fn))
}
2015-01-12 06:52:24 -07:00
func (s *FileSet) WithGlobal(fn Iterator) {
Implement facility based logger, debugging via REST API This implements a new debug/trace infrastructure based on a slightly hacked up logger. Instead of the traditional "if debug { ... }" I've rewritten the logger to have no-op Debugln and Debugf, unless debugging has been enabled for a given "facility". The "facility" is just a string, typically a package name. This will be slightly slower than before; but not that much as it's mostly a function call that returns immediately. For the cases where it matters (the Debugln takes a hex.Dump() of something for example, and it's not in a very occasional "if err != nil" branch) there is an l.ShouldDebug(facility) that is fast enough to be used like the old "if debug". The point of all this is that we can now toggle debugging for the various packages on and off at runtime. There's a new method /rest/system/debug that can be POSTed a set of facilities to enable and disable debug for, or GET from to get a list of facilities with descriptions and their current debug status. Similarly a /rest/system/log?since=... can grab the latest log entries, up to 250 of them (hardcoded constant in main.go) plus the initial few. Not implemented in this commit (but planned) is a simple debug GUI available on /debug that shows the current log in an easily pasteable format and has checkboxes to enable the various debug facilities. The debug instructions to a user then becomes "visit this URL, check these boxes, reproduce your problem, copy and paste the log". The actual log viewer on the hypothetical /debug URL can poll regularly for new log entries and this bypass the 250 line limit. The existing STTRACE=foo variable is still obeyed and just sets the start state of the system.
2015-10-03 08:25:21 -07:00
l.Debugf("%s WithGlobal()", s.folder)
s.db.withGlobal([]byte(s.folder), nil, false, nativeFileIterator(fn))
2014-08-12 07:17:28 -07:00
}
2015-01-12 06:52:24 -07:00
func (s *FileSet) WithGlobalTruncated(fn Iterator) {
Implement facility based logger, debugging via REST API This implements a new debug/trace infrastructure based on a slightly hacked up logger. Instead of the traditional "if debug { ... }" I've rewritten the logger to have no-op Debugln and Debugf, unless debugging has been enabled for a given "facility". The "facility" is just a string, typically a package name. This will be slightly slower than before; but not that much as it's mostly a function call that returns immediately. For the cases where it matters (the Debugln takes a hex.Dump() of something for example, and it's not in a very occasional "if err != nil" branch) there is an l.ShouldDebug(facility) that is fast enough to be used like the old "if debug". The point of all this is that we can now toggle debugging for the various packages on and off at runtime. There's a new method /rest/system/debug that can be POSTed a set of facilities to enable and disable debug for, or GET from to get a list of facilities with descriptions and their current debug status. Similarly a /rest/system/log?since=... can grab the latest log entries, up to 250 of them (hardcoded constant in main.go) plus the initial few. Not implemented in this commit (but planned) is a simple debug GUI available on /debug that shows the current log in an easily pasteable format and has checkboxes to enable the various debug facilities. The debug instructions to a user then becomes "visit this URL, check these boxes, reproduce your problem, copy and paste the log". The actual log viewer on the hypothetical /debug URL can poll regularly for new log entries and this bypass the 250 line limit. The existing STTRACE=foo variable is still obeyed and just sets the start state of the system.
2015-10-03 08:25:21 -07:00
l.Debugf("%s WithGlobalTruncated()", s.folder)
s.db.withGlobal([]byte(s.folder), nil, true, nativeFileIterator(fn))
2015-02-07 03:52:42 -07:00
}
func (s *FileSet) WithPrefixedGlobalTruncated(prefix string, fn Iterator) {
Implement facility based logger, debugging via REST API This implements a new debug/trace infrastructure based on a slightly hacked up logger. Instead of the traditional "if debug { ... }" I've rewritten the logger to have no-op Debugln and Debugf, unless debugging has been enabled for a given "facility". The "facility" is just a string, typically a package name. This will be slightly slower than before; but not that much as it's mostly a function call that returns immediately. For the cases where it matters (the Debugln takes a hex.Dump() of something for example, and it's not in a very occasional "if err != nil" branch) there is an l.ShouldDebug(facility) that is fast enough to be used like the old "if debug". The point of all this is that we can now toggle debugging for the various packages on and off at runtime. There's a new method /rest/system/debug that can be POSTed a set of facilities to enable and disable debug for, or GET from to get a list of facilities with descriptions and their current debug status. Similarly a /rest/system/log?since=... can grab the latest log entries, up to 250 of them (hardcoded constant in main.go) plus the initial few. Not implemented in this commit (but planned) is a simple debug GUI available on /debug that shows the current log in an easily pasteable format and has checkboxes to enable the various debug facilities. The debug instructions to a user then becomes "visit this URL, check these boxes, reproduce your problem, copy and paste the log". The actual log viewer on the hypothetical /debug URL can poll regularly for new log entries and this bypass the 250 line limit. The existing STTRACE=foo variable is still obeyed and just sets the start state of the system.
