mirror of
https://github.com/immich-app/immich.git
synced 2024-11-15 18:08:48 -07:00
docs(ml,server): updated hwaccel docs (#6878)
This commit is contained in:
parent
a4cfb51df5
commit
329659b2fb
@ -4,6 +4,10 @@ This feature allows you to use a GPU to accelerate transcoding and reduce CPU lo
|
||||
Note that hardware transcoding is much less efficient for file sizes.
|
||||
As this is a new feature, it is still experimental and may not work on all systems.
|
||||
|
||||
:::info
|
||||
You do not need to redo any transcoding jobs after enabling hardware acceleration. The acceleration device will be used for any jobs that run after enabling it.
|
||||
:::
|
||||
|
||||
## Supported APIs
|
||||
|
||||
- NVENC (NVIDIA)
|
||||
@ -50,6 +54,40 @@ As this is a new feature, it is still experimental and may not work on all syste
|
||||
3. Redeploy the `immich-microservices` container with these updated settings.
|
||||
4. In the Admin page under `Video transcoding settings`, change the hardware acceleration setting to the appropriate option and save.
|
||||
|
||||
#### Single Compose File
|
||||
|
||||
Some platforms, including Unraid and Portainer, do not support multiple Compose files as of writing. As an alternative, you can "inline" the relevant contents of the [`hwaccel.transcoding.yml`][hw-file] file into the `immich-microservices` service directly.
|
||||
|
||||
For example, the `qsv` section in this file is:
|
||||
|
||||
```yaml
|
||||
devices:
|
||||
- /dev/dri:/dev/dri
|
||||
```
|
||||
|
||||
You can add this to the `immich-microservices` service instead of extending from `hwaccel.transcoding.yml`:
|
||||
|
||||
```yaml
|
||||
immich-microservices:
|
||||
container_name: immich_microservices
|
||||
image: ghcr.io/immich-app/immich-server:${IMMICH_VERSION:-release}
|
||||
# Note the lack of an `extends` section
|
||||
devices:
|
||||
- /dev/dri:/dev/dri
|
||||
command: ['start.sh', 'microservices']
|
||||
volumes:
|
||||
- ${UPLOAD_LOCATION}:/usr/src/app/upload
|
||||
- /etc/localtime:/etc/localtime:ro
|
||||
env_file:
|
||||
- .env
|
||||
depends_on:
|
||||
- redis
|
||||
- database
|
||||
restart: always
|
||||
```
|
||||
|
||||
Once this is done, you can continue to step 3 of "Basic Setup".
|
||||
|
||||
#### All-In-One - Unraid Setup
|
||||
|
||||
##### NVENC - NVIDIA GPUs
|
||||
@ -59,20 +97,6 @@ As this is a new feature, it is still experimental and may not work on all syste
|
||||
3. Restart the container app.
|
||||
4. Continue to step 4 of "Basic Setup".
|
||||
|
||||
##### Other APIs
|
||||
|
||||
Unraid does not currently support multiple Compose files. As an alternative, you can "inline" the relevant contents of the [`hwaccel.transcoding.yml`][hw-file] file into the `immich-microservices` service directly.
|
||||
|
||||
For example, the `qsv` section in this file is:
|
||||
|
||||
```
|
||||
devices:
|
||||
- /dev/dri:/dev/dri
|
||||
```
|
||||
|
||||
You can add this to the `immich-microservices` service instead of extending from `hwaccel.transcoding.yml`.
|
||||
Once this is done, you can continue to step 3 of "Basic Setup".
|
||||
|
||||
## Tips
|
||||
|
||||
- You may want to choose a slower preset than for software transcoding to maintain quality and efficiency
|
||||
|
@ -3,7 +3,11 @@
|
||||
This feature allows you to use a GPU to accelerate machine learning tasks, such as Smart Search and Facial Recognition, while reducing CPU load.
