from pathlib import Path import onnx import onnxruntime as ort import onnxsim def optimize_onnxsim(model_path: Path | str, output_path: Path | str) -> None: model_path = Path(model_path) output_path = Path(output_path) model = onnx.load(model_path.as_posix()) model, check = onnxsim.simplify(model, skip_shape_inference=True) assert check, "Simplified ONNX model could not be validated" onnx.save(model, output_path.as_posix()) def optimize_ort( model_path: Path | str, output_path: Path | str, level: ort.GraphOptimizationLevel = ort.GraphOptimizationLevel.ORT_ENABLE_BASIC, ) -> None: model_path = Path(model_path) output_path = Path(output_path) sess_options = ort.SessionOptions() sess_options.graph_optimization_level = level sess_options.optimized_model_filepath = output_path.as_posix() ort.InferenceSession(model_path.as_posix(), providers=["CPUExecutionProvider"], sess_options=sess_options) def optimize(model_path: Path | str) -> None: model_path = Path(model_path) optimize_ort(model_path, model_path) # onnxsim serializes large models as a blob, which uses much more memory when loading the model at runtime if not any(file.name.startswith("Constant") for file in model_path.parent.iterdir()): optimize_onnxsim(model_path, model_path)