2015-10-03 08:25:21 -07:00
l.Debugf("%s WithPrefixedGlobalTruncated()", s.folder, prefix)
s.db.withGlobal([]byte(s.folder), []byte(osutil.NormalizedFilename(prefix)), true, nativeFileIterator(fn))
}
2015-01-12 06:52:24 -07:00
func (s *FileSet) Get(device protocol.DeviceID, file string) (protocol.FileInfo, bool) {
2015-10-28 13:25:02 -07:00
f, ok := s.db.getFile([]byte(s.folder), device[:], []byte(osutil.NormalizedFilename(file)))
2014-11-05 16:41:51 -07:00
f.Name = osutil.NativeFilename(f.Name)
return f, ok
}
2015-01-12 06:52:24 -07:00
func (s *FileSet) GetGlobal(file string) (protocol.FileInfo, bool) {
fi, ok := s.db.getGlobal([]byte(s.folder), []byte(osutil.NormalizedFilename(file)), false)
2015-01-09 00:41:02 -07:00
if !ok {
return protocol.FileInfo{}, false
}
f := fi.(protocol.FileInfo)
2014-11-05 16:41:51 -07:00
f.Name = osutil.NativeFilename(f.Name)
2015-01-09 00:41:02 -07:00
return f, true
}
2015-01-12 06:52:24 -07:00
func (s *FileSet) GetGlobalTruncated(file string) (FileInfoTruncated, bool) {
fi, ok := s.db.getGlobal([]byte(s.folder), []byte(osutil.NormalizedFilename(file)), true)
2015-01-09 00:41:02 -07:00
if !ok {
return FileInfoTruncated{}, false
}
f := fi.(FileInfoTruncated)
f.Name = osutil.NativeFilename(f.Name)
return f, true
}
2015-01-12 06:52:24 -07:00
func (s *FileSet) Availability(file string) []protocol.DeviceID {
return s.db.availability([]byte(s.folder), []byte(osutil.NormalizedFilename(file)))
}
func (s *FileSet) Sequence(device protocol.DeviceID) int64 {
if device == protocol.LocalDeviceID {
return atomic.LoadInt64(&s.sequence)
}
s.updateMutex.Lock()
defer s.updateMutex.Unlock()
return s.remoteSequence[device]
}
func (s *FileSet) LocalSize() Counts {
2015-10-21 00:10:26 -07:00
return s.localSize.Size()
}
func (s *FileSet) GlobalSize() Counts {
2015-10-21 00:10:26 -07:00
return s.globalSize.Size()
}
func (s *FileSet) IndexID(device protocol.DeviceID) protocol.IndexID {
id := s.db.getIndexID(device[:], []byte(s.folder))
if id == 0 && device == protocol.LocalDeviceID {
// No index ID set yet. We create one now.
id = protocol.NewIndexID()
s.db.setIndexID(device[:], []byte(s.folder), id)
}
return id
}
func (s *FileSet) SetIndexID(device protocol.DeviceID, id protocol.IndexID) {
if device == protocol.LocalDeviceID {
panic("do not explicitly set index ID for local device")
}
s.db.setIndexID(device[:], []byte(s.folder), id)
}
func (s *FileSet) MtimeFS() *fs.MtimeFS {
prefix := s.db.mtimesKey([]byte(s.folder))
kv := NewNamespacedKV(s.db, string(prefix))
return fs.NewMtimeFS(s.fs, kv)
}
func (s *FileSet) ListDevices() []protocol.DeviceID {
s.updateMutex.Lock()
devices := make([]protocol.DeviceID, 0, len(s.remoteSequence))
for id, seq := range s.remoteSequence {
if seq > 0 {
devices = append(devices, id)
}
}
s.updateMutex.Unlock()
return devices
}
// maxSequence returns the highest of the Sequence numbers found in
// the given slice of FileInfos. This should really be the Sequence of
// the last item, but Syncthing v0.14.0 and other implementations may not
// implement update sorting....
func maxSequence(fs []protocol.FileInfo) int64 {
var max int64
for _, f := range fs {
if f.Sequence > max {
max = f.Sequence
}
}
return max
}
// DropFolder clears out all information related to the given folder from the
// database.
func DropFolder(db *Instance, folder string) {
db.dropFolder([]byte(folder))
db.dropMtimes([]byte(folder))
2014-10-07 14:15:01 -07:00
bm := &BlockMap{
db: db,
folder: db.folderIdx.ID([]byte(folder)),
2014-10-07 14:15:01 -07:00
}
bm.Drop()
}
func normalizeFilenames(fs []protocol.FileInfo) {
for i := range fs {
2014-11-05 16:41:51 -07:00
fs[i].Name = osutil.NormalizedFilename(fs[i].Name)
}
}
func nativeFileIterator(fn Iterator) Iterator {
return func(fi FileIntf) bool {
switch f := fi.(type) {
case protocol.FileInfo:
2014-11-05 16:41:51 -07:00
f.Name = osutil.NativeFilename(f.Name)
return fn(f)
case FileInfoTruncated:
2014-11-05 16:41:51 -07:00
f.Name = osutil.NativeFilename(f.Name)
return fn(f)
default:
panic("unknown interface type")
}
}
}