|
||||
As this is a new feature, it is still experimental and may not work on all systems.
|
||||
|
||||
## Supported APIs
|
||||
:::info
|
||||
You do not need to redo any machine learning jobs after enabling hardware acceleration. The acceleration device will be used for any jobs that run after enabling it.
|
||||
:::
|
||||
|
||||
## Supported Backends
|
||||
|
||||
- ARM NN (Mali)
|
||||
- CUDA (NVIDIA)
|
||||
@ -14,7 +18,8 @@ As this is a new feature, it is still experimental and may not work on all syste
|
||||
- The instructions and configurations here are specific to Docker Compose. Other container engines may require different configuration.
|
||||
- Only Linux and Windows (through WSL2) servers are supported.
|
||||
- ARM NN is only supported on devices with Mali GPUs. Other Arm devices are not supported.
|
||||
- The OpenVINO backend has only been tested on an iGPU. ARC GPUs may not work without other changes.
|
||||
- There is currently an upstream issue with OpenVINO, so whether it will work is device-dependent.
|
||||
- Some models may not be compatible with certain backends. CUDA is the most reliable.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
@ -40,10 +45,60 @@ As this is a new feature, it is still experimental and may not work on all syste
|
||||
2. In the `docker-compose.yml` under `immich-machine-learning`, uncomment the `extends` section and change `cpu` to the appropriate backend.
|
||||
3. Redeploy the `immich-machine-learning` container with these updated settings.
|
||||
|
||||
#### Single Compose File
|
||||
|
||||
Some platforms, including Unraid and Portainer, do not support multiple Compose files as of writing. As an alternative, you can "inline" the relevant contents of the [`hwaccel.ml.yml`][hw-file] file into the `immich-machine-learning` service directly.
|
||||
|
||||
For example, the `cuda` section in this file is:
|
||||
|
||||
```yaml
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
count: 1
|
||||
capabilities:
|
||||
- gpu
|
||||
- compute
|
||||
- video
|
||||
```
|
||||
|
||||
You can add this to the `immich-machine-learning` service instead of extending from `hwaccel.ml.yml`:
|
||||
|
||||
```yaml
|
||||
immich-machine-learning:
|
||||
container_name: immich_machine_learning
|
||||
image: ghcr.io/immich-app/immich-machine-learning:${IMMICH_VERSION:-release}
|
||||
# Note the lack of an `extends` section
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
count: 1
|
||||
capabilities:
|
||||
- gpu
|
||||
- compute
|
||||
- video
|
||||
volumes:
|
||||
- model-cache:/cache
|
||||
env_file:
|
||||
- .env
|
||||
restart: always
|
||||
```
|
||||
|
||||
Once this is done, you can redeploy the `immich-machine-learning` container.
|
||||
|
||||
:::info
|
||||
You can confirm the device is being recognized and used by checking its utilization (via `nvtop` for CUDA, `intel_gpu_top` for OpenVINO, etc.). You can also enable debug logging by setting `LOG_LEVEL=debug` in the `.env` file and restarting the `immich-machine-learning` container. When a Smart Search or Face Detection job begins, you should see a log for `Available ORT providers` containing the relevant provider. In the case of ARM NN, the absence of a `Could not load ANN shared libraries` log entry means it loaded successfully.
|
||||
:::
|
||||
|
||||
[hw-file]: https://github.com/immich-app/immich/releases/latest/download/hwaccel.ml.yml
|
||||
[nvcr]: https://github.com/NVIDIA/nvidia-container-runtime/
|
||||
|
||||
## Tips
|
||||
|
||||
- If you encounter an error when a model is running, try a different model to see if the issue is model-specific.
|
||||
- You may want to increase concurrency past the default for higher utilization. However, keep in mind that this will also increase VRAM consumption.
|
||||
- Larger models benefit more from hardware acceleration, if you have the VRAM for them.
|
||||
|
Loading…
Reference in New Issue
Block a user